首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The paraelectric to antiferroelectric phase transition in titanite at ~500 K involves a displacement of the titanium atom from the center of the [TiO6] octahedron in the paraelectric phase (A2/a) to an off-center position in the antiferroelectric (P2 1/a) phase. We have carried out a detailed single crystal high temperature x-ray diffraction study of the phase transition including structure refinements at 294, 350, 400, 430, 440, 450, 500, 600, and 700 K. The unit cell dimensions show a pronounced hysteresis effect in the 450–500 K range on heating and cooling during the first cycle along with a reduction of the transition temperature, T c from 495 ± 5 K on heating to 445 ± 5 K on cooling. The hysteresis effect disappears on further heating and the superstructure reflections show residual intensities above T c (445 K). An order parameter treatment of the phase transition is presented in terms of Landau theory and induced representation theory. The Ti-displacements parallel and antiparallel to a are taken as the primary order parameter η, which transforms as the Y 2 + representation. A coupling of Y 2 + with T 1 + results in the linear-quadratic coupling of the spontaneous strain components, ? ij with η. The Ti-displacements are coupled linearly to the Cadisplacements. Both sets of displacements predicted from induced representation theory are observed experimentally. The phase transition is initially driven by the soft mode at the zone boundary point Y 2 + ; near T c critical fluctuations set in and an order-disorder mechanism finally drives the phase transition, whereby parallel and antiparallel Ti-displacements related by [0, 1/2, 1/2] in adjacent domains are dynamically interchanged. Immediately above T c , the high temperature (A2/a) phase is a statistical average of small dynamic antiphase domains of the low temperature (P2 1/a) phase. Vacancies and defects pinning the domain boundaries may drastically alter the transition behavior and affect the domain mobility.  相似文献   

2.
Powder infrared spectroscopy and X-ray diffraction techniques on single crystals were used to study the thermal behaviour of malayaite, CaSnSiO5. Infrared spectra show a discontinuity in the temperature evolution of phonon frequencies and absorbance near 500 K. However, crystal structure data collected at 300, 450, 550, 670, and 750 K show no evidence of a symmetry-breaking phase transition and no split positions. The most obvious change with heating is a tumbling motion of the SnO6 octahedra and an increase of the anisotropic displacement factors of Ca. The thermal evolution of the mean-square vibrational amplitude of the Ca atom shows a pronounced change in slope near 500 K. The evidence suggests that the 500 K anomaly in malayaite is more similar in character to the 825 K (β-γ) transition as opposed to the 496 K (α-β) transition in synthetic titanite. Received: 26 March 1998 / Revised, accepted: 23 December 1998  相似文献   

3.
The structural behavior of -eucryptite (LiAlSiO4) has been investigated using infrared (IR) spectroscopy over a temperature range of 20 to 900 K and FT-Raman spectroscopy at room temperature. IR reflectance measurements show that -eucryptite possesses high reflectivity in the far-IR region, as is consistent with its reported superionic conductivity along the c-axis. On heating, the Li-related IR bands near 246 and 300 cm–1 (with A2 symmetry) broadened and weakened dramatically, presumably as a result of Li+ positional disordering along the structural channels parallel to c. The disordering process appears to induce a framework distortion, as is evidenced by the broadening of some vibrations of Si(Al)–O with increasing temperature. A change in slope in the temperature dependence of the phonon frequency near 300 cm–1 and the linewidth of the 760 cm–1 band at 715 K indicates that Li becomes completely disordered above this temperature. In addition, the temperature dependence of the linewidth for the 760 cm–1 band exhibits an additional change in slope at 780 K, implying the existence of an intermediate state within this temperature range. The detailed structure of this intermediate phase, however, needs further study. Our IR data provide no indication of structural changes between room temperature and 20 K.  相似文献   

4.
Neutron powder diffraction measurements of the temperature dependence of superlattice reflections in calcite have shown that there is a continuous phase transition at 1260 K. The change in space group symmetry and the halving of the unit cell size on heating indicate that this transition is an orientational order/disorder transition. The intensities of the superlattice reflections show that the temperature dependence of the order parameter, Q, is of the form (T c T), where is 0.25, indicating that the transition is tricritical. The transition is accompanied by a large contraction along the c axis on cooling, defining a spontaneous strain e3 which is related to the order parameter (and hence temperature) via e3 Q 2. No evidence for critical lowering of the value of was found. These measurements confirm that, apart from the detailed critical behaviour, the phase transition in calcite is similar to that observed in NaNO3.  相似文献   

5.
Ilvaite, Ca(Fe2+, Fe3+) Fe2+Si2O7O(OH), a mixed-valence iron silicate shows an insulator-semimetal transition with a band gap of 0.13 eV due to thermally induced charge delocalization between Fe2+ and Fe3+ ions (A sites) in double octahedral chains. The charge delocalization induces a second order crystallographic phase transition on heating from monoclinic (P21/a) to orthorhombic (Pnam) symmetry at 346 K. The unit cell dimensions within the 295–420 K range and the crystal structures at 295, 320, 340, 360, 380 and 400 K have been determined by high temperature single crystal X-ray diffraction. The degree of charge delocalization determined from the sizes of the Fe(Ao) and Fe(Am) octahedra is the primary order parameter, Q which couples linearly with the spontaneous strain component, 13. The order parameter coupling and the associated free energy expression is given. The calculated normal modes of the space group symmetry change are consistent with the experimentally observed atomic displacements, which are parallel and antiparallel to c. Formation of antiphase lamellar twin domains parallel to (001) in the monoclinic phase is predicted to occur as a result of the phase transition. Above Tc (= 346 K), the slow asymptotic decrease of 13 attaining a zero value at 380 K indicates the presence of fluctuating precursor clusters with considerable short-range order above Tc. A peak in the specific heat (Cp) measurements coincides with the onset of longrange order at 380 K, whereas 57Fe Mössbauer measurements indicate the onset of charge localization at a considerbly higher temperature (470 K). The coupling of the d6 electron of the Fe2+ (A) ion with a longitudinal optic phonon with the polarization vector along c * is the likely mechanism to drive the phase transition. The electronphonon coupling also provides a charge conduction mechanism through electron hopping, whereby the short-bonded Fe2+-Fe3+ pair containing the d6 electron (intermediate polaron) will break up and re-form, thereby propagating the electron one step along the c axis.  相似文献   

6.
Lattice parameters, and intensities of selected X-ray reflexions, have been measured as a function of temperature for natural leucite, to characterise the phase transformation behaviour. At low temperatures leucite has a large ferroelastic distortion, but the temperature evolution of lattice parameters cannot be explained in terms of a purely ferroelastic phase transition; in particular, the considerable change in volume with temperature implies an additional transition mechanism, which we correlate with off-centring of K-ions in the low-temperature phase, and a collapse of the 111 structural channels. The transition behavior can therefore be rationalised in terms of two competing mechanisms: (I) Ferroelastic (consistent with the change m3m 4/mmm); (II) Volume-changing (consistent with m3m 4/m). Coupling of the two order parameters QI, and QII gives rise to the intermediate 4/mmm tetragonal phase.Our results confirm the existence of an I4 1/aI4 1/acd transition, but the non-disappearance of the 200 reflexion at high temperatures implies that the expected transition from I41/acd to Ia3d (cubic) symmetry does not occur. We attribute this to a residual strain field conjugated to the order parameter, due to defects (with possible Al/Si order). Nevertheless, within our experimental resolution, the lattice becomes metrically cubic at 665° C.  相似文献   

7.
The temperature dependence of the hexagonal c unit cell parameter of high-purity NaNO3 shows an anomaly at 553 K corresponding to the orientational ordering transition. The a unit cell parameter is barely influenced by the transition. The single component spontaneous strain for this zone boundary instability is large (55×10–3 at 295 K), and couples quadratically with the order parameter. The critical exponent is found to have the value 0.22 ± 0.01, which differs from that expected in the classical case. Below ca 450 K, crossover to tricritical behaviour is observed (=1/4). The temperature evolution of the macroscopic order parameter as revealed by the temperature dependence of the spontaneous strain follows a tricritical behaviour between 70 K and 450 K. At temperatures below 70 K order parameter saturation is observed. Combined with recent data from specific heat measurements, the critical exponents suggest that the three-dimensional, three-states Potts model may describe the transition.Precursor spontaneous strain above T c is consistent with local ordering and may result from fluctuations associated with an antiordered NO3 group pair configuration.  相似文献   

8.
To investigate the mechanisms for the cubic-tetragonal phase transition in leucite (KAlSi2O6), the frequency dependence of the dielectric constant (), and of the electric conductivity (), have been measured as a function of temperature. The dielectric loss function, tan , contains two main features: (i) a classical Debye peak, with activation energy of 0.77 eV, ascribed to hopping of K-atoms between their channel (W) sites, via the vacant side-channel (S) sites; (ii) a heavily-overdamped relaxational mode which softens when the crystal is cooled towards the phase transition temperature. The latter relaxational mode shows a critical behaviour, and is thus directly correlated with the transition mechanism. As it is only the potassium ions that could relax at frequencies well below the optical phonon branches, it appears that their movement is relaxational (i.e. heavily overdamped) rather than phonon-like. At temperatures above the transition point, the relaxation of K+ in an electric field is analysed in terms of collective motions within tetragonal domains. Direct evidence for the existence of such domains follows from the presence of diffuse intensity in single-crystal X-ray diffraction experiments.  相似文献   

9.
The structure of CaGe2O5 between room temperature and 923 K has been determined by X-ray powder diffraction. A continuous phase transition from triclinic C1¯ to monoclinic C2/c symmetry at Tc=714±3 K is observed. The transition is accompanied by a weak heat capacity anomaly. This anomaly and the strain analysis based on the measured lattice parameters indicate a classical second-order phase transition. The order parameter, as measured by the strain component e23, is associated with the displacement of the Ca cation. Electronic structure optimization by density functional methods is used to verify the centric space group of the low-temperature structure of CaGe2O5.  相似文献   

10.
Electron diffraction and electron microscopic evidence is presented for a dynamical and reversible phase transition in anorthite at T c=516 K. Antiphase boundaries with a displacement vector, R=1/2[111] become unstable at T c, while other antiphase boundary loops with the same displacement vector are formed. These interfaces are very mobile and vibrate with a frequency which increases strongly with temperature. At temperatures considerably above T c, a shimmering effect is observed on imaging in dark field using diffuse c reflections. These observations are in agreement with the interpretation of the high temperature body-centered phase as a statistical dynamical average of very small c type antiphase domains of primitive anorthite. We propose that the c type antiphase domains in primitive anorthite originate from ordered and anti-ordered configurations around Ca2+ ions at (ooo) and (oio) [likewise (zoo) and (zio)] positions. The dynamical model for the transition involves a two-stage mechanism: a softmode mechanism causing the aluminosilicate framework to approach body-centered symmetry, followed by an orderdisorder of the Ca2+ ion configurations. Close to T c, statistical fluctuations set in and breathing motion type lattice vibrations of the aluminosilicate framework cause the configurations around Ca (ooo) and Ca(oio) [likewise Ca(zoo) and Ca(zio)] in the configuration to dynamically interchange through an intermediate configuration. The dynamical nature of the phase transition in anorthite is comparable to the phase transition in quartz.  相似文献   

11.
The structural phase transition in titanite is correlated with a strong temperature dependence of Raman scattering cross sections and, to a somewhat lesser extent, with shifts of the phonon frequencies. Their quantitative temperature evolution in the low-symmetry phase (P21/a) is compatible with a nearly 2D Ising behaviour with β≈0.12 and T c = 497 K. At temperatures above 860 K, the phonon signals agree with A 2/a symmetry but not in the temperature interval between 497 K and 860 K. In this temperature range new structural states give rise to additional phonon signals. A model based on mobile APBs between slabs of P21/a material, first proposed by van Heurck et al. (1991), is in qualitative agreement with our experimental observations.  相似文献   

12.
Polarized electronic absorption spectra of single crystalline Co2[SiO4] and (Co0.64Mg0.36)2[SiO4] (E|| a (|| Z), E || b (|| X), E || c (|| Y)) have been studied in the temperature range 293 T/K 1273. The three polarized spectra show a total of 15 bands. Five bands are caused by spin-allowed transitions in Co2+ ions at M1 sites which appear in all polarization directions. Seven polarization-dependent bands can be ascribed to spin-allowed transitions in Co2+ ions at M2 sites and three bands may be assigned to spin-forbidden transitions. The assignment of bands due to Co2+ ions at M1 and M2 sites has been made on the basis of transition energies and intensity ratios. Further arguments have been derived from the comparison of spectra of crystals with different cobalt content, from the analysis of the polarization dependence of the spectra, and from the evolution of band intensities with temperature.  相似文献   

13.
Phase relations of a phonolite (K1) and a tephri-phonolite (K2) from the Upper Miocene lavas in the Southeast Province of the Kerguelen Archipelago have been investigated in the P/T range 100–500 MPa and 700–900 °C at two fO2 conditions (~ NNO and ~ NNO+2.3) to clarify the differentiation and pre-eruptive conditions of these magmas. Crystallization experiments were performed in cold seal pressure vessels (CSPV) and internally heated pressure vessels (IHPV) at various XH2O, under reducing (log fO2 ~ NNO) and oxidizing conditions (log fO2 ~ NNO+2.3). Under reducing conditions, the resulting phase assemblage for K1 was: titanomagnetite, nepheline, alkali feldspar, clinopyroxene and biotite; under oxidizing conditions, the assemblage was: magnetite, plagioclase, alkali feldspar, nepheline, titanite (minerals given in the order of appearance with decreasing T at 200 MPa for 4 wt% water in the melt). It is emphasized that an effect of fO2 on the phase stability of feldspars and feldspathoides was observed. Comparison of the natural and experimental phase assemblages shows that the pre-eruptive conditions for K1 must have been in the log fO2 range NNO+1–NNO+2, at pressures above 200–250 MPa. Assuming a temperature of 800 °C, the water content of the melt is constrained to be between 4 and 6 wt% H2O. The pre-eruptive fO2 conditions for the less evolved sample K2 are more oxidizing with log fO2 close to NNO+2.3. The experimental results show that the enrichment of alkalis in residual melts during differentiation of tephri-phonolites is enhanced at high fO2.Editorial responsibility: J. Hoefs  相似文献   

14.
The temperature dependence of the infrared active modes of meteoritic and synthetic tridymite have been investigated between 23 K and 1073 K in IR absorption and IR emission experiments. At room temperature both tridymite samples consist of a mixture of low temperature forms, in different proportions, due to the grinding. The sequence of phase transitions in Steinbach tridymite deduced from the IR data agrees well with recent X-ray and calorimetry studies using identical samples (Cellai et al. 1994). The previously suspected structural phase transition P6322P63/mmc is confirmed by the disappearance of the 470 cm-1 mode and a temperature anomaly of the spectral shift of the 790 cm-1 mode. Changes in the infrared spectra of synthetic tridymite give a different sequence of phase transitions from those of the meteoritic sample, consistent with the structural phase transitions observed in a 29Si MAS NMR investigation using the same sample (Xiao et al. 1993).  相似文献   

15.
The structure of a natural melilite with chemical composition (Ca1.87Sr0.02Na0.10K0.02)2.01(Mg0.96Al0.07)1.03(Si1.98Al0.02)2.00O7 has been investigated by X-ray single-crystal diffraction methods within the temperature range 298–773 K. The values of the coefficient of the modulation wave vector were determined at 298 K, 323 K, 348 K, and 358 K. These values show a continuous linear decrease from 0.2833(6) at 298 K to 0.2763(9) at 358 K. The incommensurate phase undergoes a phase transition to the normal phase at 359 K. The refinements of the structure, carried out at 298 K, 348 K, 359 K, 373 K, 413 K, 463 K, 513 K, 573 K, 673 K, and 773 K, showed that the normal phase (high-temperature phase) does not significantly differ from the basic structure (the average structure of the incommensurate structure). This study confirms that in natural melilites with chemical composition close to that of åkermanite the wavelength of the incommensurate modulation increases when the temperature rises. The different behaviour of the q-vector as a function of temperature in natural and synthetic åkermanite is discussed.  相似文献   

16.
The enthalpy of calcite has been measured directly between 973 K and 1325 K by transposed-temperature- drop calorimetry. The excess enthalpy has been analysed in terms of Landau theory for this tricritical phase transition. The zero-point enthalpy and entropy allow estimates of the parameters a and C in the Landau expansion for free energy which expresses excess free energy G as a function of the order parameter Q and temperature T: G 1/2a(T 2cT)Q 2+1/6CQ 6 with a=24 J·K·mol-1, C = 30 kJ·mol T c = 1260 ±5 K. The entropy of disorder below the transition has been formulated as a function of temperature allowing the calculation of the calcite/aragonite phase boundary when taking this extra entropy into account. There is remarkable agreement between the calculated equilibrium curve and previous experimental observations. The Landau theory predicts behaviour which fully accounts for the change in slope of the calcite/aragonite phase boundary, which is thus wholly due to the R¯3cR¯3m transition in calcite.  相似文献   

17.
An order parameter treatment of the phase transitions in leucite, KAlSi2O6, at approximately 950 and 920 K: (cubic) I41 acd(tetragonal) I41 a(tetragonal) is presented in terms of Landau theory and induced representation theory. The Al-Si order with decreasing temperature is taken as the primary order parameter to which other distortions (K+ ion displacements, strain components, etc.) couple linearly. The expected Al-Si ordering behavior and the associated K+ ion displacements for both transitions are derived and the resulting twin domain orientations are listed. The sequence of phase transitions results from a coupling of 3 + and 4 + representations. The Landau free energy for the five-dimensional reducible representation has been simplified to two components resulting in a linearquadratic coupling of the components. Possible phase diagrams are derived by free energy minimization. The cubic tetragonal transition is first-order, whereas the tetragonal-tetragonal transition may be second order. A tricritical point exists at which the first-order transition changes to second-order.  相似文献   

18.
The lepidocrocite (-FeOOH) to maghemite (-Fe2O3), and the maghemite to hematite (-Fe2O3) transition temperatures have been monitored by TGA and DSC measurements for four initial -FeOOH samples with different particle sizes. The transition temperature of -FeOOH to -Fe2O3 and the size of the resulting particles were not affected by the particle size of the parent lepidocrocite. In contrast, the -Fe2O3 to -Fe2O3 transition temperature seems to depend on the amount of excess water molecules present in the parent lepidocrocite. Thirteen products obtained by heating for one hour at selected temperatures, were considered. Powder X-ray diffraction was used to qualify their composition and to determine their mean crystallite diameters. Transmission electron micrographs revealed the particle morphology. The Mössbauer spectra at 80 K and room temperature of the mixed and pure decomposition products generally had to be analyzed with a distribution of hyperfine fields and, where appropriate, with an additional quadrupole-splitting distribution. The Mössbauer spectra at variable temperature between 4.2 and 400 K of two single-phase -Fe2O3 samples with extremely small particles show the effect of superparamagnetism over a very broad temperature range. Only at the lowest temperatures (T55 K), two distributed components were resolved from the magnetically split spectra. In the external-field spectra the mI=0 transitions have not vanished. This effect is an intrinsic property of the maghemite particles, indicating a strong spin canting with respect to the applied-field direction. The spectra are successfully reproduced using a bidimensional-distribution approach in which both the canting angle and the magnetic hyperfine field vary within certain intervals. The observed distributions are ascribed to the defect structure of the maghemites (unordered vacancy distribution on B-sites, large surface-to-bulk ratio, presence of OH- groups). An important new finding is the correlation between the magnitude of the hyperfine field and the average canting angle for A-site ferric ions, whereas the B-site spins show a more uniform canting. The Mössbauer parameters of the two hematite samples with MCD104 values of respectively 61.0 and 26.5 nm display a temperature variation which is very similar to that of small-particle hematites obtained from thermal decomposition of goethite. However, for a given MCD the Morin transition temperature for the latter samples is about 30 K lower. This has tentatively been ascribed to the different mechanisms of formation, presumably resulting in slightly larger lattice parameters for the hematite particles formed from goethite, thus shifting the Morin transition to lower temperatures.Senior Research Associate, National Fund for Scientific Research (Belgium)  相似文献   

19.
The phonon density of states (DOS) in iron has been measured in situ by nuclear resonance inelastic X-ray scattering (NRIXS) at high pressures and high temperatures in a resistively heated diamond anvil cell. The DOS data provide a variety of thermodynamic and elastic parameters essential for characterizing iron at depth in the Earth interior, such as average sound velocity, Debye temperature, atomic mean square displacement, average kinetic energy, vibrational entropy and specific heat. The NRIXS data were collected at 6, 20, and 29 GPa and at temperatures up to 920 K. Temperatures were directly determined from the measured spectra by the ratio of intensities of the phonon creation/annihilation side bands that are determined only by the Boltzmann factor. The change of the DOS caused by the structural transition from -Fe to -Fe is small and not resolvable within the experimental precision. However, the phonon energies in -Fe are clearly shifted to lower values with respect to - and -Fe. The temperature dependence of derived thermodynamic parameters is presented and compared with those obtained by Debyes model. The Debye temperatures that best describe the data decrease slightly with increasing temperature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号