首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 176 毫秒
1.
This paper is devoted to discussing the difference in the thermodynamic entropy budget per baryon in each type of stellar object found in the Universe. We track and discuss the actual decrease of the stored baryonic thermodynamic entropy from the most primitive molecular cloud up to the final fate of matter in black holes, passing through evolved states of matter as found in white dwarfs and neutron stars.We then discuss the case of actual stars with different masses throughout their evolution, clarifying the role of the virial equilibrium condition for the decrease in entropy and related issues. Finally, we discuss the role of gravity in driving the composition and the structural changes of stars with different Main Sequence masses during their evolution up to the final product. Particularly, we discuss the entropy of a black hole in this context arguing that the dramatic increase in its entropy, differently from the other cases, is due to the gravitational field itself.  相似文献   

2.
3.
《New Astronomy》2003,8(4):337-370
We summarize the main results from MODEST-1, the first workshop on MOdeling DEnse STellar systems. Our goal is to go beyond traditional population synthesis models, by introducing dynamical interactions between single stars, binaries, and multiple systems. The challenge is to define and develop a software framework to enable us to combine in one simulation existing computer codes in stellar evolution, stellar dynamics, and stellar hydrodynamics. With this objective, the workshop brought together experts in these three fields, as well as other interested astrophysicists and computer scientists. We report here our main conclusions, questions and suggestions for further steps toward integrating stellar evolution and stellar (hydro)dynamics.  相似文献   

4.
The current observational and theoretical status of the double-mode variables is reviewed. Focusing mostly on the RR Lyrae stars, we address the question of the observational evidence ofmodal stability. The problem of stationarity is a crucial issue in the modelling of these stars.We mention past efforts in hydrodynamical and analytical modelling together with a detailed discussion of some very recent results. It is suggested that stochastic forcing due to turbulent convection may play a crucial role in exciting some marginally stable modes in the limiting pulsation. The latest hydrodynamical results first demonstrate that purelyradiative models are able to showpermanent double-mode behavior in the relevant period regime of RRd stars. The reason for the previous lack of double-mode behavior is attributed to the large dissipation,i.e. artificial viscosity, generally used in the codes to ensure numerical stability and to obtain amplitudes comparable to the observed ones.We think that better models should include some physical dissipation, most probably turbulent convection, and a more accurate numerical treatment of the radiative hydrodynamics.  相似文献   

5.
This paper continues to elaborate on analytic methods to construct models for the internal structure of solar-type stars. Since a detailed stellar model is desired, a nonlinear analytic density distribution in terms of a two-parameter family of models has been assumed. Hydrostatic equilibrium and energy conservation determine the conditions in the gravitationally stabilized stellar fusion reactor. The results show once more that methods of differential and integral calculus provide a laboratory for the application of special functions of mathematical physics in stellar structure.Paper presented at the Second International Conference on Industrial and Applied Mathematics, July 8–12 1991, Washington D.C., U.S.A.  相似文献   

6.
We apply the two time method to weakly anharmonic (nonlinear) stellar pulsations. The problem contains two small parameters: -the ratio of the dynamical and the thermal timescale and -the measure of the anharmonicity in the oscillator equation. The 0(0) system is solved up to 0() by the use of an asymptotic perturbation method. This solution is then used within the framework of the two time method to obtain the slow evolution of the amplitudes and entropy. Both monomode and double-mode pulsations are treated in a non-resonance case.Work supported by the National Science Foundation (AST79-20024).  相似文献   

7.
Stellar winds from a binary star pair will interact with each other along a contact discontinuity. We discuss qualitatively the geometry of the flow and field resulting from this interaction in the simplest case where the stars and winds are identical. We consider the shape of the critical surface (defined as the surface where the flow speed is equal to the sound speed) as a function of stellar separation and the role of shock waves in the flow field. The effect of stellar spin and magnetic sectors on the field configuration is given. The relative roles of mass loss and magnetic torque in the evolution of orbital parameters are discussed.  相似文献   

8.
The traditional linearized stellar-structure equations, which provide information on the global stability of a stellar equilibrium state, are shown to engender a class of continuous modes, if the eigenfunctions are sought in a generalized function space. To endow the intuitive concept of Local Stellar Statility with a precise mathematical meaning, we endeavour to link this notion to the family of continuous spectra. We indicate a simple numerical method to compute the eigenfunctions associated with these modes, and we illustrate our approach by briefly analysing the continuous spectra connected with the radial and nonradial dynamical stability problem.  相似文献   

9.
10.
The angular diameter of a star can be estimated from interferometric observations by fitting the data with the visibility function for a uniformly illuminated disc and then using published correction factors to convert the uniform-disc angular diameter to the limb-darkened angular diameter. The correction factors are strictly valid only for monochromatic light. We investigate the effect of using a broad bandwidth, and present a simple method for calculating broad-band correction factors from the monochromatic factors.
The technique of fitting the data with a uniform-disc visibility function is only useful for stars with compact atmospheres and 'typical' limb-darkening profiles. It should not be applied to stars with extended atmospheres or that show extreme limb darkening. These stars have visibility functions that are qualitatively different from a uniform-disc visibility function, so they can be distinguished observationally from compact-atmosphere stars.  相似文献   

11.
In this study, I attempt to apply for a new statistical method and investigate the environmental dependence of stellar mass and stellar velocity dispersion in the CMASS sample of the Sloan Digital Sky Survey Data Release 9 (SDSS DR9). I divide the CMASS sample with redshifts 0.44 ≤ z ≤ 0.59 into many subsamples with a redshift binning size of Δz = 0.01, and analyze the environmental dependence of stellar mass and stellar velocity dispersion of subsamples in each redshift bin. It is found that stellar mass and stellar velocity dispersions of CMASS galaxies are very weakly correlated with the local environment. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We investigated continuous long-term photometric datasets of thirteen active stars, Ca II variability of one single mainsequence star, and 10.7 cm radio data of the Sun, with simple Fourier- and time-frequency analysis. The data reflect the strength of the activity manifested in magnetic spots. All studied stars show multiple (2 to 4) cycles of different lengths. The time-frequency analysis reveals, that in several cases of the sample one or two of the cycles exhibit continuous changes (increase or decrease). For four stars (V711 Tau, IL Hya, HK Lac, HD 100180) and for the Sun we find that the cycle length changes are strong, amounting to 10–50% during the observed time intervals. The cycle lengths are generally longer for stars with longer rotational periods. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The anisotropic structure of the relativistic stellar wind is investigated. Both relativistic fluid velocity and relativistic temperature are taken into account. General analysis is carried out in the curvilinear coordinates and the generalization of the dispersion equation is obtained. The topological structure of the individual field lines is the same as in the spherically-symmetric case, except the fact that the magnetic field dependence on distance cannot be establisheda priori. The interaction between neighbouring field lines brings the dependence on the transverse coordinate, numbering the field lines. This dependence leads to the establishing of a new constraint on the global flow topology. The two-dimensional wind structure is analyzed, with the constraint taken into account, in the large distances limit, using the asymptotic expansion into ther –1 power series. In the lowest order approximation the constraint reduces to a new global constant of motion. This constant causes the splitting of the two solution families.  相似文献   

14.
The Rayleigh-Taylor instability forms massive complexes. When 1021 atoms cm–2 are gathered, X-rays which heat the gas and UV-rays which ionize carbon are absorbed. A layer should appear with temperatures as low as 6 K and density to 4×103 cm–3. Finally the layer is fragmented into stars whose masses may even be less than one solar mass. The temperature of the layer should increase with time because part of free carbon is gradually absorbed by dust. Therefore more massive stars should appear after less massive stars. The stars which are formed kept near the layer by its gravitation. When their total mass becomes comparable with the mass of the layer, they should fall to the galactic plane in agreement with observed proper motions of several studied stellar systems.  相似文献   

15.
Two applications of von Zeipel's method to the stellar three-body problem eliminate the short period terms and establish two new integrals of the motion beyond the classical integrals. The remaining time averaged problem with only the second order Hamiltonian has one additional integral and can be solved. The motion with the third order averaged Hamiltonian included is more complex, in that there may be additional resonances, and the additional integral does not exist in all cases.  相似文献   

16.
The relation between the average magnetic fieldB, the angular velocity , and the periodP of stellar activity cycles is studied. For the calculations we have used Leighton's (1969) model for the solar cycle with the additional assumption that the differential rotation and the cyclonic turbulence (Parker, 1955) (that is the sunspot tilt or the -effect) are both proportional to . We then find thatB is roughly proportional to and thatP decreases with increasing . The period of the solar cycle increases therefore with the age of the Sun.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

17.
Relativistic, isentropic, homogeneous models are constructed by a method that automatically detects instabilities, and evolutionary tracks of central conditions are shown on a (T, ) diagram. Models heavier than 20M become unstable because of pair creation. Iron photodisintegration causes instability in the mass range between 1.5M and 20M . General relativistic effects bring about the onset of instability in models of 1.2–1.5M when the central density is about 1010 g/cm3. Lighter models become white dwarfs. It is pointed out that general relativistic instability will prevent the formation of neutron stars through hydrostatic evolution and may be relevant in setting off low-mass supernovae.  相似文献   

18.
19.
20.
D. J. Mullan 《Solar physics》1977,54(1):183-206
Short-lived increases in the brightness of many red dwarfs have been observed for the last 30 yr, and a variety of more or less exotic models have been proposed to account for such flares. Information about flares in the Sun has progressed greatly in recent years as a result of spacecraft experiments, and properties of coronal flare plasma are becoming increasingly better known. In this paper, after briefly reviewing optical, radio and X-ray observations of stellar flares, we show how a simplified model which describes conductive plus radiative cooling of the coronal flare plasma in solar flares has been modified to apply to optical and X-ray stellar flare phenomena. This model reproduces many characteristic features of stellar flares, including the mean UBV colors of flare light, the direction of flare decay in the two-color diagram, precursors, Stillstands, secondary maxima, lack of sensitivity of flare color to flare amplitude, low flux of flare X-rays, distinction between so-called spike flares and slow flares, Balmer jumps of as much as 6–8, and emission line redshifts up to 3000 km s–1. In all probability, therefore, stellar flares involve physical processes which are no more exotic (and no less!) than those in solar flares. Advantages of observing stellar flares include the possibilities of (i) applying optical diagnostics to coronal flare plasma, whereas this is almost impossible in the Sun, and (ii) testing solar flare models in environments which are not generally accessible in the solar atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号