首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a measurement of the probability distribution function (PDF) of the transmitted flux in the Lyman α (Lyα) forest from a sample of 3492 quasars included in the Sloan Digital Sky Survey data release 3 (SDSS DR3). Our intention is to investigate the sensitivity of the Lyα flux PDF as measured from low-resolution and low signal-to-noise ratio data to a number of systematic errors such as uncertainties in the mean flux, continuum and noise estimate. The quasar continuum is described by the superposition of a power law and emission lines. We perform a power-law continuum fitting on a spectrum-by-spectrum basis, and obtain an average continuum slope of  αν= 0.59 ± 0.36  in the redshift range  2.5 < z < 3.5  . We take into account that the variation in the continuum indices increases the mean flux by 3 and 7 per cent at   z = 3  and 2.4, respectively, as compared to the values inferred with a single (mean) continuum slope. We compare our measurements to the PDF obtained with mock lognormal spectra, whose statistical properties have been constrained to match the observed Lyα flux PDF and power spectrum of high-resolution data. Using our power-law continuum fitting and the SDSS pipeline noise estimate yields a poor agreement between the observed and mock PDFs. Allowing for a break in the continuum slope and, more importantly, for residual scatter in the continuum level substantially improves the agreement. A decrease of ∼10–15 per cent in the mean quasar continuum with a typical rms variance at the 20 per cent level can account for the data, provided that the noise excess correction is no larger than ≲10 per cent.  相似文献   

2.
We present results from the first high-resolution hydrodynamical simulations of non-Gaussian cosmological models. We focus on the statistical properties of the transmitted Lyman-α flux in the high-redshift intergalactic medium. Imprints of non-Gaussianity are present and are larger at high redshifts. Differences larger than 20 per cent at   z > 3  in the flux probability distribution function for high-transmissivity regions (voids) are expected for values of the non-linearity parameter   f NL=±100  when compared to a standard Λ cold dark matter cosmology with   f NL= 0  . We also investigate the one-dimensional flux bispectrum: at the largest scales (corresponding to tens of Mpc), we expect deviations in the flux bispectrum up to 20 per cent at   z ∼ 4  (for   f NL=±100  ), significantly larger than deviations of ∼3 per cent in the flux power spectrum. We briefly discuss possible systematic errors that can contaminate the signal. Although challenging, a detection of non-Gaussianities in the interesting regime of scales and redshifts probed by the Lyman-α forest could be possible with future data sets.  相似文献   

3.
We explore several physical effects on the power spectrum of the Lyα forest transmitted flux. The effects we investigate here are not usually part of hydrodynamic simulations and so need to be estimated separately. The most important effect is that of high column density absorbers with damping wings, which add power on large scales. We compute their effect using the observational constraints on their abundance as a function of column density. Ignoring their effect leads to an underestimation of the slope of the linear theory power spectrum. The second effect we investigate is that of fluctuations in the ionizing radiation field. For this purpose we use a very large high-resolution N -body simulation, which allows us to simulate both the fluctuations in the ionizing radiation and the small-scale Lyα forest within the same simulation. We find an enhancement of power on large scales for quasars and a suppression for galaxies. The strength of the effect rapidly increases with increasing redshift, allowing it to be uniquely identified in cases where it is significant. We develop templates that can be used to search for this effect as a function of quasar lifetime, quasar luminosity function and attenuation length. Finally, we explore the effects of galactic winds using hydrodynamic simulations. We find the wind effects on the Lyα forest power spectrum to be degenerate with parameters related to the temperature of the gas that are already marginalized over in cosmological fits. While more work is needed to conclusively exclude all possible systematic errors, our results suggest that, in the context of data analysis procedures, where parameters of the Lyα forest model are properly marginalized over, the flux power spectrum is a reliable tracer of cosmological information.  相似文献   

4.
5.
We present a semi-analytical model of star formation which explains simultaneously the observed ultraviolet (UV) luminosity function (LF) of high-redshift Lyman break galaxies (LBGs) and LFs of Lyman α emitters. We consider both models that use the Press–Schechter (PS) and Sheth–Tormen (ST) halo mass functions to calculate the abundances of dark matter haloes. The Lyman α LFs at   z ≲ 4  are well reproduced with only ≲10 per cent of the LBGs emitting Lyman α lines with rest equivalent width greater than the limiting equivalent width of the narrow band surveys. However, the observed LF at   z > 5  can be reproduced only when we assume that nearly all LBGs are Lyman α emitters. Thus, it appears that  4 < z < 5  marks the epoch when a clear change occurs in the physical properties of the high-redshift galaxies. As Lyman α escape depends on dust and gas kinematics of the interstellar medium (ISM), this could mean that on an average the ISM at   z > 5  could be less dusty, more clumpy and having more complex velocity field. All of these will enable easier escape of the Lyman α photons. At   z > 5  , the observed Lyman α LF are well reproduced with the evolution in the halo mass function along with very minor evolution in the physical properties of high-redshift galaxies. In particular, up to   z = 6.5  , we do not see the effect of evolving intergalactic medium opacity on the Lyman α escape from these galaxies.  相似文献   

6.
An analysis of the X-ray variability of the low-luminosity Seyfert nucleus NGC 4395, based on a long XMM–Newton observation, is presented. The power spectrum shows a clear break from a flat spectrum  (α≈ 1)  to a steeper spectrum  (α≈ 2)  at a frequency   f br= 0.5–3.0 × 10−3 Hz  , comparable to the highest characteristic frequency found previously in a Seyfert galaxy. This extends the measured   M BH− f br  values to lower M BH than previous studies of Seyfert galaxies, and is consistent with an inverse scaling of variability frequency with black hole mass. The variations observed are among the most violent seen in an active galactic nuclei to date, with the fractional rms amplitude  ( F var)  exceeding 100 per cent in the softest band. The amplitude of the variations seems intrinsically higher in NGC 4395 than most other Seyfert galaxies, even after accounting for the differences in characteristic frequencies. The origin of this difference is not clear, but it is unlikely to be a high accretion rate (   L / L Edd≲ 20  per cent for NGC 4395). The variations clearly follow the linear rms–flux relation, further supporting the idea that this is a ubiquitous characteristics of accreting black holes. The variations are highly coherent between different energy bands with any frequency-dependent time delay limited to ≲1 per cent.  相似文献   

7.
We investigate the dependence of QSO Ly α absorption features on the temperature of the absorbing gas and on the amplitude of the underlying dark-matter fluctuations. We use high-resolution hydrodynamic simulations in cold dark matter dominated cosmological models. In models with a hotter intergalactic medium (IGM), the increased temperature enhances the pressure gradients between low- and high-density regions and this changes the spatial distribution and the velocity field of the gas. Combined with more thermal broadening, this leads to significantly wider absorption features in hotter models. Cosmological models with little small-scale power also have broader absorption features, because fluctuations on the scale of the Jeans length are still in the linear regime. Consequently, both the amplitude of dark-matter fluctuations on small scales and thermal smoothing affect the flux decrement distribution in a similar way. However, the b -parameter distribution of Voigt profile fits, obtained by deblending the absorption features into a sum of thermally broadened lines, is largely independent of the amount of small-scale power, but does depend strongly on the IGM temperature. The same is true for the two-point function of the flux and for the flux power spectrum on small scales. These three flux statistics are thus sensitive probes of the temperature of the IGM. We compare the values computed for our models and obtained from a HIRES spectrum of the quasar Q1422+231 and conclude that the IGM temperature at z ∼3.25 is fairly high, T 0≳15 000 K. The flux decrement distribution of the observed spectrum is fitted well by that of a ΛCDM model with that temperature.  相似文献   

8.
We have made a Monte Carlo simulation of the intergalactic absorption in order to model the Lyman continuum absorption, which is required to estimate the escape fraction of the Lyman continuum from distant galaxies. To input into the simulation, we derive an empirical distribution function of the intergalactic absorbers which reproduces recent observational statistics of the Lyman α forest, Lyman limit systems (LLSs) and damped Lyman α systems (DLAs) simultaneously. In particular, we assume a common functional form of the number evolution along the redshift for all types of absorbers. The Lyman series transmissions in our simulation reproduce the observed redshift evolution of the transmissions excellently, and the Lyman continuum transmission also agrees with an observed estimation which is still quite rare in the literature. The probability distribution of the Lyman α opacity in our simulation is lognormal with a tail towards a large opacity. This tail is produced by DLAs. The probability distribution of the Lyman continuum opacity in our simulation also shows a broad tail towards a large opacity. This tail is produced by LLSs. Because of the rarity of LLSs, we have a chance to have a clean line of sight in the Lyman continuum even for   z ∼ 4  with a probability of about 20 per cent. Our simulation expects a good correlation between the Lyman continuum opacity and the Lyman α opacity, which may be useful to estimate the former from the latter for an individual line of sight.  相似文献   

9.
Recent results have shown that a substantial fraction of high-redshift Lyman α (Lyα) galaxies contain considerable amounts of dust. This implies that Lyα galaxies are not primordial, as has been thought in the past. However, this dust has not been directly detected in emission; rather it has been inferred based on extinction estimates from rest-frame ultraviolet (UV) and optical observations. This can be tricky, as both dust and old stars redden galactic spectra at the wavelengths used to infer dust. Measuring dust emission directly from these galaxies is thus a more accurate way to estimate the total dust mass, giving us real physical information on the stellar populations and interstellar medium enrichment. New generation instruments, such as the Atacama Large Millimeter Array and Sub-Millimeter Array, should be able to detect dust emission from some of these galaxies in the submillimeter. Using measurements of the UV spectral slopes, we derive far-infrared flux predictions for of a sample of  23 z ≥ 4  Lyα galaxies. We find that in only a few hours, we can detect dust emission from 39 ± 22 per cent of our Lyα galaxies. Comparing these results to those found from a sample of 21 Lyman break galaxies (LBGs), we find that LBGs are on average 60 per cent more likely to be detected than Lyα galaxies, implying that they are more dusty, and thus indicating an evolutionary difference between these objects. These observations will provide better constraints on dust in these galaxies than those derived from their UV and optical fluxes alone. Undeniable proof of dust in these galaxies could explain the larger than expected Lyα equivalent widths seen in many Lyα galaxies today.  相似文献   

10.
We present predictions for the one-point probability distribution and cumulants of the transmitted QSO flux in the high redshift Lyman- α forest. We make use of the correlation between the Lyman- α optical depth and the underlying matter density predicted by gravitational instability theory and seen in numerical hydrodynamic simulations. We have modelled the growth of matter fluctuations using the non-linear shear‐free dynamics, an approximation which reproduces well the results of perturbation theory for the cumulants in the linear and weakly non-linear clustering regime. As high matter overdensities tend to saturate in spectra, the statistics of the flux distribution are dominated by weakly non-linear overdensities. As a result, our analytic approach can produce accurate predictions, when tested against N -body simulation results, even when the underlying matter field has root-mean-square fluctuations larger than unity. Our treatment can be applied to either Gaussian or non-Gaussian initial conditions. Here we concentrate on the former case, but also include a study of a specific non-Gaussian model. We discuss how the methods and predictions we present can be used as a tool to study the generic clustering properties of the Lyman- α forest at high redshift. With such an approach, rather than concentrating on simulating specific cosmological models, we may be in a position to directly test our assumptions for the Gaussian nature of the initial conditions, and the gravitational instability origin of structure itself. In a separate paper we present results for two-point statistics.  相似文献   

11.
We assess the detectability of baryonic acoustic oscillation (BAO) in the power spectrum of galaxies using ultralarge volume N -body simulations of the hierarchical clustering of dark matter and semi-analytical modelling of galaxy formation. A step-by-step illustration is given of the various effects (non-linear fluctuation growth, peculiar motions, non-linear and scale-dependent bias) which systematically change the form of the galaxy power spectrum on large scales from the simple prediction of linear perturbation theory. Using a new method to extract the scale of the oscillations, we nevertheless find that the BAO approach gives an unbiased estimate of the sound horizon scale. Sampling variance remains the dominant source of error despite the huge volume of our simulation box  (=2.41  h −3 Gpc3)  . We use our results to forecast the accuracy with which forthcoming surveys will be able to measure the sound horizon scale, s , and, hence constrain the dark energy equation of state parameter, w (with simplifying assumptions and without marginalizing over the other cosmological parameters). Pan-STARRS could potentially yield a measurement with an accuracy of  Δ s / s = 0.5–0.7  per cent (corresponding to Δ w ≈ 2–3 per cent), which is competitive with the proposed WFMOS survey (  Δ s / s = 1  per cent Δ w ≈ 4 per cent). Achieving Δ w ≤ 1 per cent using BAO alone is beyond any currently commissioned project and will require an all-sky spectroscopic survey, such as would be undertaken by the SPACE mission concept under proposal to ESA.  相似文献   

12.
Deep surveys in many wavebands have shown that the rate at which stars were forming was at least a factor of 10 higher at redshifts >1 than today. Heavy elements ('metals') are produced by stars, and the star formation history deduced by these surveys implies that a significant fraction of all metals in the Universe today should already exist at   z ∼ 2–3  . However, only 10 per cent of the total metals expected to exist at this redshift have so far been accounted for (in damped Lyman α absorbers and the Lyman forest). In this paper, we use the results of submillimetre surveys of the local and high-redshift Universe to show that there was much more dust in galaxies in the past. We find that a large proportion of the missing metals are traced by this dust, bringing the metals implied from the star formation history and observations into agreement. We also show that the observed distribution of dust masses at high redshift can be reproduced remarkably well by a simple model for the evolution of dust in spheroids, suggesting that the descendants of the dusty galaxies found in deep submillimetre surveys are the relatively dust-free spiral bulges and ellipticals in the Universe today.  相似文献   

13.
We discuss wide-field near-infrared (near-IR) imaging of the NGC 1333, L1448, L1455 and B1 star-forming regions in Perseus. The observations have been extracted from a much larger narrow-band imaging survey of the Taurus–Auriga–Perseus complex. These H2 2.122-μm observations are complemented by broad-band K imaging, mid-IR imaging and photometry from the Spitzer Space Telescope , and published submillimetre CO   J = 3–2  maps of high-velocity molecular outflows. We detect and label 85 H2 features and associate these with 26 molecular outflows. Three are parsec-scale flows, with a mean flow lobe length exceeding 11.5 arcmin. 37 (44 per cent) of the detected H2 features are associated with a known Herbig–Haro object, while 72 (46 per cent) of catalogued HH objects are detected in H2 emission. Embedded Spitzer sources are identified for all but two of the 26 molecular outflows. These candidate outflow sources all have high near-to-mid-IR spectral indices (mean value of  α∼ 1.4  ) as well as red IRAC 3.6–4.5 μm and IRAC/MIPS 4.5–24.0 μm colours: 80 per cent have [3.6]–[4.5] > 1.0 and [4.5]–[24] > 1.5. These criteria – high α and red [4.5]–[24] and [3.6]–[4.5] colours – are powerful discriminants when searching for molecular outflow sources. However, we find no correlation between α and flow length or opening angle, and the outflows appear randomly orientated in each region. The more massive clouds are associated with a greater number of outflows, which suggests that the star formation efficiency is roughly the same in each region.  相似文献   

14.
Observations of V404 Cyg performed using the Westerbork Synthesis Radio Telescope at four frequencies, over the interval 1.4–8.4 GHz, have provided us with the first broad-band radio spectrum of a 'quiescent' stellar mass black hole. The measured mean flux density is of 0.35 mJy, with a spectral index  α=+0.09 ± 0.19  (such that   S ν∝να  ). Synchrotron emission from an inhomogeneous partially self-absorbed outflow of plasma accounts for the flat/inverted radio spectrum, in analogy with hard-state black hole X-ray binaries, indicating that a steady jet is being produced between a few 10−6 and a few per cent of the Eddington X-ray luminosity.  相似文献   

15.
We present an analysis of the proximity effect in a sample of 10 2-Å-resolution QSO spectra of the Ly α forest at     . Rather than investigating variations in the number density of individual absorption lines, we employ a novel technique that is based on the statistics of the transmitted flux itself. We confirm the existence of the proximity effect at the > 99 per cent confidence level. We derive a value for the mean intensity of the extragalactic background radiation at the Lyman limit of     . This value assumes that QSO redshifts measured from high-ionization lines differ from the true systemic redshifts by     . We find evidence at a level of 2.6 σ that the significance of the proximity effect is correlated with QSO Lyman limit luminosity. Allowing for known QSO variability, the significance of the correlation reduces to 2.1 σ .
The QSOs form a close group on the sky and the sample is thus well suited for an investigation of the foreground proximity effect, where the Ly α forest of a background QSO is influenced by the UV radiation from a nearby foreground QSO. From the complete sample we find no evidence for the existence of this effect, implying either that     or that QSOs emit at least a factor of 1.4 less ionizing radiation in the plane of the sky than along the line of sight to Earth. We do, however, find one counter-example. Our sample includes the fortunate constellation of a foreground QSO surrounded by four nearby background QSOs. These four spectra all show underdense absorption within ±3000 km s−1 of the redshift of the foreground QSO.  相似文献   

16.
We study the properties of X-ray galaxy clusters in four cold dark matter models with different baryon fractions ΩBM, ranging from 5 to 20 per cent. By using an original three-dimensional hydrodynamic code based on the piecewise parabolic method, we run simulations on a box with a size of 64  h −1 Mpc and we identify the clusters by selecting the peaks in the X-ray luminosity field. We analyse these mock catalogues by computing the mass function, the luminosity function, the temperature distribution and the luminosity–temperature relation. By comparing the predictions of the different models to a series of recent observational results, we find that only the models with low baryonic content agree with the data, while models with larger baryon fraction are well outside the 1σ error bars. In particular, the analysis of the luminosity functions, both bolometric and in the energy band [0.5–2] keV, requires ΩBM ≲ 0.05 when we fix the values h  = 0.5 and n  = 0.8 for the Hubble parameter and the primordial spectral index, respectively. Moreover we find that, independently of the cosmological scenario, all the considered quantities have very little redshift evolution, particularly between z  = 0.5 and 0.  相似文献   

17.
We measure the matter power spectrum from 31 Lyα spectra spanning the redshift range of 1.6–3.6. The optical depth, τ, for Lyα absorption of the intergalactic medium is obtained from the flux using the inversion method of Nusser & Haehnelt. The optical depth is converted to density by using a simple power-law relation,  τ∝ (1 +δ)α  . The non-linear 1D power spectrum of the gas density is then inferred with a method that makes simultaneous use of the one- and two-point statistics of the flux and compared against theoretical models with a likelihood analysis. A cold dark matter model with standard cosmological parameters fits the data well. The power-spectrum amplitude is measured to be (assuming a flat Universe),  σ8= (0.92 ± 0.09) × (Ωm/0.3)−0.3  , with α varying in the range of 1.56–1.8 with redshift. Enforcing the same cosmological parameters in all four redshift bins, the likelihood analysis suggests some evolution in the temperature–density relation and the thermal smoothing length of the gas. The inferred evolution is consistent with that expected if reionization of He  ii occurred at   z ∼ 3.2  . A joint analysis with the Wilkinson Microwave Anisotropy Probe results together with a prior on the Hubble constant as suggested by the Hubble Space Telescope key project data, yields values of Ωm and σ8 that are consistent with the cosmological concordance model. We also perform a further inversion to obtain the linear 3D power spectrum of the matter density fluctuations.  相似文献   

18.
Two-dimensional numerical magnetohydrodynamic simulations of a cancelling magnetic feature (CMF) and the associated coronal X-ray bright point (XBP) are presented. Coronal magnetic reconnection is found to produce the Ohmic heating required for a coronal XBP. During the BP phase where reconnection occurs above the base, about 90–95 per cent of the magnetic flux of the converging magnetic bipole cancels at the base. The last ≈5 to 10 per cent of the base magnetic flux is cancelled when reconnection occurs at the base. Reconnection happens in a time-dependent way in response to the imposed converging footpoint motions. A potential field model gives a good first approximation to the qualitative behaviour of the system, but the magnetohydrodynamics (MHD) experiments reveal several quantitative differences: for example, the effects of plasma inertia and a pressure build-up in-between the converging bipole are to delay the onset of coronal reconnection above the base and to lower the maximum X -point height.  相似文献   

19.
We have searched the archived, pointed ROSAT Position Sensitive Proportional Counter data for blazars by correlating the WGACAT X-ray data base with several publicly available radio catalogues, restricting our candidate list to serendipitous X-ray sources with a flat radio spectrum ( α r≤0.70, where S ν ∝ ν − α ). This makes up the Deep X-ray Radio Blazar Survey (DXRBS). Here we present new identifications and spectra for 106 sources, including 86 radio-loud quasars, 11 BL Lacertae objects, and nine narrow-line radio galaxies. Together with our previously published objects and already-known sources, our sample now contains 298 identified objects: 234 radio-loud quasars [181 flat-spectrum quasars: FSRQ ( α r≤0.50) and 53 steep-spectrum quasars: SSRQ], 36 BL Lacs and 28 narrow-line radio galaxies. Redshift information is available for 96 per cent of these. Thus our selection technique is ∼90 per cent efficient at finding radio-loud quasars and BL Lacs. Reaching 5-GHz radio fluxes ∼50 mJy and 0.1–2.0 keV X-ray fluxes a few ×10−14 erg cm−2 s−1, DXRBS is the faintest and largest flat-spectrum radio sample with nearly complete (∼85 per cent) identification. We review the properties of the DXRBS blazar sample, including redshift distribution and coverage of the X-ray-radio–power plane for quasars and BL Lacs. Additionally, we touch upon the expanded multiwavelength view of blazars provided by DXRBS. By sampling for the first time the faint end of the radio and X-ray luminosity functions, this sample will allow us to investigate the blazar phenomenon and the validity of unified schemes down to relatively low powers.  相似文献   

20.
We present a catalogue of 147 serendipitous X-ray sources selected to have hard spectra ( α <0.5) from a survey of 188 ROSAT fields. Such sources must be the dominant contributors to the X-ray background at faint fluxes. We have used Monte Carlo simulations to verify that our technique is very efficient at selecting hard sources: the survey has 10 times as much effective area for hard sources as it has for soft sources above a 0.5–2 keV flux level of 10−14 erg cm−2 s−1. The distribution of best-fitting spectral slopes of the hard sources suggests that a typical ROSAT hard source in our survey has a spectral slope α ∼0. The hard sources have a steep number flux relation (d N /d S ∝ S − γ with a best-fitting value of γ =2.72±0.12) and make up about 15 per cent of all 0.5–2 keV sources with S >10−14 erg cm−2 s−1. If their N ( S ) continues to fainter fluxes, the hard sources will comprise ∼40 per cent of sources with 5×10−15< S <10−14 erg cm−2 s−1. The population of hard sources can therefore account for the harder average spectra of ROSAT sources with S <10−14 erg cm−2 s−1. They probably make a strong contribution to the X-ray background at faint fluxes and could be the solution to the X-ray background spectral paradox.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号