首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
城市地区暴雨洪灾发生频繁,合理计算设计暴雨是解决城市洪涝的重要前提。采用随机暴雨移置方法(Stochastic Storm Transposition,SST),设定暴雨移置区并提取出暴雨目录,通过区域性概率重采样与暴雨空间变换相结合的方式进行降雨频率分析,估计本地化的极端暴雨频率。以上海地区为例,研究发现暴雨移置区内暴雨分布具有空间异质性,暴雨随机移置概率不均,计算得到的设计暴雨方案包含了降雨时空分布信息,在不同重现期下设计暴雨的时空结构存在变异性,说明传统方法中采用的简化雨型和均一化空间分布假设会增加设计暴雨的不确定性。  相似文献   

2.
城市地区暴雨洪灾发生频繁,合理计算设计暴雨是解决城市洪涝的重要前提。采用随机暴雨移置方法(Stochastic Storm Transposition,SST),设定暴雨移置区并提取出暴雨目录,通过区域性概率重采样与暴雨空间变换相结合的方式进行降雨频率分析,估计本地化的极端暴雨频率。以上海地区为例,研究发现暴雨移置区内暴雨分布具有空间异质性,暴雨随机移置概率不均,计算得到的设计暴雨方案包含了降雨时空分布信息,在不同重现期下设计暴雨的时空结构存在变异性,说明传统方法中采用的简化雨型和均一化空间分布假设会增加设计暴雨的不确定性。  相似文献   

3.
城市暴雨积水过程的模拟   总被引:11,自引:0,他引:11       下载免费PDF全文
在对城市排水系统产汇流特性分析的基础上,采用水文学与水力学相结合途径,建立了城市地面积水数学模型。模型能够可靠地模拟暴雨造成的城市地面积水的量级、面积、深度和历时,并借助GIS的功能动态地演示地面积水的涨消过程,为制定城市防汛减灾对策和措施提供水情及涝情信息。  相似文献   

4.
The storm surge in coastal Mississippi caused by Hurricane Katrina was unprecedented in the region. The height and geographic extent of the storm surge came as a surprise to many and exceeded pre-impact surge scenarios based on SLOSH models that were the basis for emergency preparedness and local land use decision-making. This paper explores the spatial accuracy of three interpolated storm surge surfaces derived from post-event reconnaissance data by comparing the interpolation results to a specific SLOSH run. The findings are used to suggest improvements in the calibration of existing pre-event storm surge models such as SLOSH. Finally, the paper provides some suggestions on an optimal surge forecast map that could enhance the communication of storm surge risks to the public.  相似文献   

5.
Natural Hazards - Storm wave run-up causes beach erosion, wave overtopping, and street flooding. Extreme runup estimates may be improved, relative to predictions from general empirical formulae...  相似文献   

6.
Tsunamis versus storm deposits from Thailand   总被引:3,自引:0,他引:3  
Along the Andaman (west) coast of Thailand, the 2004 tsunami depositional features associated with the 2004 tsunami were used to describe the characteristics of tsunamis in a place far away from the effect of both recent and ancient storms. The current challenge is that a lack of precise sedimentological characteristics have been described that will differentiate tsunami deposits from storm deposits. Here, in sedimentological senses, we reviewed the imprints of the sedimentological characteristics of the 2004 tsunami and older deposits and then compared them with storm deposits, as analyzed from the deposits found along the eastern (Gulf of Thailand; GOT) coast of Thailand. We discuss the hydraulic conditions of the 2004 tsunami and its predecessors, on the Andaman coast, and compare them to storm flows found on the coast of the GOT. Similar to an extensive tsunami inflow deposit, a storm flow overwash has very similar sedimentary structures. Well-preserved sedimentary structures recognized in sand sheets from both tsunami and storms include single and multiple normal gradings, reverse grading, parallel, incline and foreset lamina, rip-up clasts, and mud drapes. All these sedimentary structures verify the similarity of tsunami and storm inflow behavior as both types of high-energy flow start to scour the beach zone. Antidunes are likely to be the only unique internal sedimentary structures observed in the 2004 tsunami deposit. Rip-up clasts are rare within storm deposits compared to tsunami deposits. We found that the deposition during the outflow from both tsunami and storms was rarely preserved, suggesting that it does not persist for very long in the geological record.  相似文献   

7.
城市雨洪模拟技术研究进展   总被引:8,自引:1,他引:7       下载免费PDF全文
从对水文过程描述的角度对城市雨洪模拟技术进行了回顾,认为管网汇流阶段算法较为成熟,而产流和坡面汇流阶段还有待深入研究.从模型构建思想的角度回顾其发展历程,阐明了经验性模型和分布式概念性模型的局限性以及分布式物理模型的良好发展前景.通过总结国内外几个具代表性城市雨洪模型的特点,从特定模型的角度进一步分析城市雨洪模型的现状,并指出中国与国外模型研究的差距.对与城市雨洪模拟精度密切相关的基础数据收集与管理技术进行了讨论,并提出了城市雨洪模拟技术的发展方向.  相似文献   

8.
Hurricane Gilbert has been labelled the storm of the century because of the many meteorological records it set. These include size, straightness of track, atmospheric pressure, precipitation, and total energy. After ravaging Jamaica as a Force 3 storm, Gilbert made landfall in Yucatan as a Force 5, one of only three hurricanes of such magnitude to do so in North America this century. In spite of a death toll of 318 and property damage in the billions of dollars, Gilbert's impacts were eclipsed by the extensive publicity that accompanied Hurricane Hugo's landfall in South Carolina the following year (1989).  相似文献   

9.
雨水花园对暴雨径流的削减效果   总被引:4,自引:0,他引:4  
雨水花园能够有效地蓄渗雨水径流、降低城市发展对水环境的不利影响.根据在西安市开展的一项连续4年对雨水花园入流与出流水文过程的监测研究,分析了雨水花园对暴雨径流的削减效果,并根据花园内土壤入渗率及颗粒组分随时间的变化,讨论了雨水花园运行效果的可持续性.结果显示:蓄水深度为15 cm,汇流比为20:1的试验用雨水花园,在4年监测的28场降雨中,仅有4场暴雨径流汇入雨水花园后发生溢流,且溢流量很小;试验期内,有2年未发生溢流,雨水径流全部入渗;最多的1年发生溢流3次,但年径流削减率仍高达96.8%;导致雨水花园发生溢流的均为短历时高强度暴雨.研究中还发现,雨水花园土壤入渗率在4年运行期内没有显著变化,一直稳定在2.4 m/d左右,花园内表层土壤砂粒含量由7.36%增加到20.55%,而粉粒和黏粒的含量则相应降低.可见,研究区雨水花园能够显著减少暴雨径流,且入渗性能稳定,具有良好的应用前景.  相似文献   

10.
A high-resolution unstructured grid two-dimensional finite-element model was applied to simulate the storm surge associated with the October 2010 extratropical storm in Lake Winnipeg. The wind and pressure fields from two high-resolution weather forecast models were used to drive the hydrodynamic model. The model results were compared with the observed water levels at several stations during the storm event. The model-predicted storm surge in the range of 0.6–1.5 m is comparable with observations in the southern basin of Lake Winnipeg. Model results are further analyzed to assess the transport of water between north and south basins of Lake Winnipeg during the event. Computed water surface elevations at specific locations at the outlet of the rivers and embayments indicate that the model needs some improvements in terms of grid resolution in those areas.  相似文献   

11.
This paper establishes various advancements for the application of surrogate modeling techniques for storm surge prediction utilizing an existing database of high-fidelity, synthetic storms (tropical cyclones). Kriging, also known as Gaussian process regression, is specifically chosen as the surrogate model in this study. Emphasis is first placed on the storm selection for developing the database of synthetic storms. An adaptive, sequential selection is examined here that iteratively identifies the storm (or multiple storms) that is expected to provide the greatest enhancement of the prediction accuracy when that storm is added into the already available database. Appropriate error statistics are discussed for assessing convergence of this iterative selection, and its performance is compared to the joint probability method with optimal sampling, utilizing the required number of synthetic storms to achieve the same level of accuracy as comparison metric. The impact on risk estimation is also examined. The discussion then moves to adjustments of the surrogate modeling framework to support two implementation issues that might become more relevant due to climate change considerations: future storm intensification and sea level rise (SLR). For storm intensification, the use of the surrogate model for prediction extrapolation is examined. Tuning of the surrogate model characteristics using cross-validation techniques and modification of the tuning to prioritize storms with specific characteristics are proposed, whereas an augmentation of the database with new/additional storms is also considered. With respect to SLR, the recently developed database for the US Army Corps of Engineers’ North Atlantic Comprehensive Coastal Study is exploited to demonstrate how surrogate modeling can support predictions that include SLR considerations.  相似文献   

12.
Hurricane storm surge simulations for Tampa Bay   总被引:1,自引:0,他引:1  
Using a high resolution, three-dimensional, primitive equation, finite volume coastal ocean model with flooding and drying capabilities, supported by a merged bathymetric-topographic data set and driven by prototypical hurricane winds and atmospheric pressure fields, we investigated the storm surge responses for the Tampa Bay, Florida, vicinity and their sensitivities to point of landfall, direction and speed of approach, and intensity. All of these factors were found to be important. Flooding potential by wind stress and atmospheric pressure induced surge is significant for a category 2 hurricane and catastrophic for a category 4 hurricane. Tide, river, and wave effects are additive, making the potential for flood-induced damage even greater. Since storm surge sets up as a slope to the sea surface, the highest surge tends to occur over the upper reaches of the bay, Old Tampa Bay and Hillsborough Bay in particular. For point of landfall sensitivity, the worst case is when the hurricane center is positioned north of the bay mouth such that the maximum winds associated with the eye wall are at the bay mouth. Northerly (southerly) approaching storms yield larger (smaller) surges since the winds initially set up (set down) water level. As a hybrid between the landfall and direction sensitivity experiments, a storm transiting up the bay axis from southwest to northeast yields the smallest surge, debunking a misconception that this is the worst Tampa Bay flooding case. Hurricanes with slow (fast) translation speeds yield larger (smaller) surges within Tampa Bay due to the time required to redistribute mass.  相似文献   

13.
Ocean surges onto coastal lowlands caused by tropical and extra tropical storms, tsunamis, and sea level rise affect all coastal lowlands and present a threat to drinking water resources of many coastal residents. In 2005, two such storms, Hurricanes Katrina and Rita struck the Gulf Coast of the US. Since September 2005, water samples have been collected from water wells impacted by the hurricanes’ storm surges along the north shore of Lake Pontchartrain in southeastern Louisiana. The private and public water wells tested were submerged by 0.6–4.5 m of surging saltwater for several hours. The wells’ casing and/or the associated plumbing were severely damaged. Water samples were collected to determine if storm surge water inundated the well casing and, if so, its effect on water quality within the shallow aquifers of the Southern Hills Aquifer System. In addition, the samples were used to determine if the impact on water quality may have long-term implication for public health. Laboratory testing for several indicator parameters (Ca/Mg, Cl/Si, chloride, boron, specific conductance and bacteria) indicates that surge water entered water wells’ casing and the screened aquifer. Analysis of the groundwater shows a decrease in the Ca/Mg ratio right after the storm and then a return toward pre-Katrina values. Chloride concentrations were elevated right after Katrina and Rita, and then decreased downward toward pre-Katrina values. From September 2005 to June 2006, the wells showed improvement in all the saltwater intrusion indicators.  相似文献   

14.
In this paper, we propose a framework for quantifying risks, including (1) the effects of forecast errors, (2) the ability to resolve critical grid features that are important to accurate site-specific forecasts, and (3) a framework that can move us toward performance-based/cost-based decisions, within an extremely fast execution time. A key element presently lacking in previous studies is the interrelationship between the effects of combined random errors and bias in numerical weather prediction (NWP) models and bias and random errors in surge models. This approach examines the number of degrees of freedom in present forecasts and develops an equation for the quantification of these types of errors within a unified system, given the number of degrees of freedom in the NWP forecasts. It is shown that the methodology can be used to provide information on the forecasts and along with the combined uncertainty due to all of the individual contributions. A potential important benefit from studies using this approach would be the ability to estimate financial and other trade-offs between higher-cost “rapid” evacuation methods and lower-cost “slower” evacuation methods. Analyses here show that uncertainty inherent in these decisions depends strongly on forecast time and geographic location. Methods based on sets of surge maxima do not capture this uncertainty and would be difficult to use for this purpose. In particular, it is shown that surge model bias can play a dominant role in distorting the forecast probabilities.  相似文献   

15.

Surrogate models are becoming increasingly popular for storm surge predictions. Using existing databases of storm simulations, developed typically during regional flood studies, these models provide fast-to-compute, data-driven approximations quantifying the expected storm surge for any new storm (not included in the training database). This paper considers the development of such a surrogate model for Delaware Bay, using a database of 156 simulations driven by synthetic tropical cyclones and offering predictions for a grid that includes close to 300,000 computational nodes within the geographical domain of interest. Kriging (Gaussian Process regression) is adopted as the surrogate modeling technique, and various relevant advancements are established. The appropriate parameterization of the synthetic storm database is examined. For this, instead of the storm features at landfall, the features when the storm is at closest distance to some representative point of the domain of interest are investigated as an alternative parametrization, and are found to produce a better surrogate. For nodes that remained dry for some of the database storms, imputation of the surge using a weighted k nearest neighbor (kNN) interpolation is considered to fill in the missing data. The use of a secondary, classification surrogate model, combining logistic principal component analysis and Kriging, is examined to address instances for which the imputed surge leads to misclassification of the node condition. Finally, concerns related to overfitting for the surrogate model are discussed, stemming from the small size of the available database. These concerns extend to both the calibration of the surrogate model hyper-parameters, as well as to the validation approaches adopted. During this process, the benefits from the use of principal component analysis as a dimensionality reduction technique, and the appropriate transformation and scaling of the surge output are examined in detail.

  相似文献   

16.
17.
中国年最大致洪暴雨落区研究   总被引:2,自引:0,他引:2       下载免费PDF全文
分析了1900-1999年逐年全国最大致洪暴雨落区的区域分布和年际间迁移轨迹.结果表明:中国年最大致洪暴雨落区的年际间迁移轨迹是无序的;年最大致洪暴雨可以随机地出现在中国(主要在90°E以东地区)任何地区;华中和华东地区是出现年最大致洪暴雨频次最高的地区.也分析了1470-1899年逐年的年最大洪涝中心的区域分布和年际间迁移轨迹,其结果支持20世纪中国年最大致洪暴雨落区分布和年际间迁移轨迹分析所得出的认识.上述事实表明,中国7大江河中的任何一条,每年都可能出现全国最大的暴雨洪水,而且无法预见其在年际间迁移的方向与落区.因此,中国不得不立足于此客观事实确立全国防洪战略.  相似文献   

18.
The northeastern sector of the Arabian Sea, which covers the Gujarat coast of India and western coast of Pakistan, is a region vulnerable to extreme sea levels associated with tropical cyclones (TCs). Although the frequency of tropical cyclones in the Arabian Sea is not high, the coastal regions of India and Pakistan suffer in terms of loss of life and property caused by the surges. In view of this a location-specific fine resolution model is developed for the Gujarat coast of India and adjoining Pakistan coast. The east–west and north–south grid distance is about 3.0 km. Using this model, numerical experiments are carried out to simulate the surges generated by 1999 and 2001 cyclones which struck the Pakistan coast. The model computed surges are in agreement with the available observational estimates.  相似文献   

19.
The inherent nonlinear characteristics of the watershed runoff process related to storm magnitude and watershed size are discussed in detail in this study. The first type of nonlinearity is referred to rainfall-runoff dynamic process and the second type is with respect to a Power-law relation between peak discharge and upstream drainage area. The dynamic nonlinearity induced by storm magnitude was first demonstrated by inspecting rainfall-runoff records at three watersheds in Taiwan. Then the derivation of the watershed unit hydrograph (UH) using two linear hydrological models shows that the peak discharge and time to peak discharge that characterize the shape of UH vary event-to-event. Hence, the intention of deriving a unique and universal UH for all rainfall-runoff simulation cases is questionable. In contrast, the UHs by the other two adopted nonlinear hydrological models were responsive to rainfall intensity without relying on linear proportion principle, and are excellent in presenting dynamic nonlinearity. Based on the two-segment regression, the scaling nonlinearity between peak discharge and drainage area was investigated by analyzing the variation of Power-law exponent. The results demonstrate that the scaling nonlinearity is particularly significant for a watershed having larger area and subjecting to a small-size of storm. For three study watersheds, a large tributary that contributes relatively great drainage area or inflow is found to cause a transition break in scaling relationship and convert the scaling relationship from linearity to nonlinearity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号