首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2008年5月12日汶川发生里氏8.0级地震的发震机制与龙门山断裂带的构造特征紧密相关,应用反射地震探测方法精细探测发震构造内部的结构特征,对研究汶川地震的发震机理有重要意义.5.12地震后在地表错断最剧烈的区域之一虹口乡白庙村穿过发震构造和深钻科研井WSFD-1和WSFD-2布置了兼顾浅中深层信息的反射地震探测剖面,该区域断裂带硬岩出露,地形地貌复杂多变,起伏剧烈,只能采取弯线地震测线布设方式采集二维反射地震数据,而且弯曲度大,造成CDP点分散严重.区域内构造复杂,褶皱逆推构造发育,地层和构造倾角大,采用常规二维地震数据处理方法进行叠加处理时,易将不同地层的反射信息叠加到同一反射层.弯线叠加剖面上侧面波,混波干扰严重,会显著地降低原本低信噪比数据的分辨率,或剖面可靠性低,容易在二维剖面中造成解释陷阱.本文利用弯线地震采集的三维特性,用拟三维地震叠加技术处理汶川地震科学钻井附近横跨北川-映秀断裂带的二维弯线地震数据,弥补常规二维弯线地震数据处理技术的不足,将不同地层的反射信息分离归位到不同的三维叠加剖面上,解决二维弯线地震数据处理时混波干扰严重的难题.通过理论分析和实验选取合适的共中心点面元,获得了高分辨率的三维叠加剖面.相比于二维弯线叠加剖面,三维叠加剖面切片成像更真实,剔除了不同地层反射信息混叠的影响,能得到更准确的断点信息,并可以获得沿断层走向横向的信息,显著提高了构造解释的可靠性和精度.应用拟三维地震数据处理方法处理龙门山断裂带的二维弯线地震数据,获取高分辨率的构造信息,有利于断裂带内汶川地震发震机制和龙门山隆起机制的解释.  相似文献   

2.
Hard rock seismic exploration normally has to deal with rather complex geological environments. These types of environments are usually characterized by a large number of local heterogeneity (e.g., faults, fracture zones, and steeply dipping interfaces). The seismic data from such environments often have a poor signal‐to‐noise ratio because of the complexity of hard rock geology. To be able to obtain reliable images of subsurface structures in such geological conditions, processing algorithms that are capable of handling seismic data with a low signal‐to‐noise ratio are required for a reflection seismic exploration. In this paper, we describe a modification of the 3D Kirchhoff post‐stack migration algorithm that utilizes coherency attributes obtained by the diffraction imaging algorithm in 3D to steer the main Kirchhoff summation. The application to a 3D synthetic model shows the stability of the presented steered migration to the presence of high level of the random noise. A test on the 3D seismic volume, acquired on a mine site located in Western Australia, reveals the capability of the approach to image steep and sharp objects such as fracture and fault zones and lateral heterogeneity.  相似文献   

3.
This paper examines those aspects of reflection seismology which require special consideration when imaging deeper hydrocarbon reservoirs, including the constraints imposed by vertical resolution, lateral resolution, and velocity analysis. We derive quantitative expressions relating the uncertainties in stacking velocities and in interval velocities derived from stacking velocities to acquisition parameters, as well as expressions for the lateral resolution which can theoretically be achieved for migrated seismic images. This analysis shows that the most significant limitations of seismic imaging at depth involve the finite lateral resolution of the seismic method, and the proper lateral positioning of seismic images. These difficulties are overcome in large measure through the proper migration of a seismic dataset, which becomes more critical as deeper horizons are imaged. If these horizons are suspected of having significant 3-D structure, a strong argument may be made for acquiring a 3-D seismic survey over the prospect. Migration of this dataset will then generate an image of the subsurface with good lateral resolution in both the X and Y directions.  相似文献   

4.
Unequal illumination of the subsurface highly impacts the quality of seismic imaging. Different image points receive different folds of reflection‐angle illumination, which can be caused by irregular acquisition or by wave propagation in complex media. Illumination problems can deteriorate amplitudes in migrated images. To address this problem, we present a method of stacking angle‐domain common‐image gathers, in which we use local similarity with soft thresholding to determine the folds of local illumination. Normalization by local similarity regularizes local illumination of reflection angles for each image point of the subsurface model. This approach compensates for irregular illumination by selective stacking in the image space, regardless of the cause of acquisition or propagation irregularities. Additional migration is not required because the methodology is implemented in the reflection angle domain after migration. We use two synthetic examples to demonstrate that our method can normalize migration amplitudes and effectively suppress migration artefacts.  相似文献   

5.
In hydraulic fracturing treatments, locating not only hydraulic fractures but also any pre‐existing natural fractures and faults in a subsurface reservoir is very important. Hydraulic fractures can be tracked by locating microseismic events, but to identify the locations of natural fractures, an additional technique is required. In this paper, we present a method to image pre‐existing fractures and faults near a borehole with virtual reverse vertical seismic profiling data or virtual single‐well profiling data (limited to seismic reflection data) created from microseismic monitoring using seismic interferometry. The virtual source data contain reflections from natural fractures and faults, and these features can be imaged by applying migration to the virtual source data. However, the imaging zone of fractures in the proposed method is strongly dependent on the geographic extent of the microseismic events and the location and direction of the fracture. To verify our method, we produced virtual reverse vertical seismic profiling and single‐well profiling data from synthetic microseismic data and compared them with data from real sources in the same relative position as the virtual sources. The results show that the reflection travel times from the fractures in the virtual source data agree well with travel times in the real‐source data. By applying pre‐stack depth migration to the virtual source data, images of the natural fractures were obtained with accurate locations. However, the migrated section of the single‐well profiling data with both real and virtual sources contained spurious fracture images on the opposite side of the borehole. In the case of virtual single‐well profiling data, we could produce correct migration images of fractures by adopting directional redatuming for which the occurrence region of microseismic events is divided into several subdivisions, and fractures located only on the opposite side of the borehole are imaged for each subdivision.  相似文献   

6.
The key objective of an imaging algorithm is to produce accurate and high‐resolution images of the subsurface geology. However, significant wavefield distortions occur due to wave propagation through complex structures and irregular acquisition geometries causing uneven wavefield illumination at the target. Therefore, conventional imaging conditions are unable to correctly compensate for variable illumination effects. We propose a generalised wave‐based imaging condition, which incorporates a weighting function based on energy illumination at each subsurface reflection and azimuth angles. Our proposed imaging kernel, named as the directional‐oriented wavefield imaging, compensates for illumination effects produced by possible surface obstructions during acquisition, sparse geometries employed in the field, and complex velocity models. An integral part of the directional‐oriented wavefield imaging condition is a methodology for applying down‐going/up‐going wavefield decomposition to both source and receiver extrapolated wavefields. This type of wavefield decomposition eliminates low‐frequency artefacts and scattering noise caused by the two‐way wave equation and can facilitate the robust estimation for energy fluxes of wavefields required for the seismic illumination analysis. Then, based on the estimation of the respective wavefield propagation vectors and associated directions, we evaluate the illumination energy for each subsurface location as a function of image depth point and subsurface azimuth and reflection angles. Thus, the final directional‐oriented wavefield imaging kernel is a cross‐correlation of the decomposed source and receiver wavefields weighted by the illuminated energy estimated at each depth location. The application of the directional‐oriented wavefield imaging condition can be employed during the generation of both depth‐stacked images and azimuth–reflection angle‐domain common image gathers. Numerical examples using synthetic and real data demonstrate that the new imaging condition can properly image complex wave paths and produce high‐fidelity depth sections.  相似文献   

7.
A high‐resolution reflection seismic survey was carried out in the southern part of the Bavarian Molasse Basin in 1998 and 1999. The survey aimed to investigate the near‐surface structure of the complicated transition from the unfolded Foreland Molasse to the Folded Molasse, and the Folded Molasse to the internally complicated thrust systems of the Helveticum, the Ultrahelveticum and the Rhenodanubian Flysch. The study is linked to the TRANSALP seismic project, and the results help to fill the gap between the surface and the upper 300–500 ms two‐way traveltime (TWT), typical of deep‐reflection seismic experiments. The environmental conditions encountered in the study area required that particular attention be paid to the acquisition parameters for the three seismic lines (each about 4 km long). The energy source was a small vibrator; the geophone spread, spacing and frequency range were adjusted to image reflectors, which were expected to dip steeply southwards. In general, the unprocessed field records did not show signals that could be attributed to specific reflectors. Individual trace processing considerably improved the data quality, taking into account the influence of the Quaternary cover and also the strong lateral velocity variations of the shallow subsurface. The effects of the various processing steps, such as muting, refraction statics, residual statics and velocity analysis, are discussed. To assess the NMO velocities, the qualitative analysis of the seismic energy in a common‐shotpoint gather offered advantages over an analysis in a common‐midpoint gather or in a stacked section, and proved to be very effective. As demonstrated along the Miesbach 9801 line, low‐velocity zones extend locally down to about 400 ms, adjacent to zones of extremely high velocities close to the surface, reflecting steeply dipping strata. Besides the Quaternary cover on top, the Miesbach 9801 and Miesbach 9802 lines exhibit many horizontal reflections, in places down as far as 1400 ms TWT, indicating the sedimentary sequences of the unfolded Foreland Molasse. The southern part of both lines is dominated by southward‐dipping reflection bands, indicating units of the Folded Molasse. The reflection pattern shown by the Miesbach 9901 line suggests that there is almost no Quaternary cover. Southward‐dipping elements reflect the internal structure of the Folded Molasse, whereas a rather diffuse reflection signature may be attributed to Rhenodanubian Flysch units.  相似文献   

8.
海底冷泉的地震海洋学初探   总被引:3,自引:3,他引:0       下载免费PDF全文
海底冷泉活动在全球大陆边缘海域广泛分布.与传统利用高频声学方法探测海底冷泉羽状流不同,本文利用常规多道反射地震(地震海洋学)方法对海底边界附近水体进行成像,结合盆地流体逸散结构特征,圈定活动冷泉流体活动发育位置,分析其地震反射特征和流体活动特征.研究表明,活动冷泉流体渗漏、逸散活动在多道反射地震剖面上一般呈羽状、扫帚状和不规则状几何形态,内部反射杂乱,反射振幅偏弱,但也有振幅增强的情况出现,这可能是由于含有较多泥质和细粒颗粒物悬浮.所造成的.冷泉活动一般与盆地内部泥底辟、流体管道、断层和裂隙、气烟囱、海底麻坑和泥火山等流体逸散结构相关,反映了地层内部流体自深部向浅部运移,在海底渗漏、逸散形成了活动冷泉.但分析结果仍需要进一步实地观测和理论模拟等相关研究确认.  相似文献   

9.
海洋中尺度涡与内波的地震图像   总被引:10,自引:5,他引:5       下载免费PDF全文
海洋反射地震通常用于调查、研究海底地质构造,勘探油气与天然气水合物资源.近期研究表明多道反射地震方法也可以对水柱的热盐细结构成像.中尺度涡与内波是重要的物理海洋现象,但是常规的物理海洋调查是在间隔若干公里的离散测站上进行的,水平分辨率较低,因此对中尺度涡的结构与内波的横向分布了解较差.本文利用在大西洋东部、南海采集的地震数据给出了低频反射地震可以对中尺度涡与内波清晰成像的新的证据.反射地震方法较传统海洋观测手段,具有明显的优势,主要体现在高的水平分辨率和短时间内对整个海水剖面进行成像方面.从地震剖面上,能够清楚地观测到中尺度涡、内波造成的反射特征变化,从而有助于改进对能量在不同尺度的海水运动之间传递过程的认识.  相似文献   

10.
The common focal point (CFP) method and the common reflection surface (CRS) stack method are compared. The CRS method is a fast, highly automated procedure that provides high S/N ratio simulation of zero‐offset (ZO) images by combining, per image point, the reflection energy of an arc segment that is tangential to the reflector. It uses smooth parametrized two‐way stacking operators, based on a data‐driven triplet of attributes in 2D (eight parameters in 3D). As a spin‐off, the attributes can be used for several applications, such as the determination of the geometrical spreading factor, multiple prediction, and tomographic inversion into a smooth background velocity model. The CFP method aims at decomposing two‐way seismic reflection data into two full‐aperture one‐way propagation operators. By applying an iterative updating procedure in a half‐migrated domain, it provides non‐smooth focusing operators for prestack imaging using only the energy from one focal point at the reflector. The data‐driven operators inhibit all propagation effects of the overburden. The CFP method provides several spin‐offs, amongst which is the CFP matrix related to one focal point, which displays the reflection amplitudes as measured at the surface for each source–receiver pair. The CFP matrix can be used to determine the specular reflection source–receiver pairs and the Fresnel zone at the surface for reflection in one single focal point. Other spin‐offs are the prediction of internal multiples, the determination of reflectivity effects, velocity‐independent redatuming and tomographic inversion to obtain a velocity–depth model. The CFP method is less fast and less automated than the CRS method. From a pointwise comparison of features it is concluded that one method is not a subset of the other, but that both methods can be regarded as being to some extent complementary.  相似文献   

11.
浅层反射地震方法是城市活断层探测常用的技术,但在基岩埋深比较浅的地区,往往只能识别出基岩顶面的反射波,而仅根据反射地震剖面上单个同相轴的变化很难准确判定断层是否存在.浅层地层的错断往往会引起速度的横向变化,利用高分辨折射地震方法采集的数据,应用层析成像方法获得的速度剖面,能够反映地下速度结构的变化,可以从另一方面揭示浅层断层存在的可能性.在四川某地,将这两种方法同时应用于活断层浅层地震勘探中.结果表明,两种方法联合应用可在一定程度上弥补浅层反射地震勘探方法在基岩埋深较浅地区的不足.  相似文献   

12.
We present an innovative approach for seismic image enhancement using multi‐parameter angle‐domain characterization of common image gathers. A special subsurface angle‐domain imaging system is used to generate the multi‐parameter common image gathers in a summation‐free image space. The imaged data associated with each common image gathers depth point contain direction‐dependent opening‐angle image contributions from all the available incident and scattered wave‐pairs at this point. Each direction‐dependent opening‐angle data can be differently weighted according to its coherency measure. Once the optimal migration velocity is used, it is assumed that in the actual specular direction, the coherency measure (semblance) along reflection events, from all available opening angles and opening azimuths, is larger than that along non‐specular directions. The computed direction‐dependent semblance attribute is designed to operate as an imaging filter which enhances specular migration contributions and suppresses all others in the final migration image. The ability to analyse the structural properties of the image points by the multi‐parameter common image gather allows us to better handle cases of complicated wave propagation and to improve the image quality at poorly illuminated regions or near complex structures. The proposed method and some of its practical benefits are demonstrated through detailed analysis of synthetic and real data examples.  相似文献   

13.
Reflection tomography is the industry standard tool for velocity model building, but it is also an ill‐posed inverse problem as its solution is not unique. The usual way to obtain an acceptable result is to regularize tomography by feeding the inversion with some a priori information. The simplest regularization forces the solution to be smooth, implicitly assuming that seismic velocity exhibits some degree of spatial correlation. However, velocity is a rock property; thus, the geometry and structure of rock formations should drive correlation in velocity depth models. This observation calls for constraints driven by geological models. In this work, we present a set of structural constraints that feed reflection tomography with geometrical information. These constraints impose the desired characteristics (flatness, shape, position, etc.) on imaged reflectors but act on the velocity update. Failure to respect the constraints indicates either velocity inaccuracies or wrong assumptions concerning the constraints. Reflection tomography with structural constraints is a flexible framework that can be specialized in order to achieve different goals: among others, to flatten the base of salt bodies or detachment surfaces, to recover the horizontalness of oil–water contacts, or to impose the co‐location of the same imaged horizon between PP and PS images. The straightforward application of structural constraints is that of regularizing tomography through geological information, particularly at the latest stages of the depth imaging workflow, when the depth migration structural setting reached a consistent geological interpretation. Structural constraints are also useful in minimizing the well‐to‐seismic mis‐ties. Moreover, they can be used as a tool to check the consistency of interpreters' hypothesis with seismic data. Indeed, inversion with structural constraints will preserve image focusing only if the interpreters' insights are consistent with the data. Results from synthetic and real data demonstrate the effectiveness of reflection tomography with structural constraints.  相似文献   

14.
三峡地区上地壳结构的远震虚震源反射地震成像   总被引:2,自引:1,他引:1       下载免费PDF全文
远震虚震源反射成像方法利用远震初至波在台网之下地表与地下界面间形成的反射波(PPdp震相)波形资料进行台网地区地震反射结构研究.此方法先用台网各台站的平均初至波形求取震源信号,再用该震源信号与各道地震记录作反褶积从而取得反射剖面.本文介绍了远震虚震源反射成像的基本原理和实现步骤,并以三峡地区的观测资料为例,得到三峡库首区上地壳的反射地震剖面.成像剖面中解释出的四川盆地和秭归盆地的底界面位置和形态与地表地质观测和大地构造背景吻合.为验证虚震源成像的能力,本文使用弹性波正演模拟合成地震数据,经过处理实际资料一样的步骤获得虚震源成像结果.正演模拟表明,叠加多个远震的反射地震剖面可以有效地改善成像的信噪比和连续性;虚震源成像需要选择特定的震源频率范围,以减轻高频噪音以及低频造成的成像问题.在研究上地壳结构时,建议在不适合主动源采集和缺乏低频信号的地区尝试远震虚震源方法.  相似文献   

15.
To better image deformation structures within the inner accretionary wedge of the Nankai Trough, Japan, we apply common reflection angle migration to a legacy two-dimensional seismic data set acquired with a 6 km streamer cable. In this region, many seismic surveys have been conducted to study the seismogenic zone related to plate subduction. However, the details of the accreted sediments beneath the Kumano forearc basin are still unclear due to the poor quality of seismic images caused by multiple reflections, highly attenuated signals, and possibly complex geological structures. Generating common image gathers in the subsurface local angle domain rather than the surface offset domain is more advantageous for imaging geological structures that involve complex wave paths and poor illumination. By applying this method, previously unseen structures are revealed in the thick accreted sediments. The newly imaged geometric features of reflectors, such as the folds in the shallow part of the section and the deep reflectors with stepwise discontinuities, imply deformation structures with multiple thrust faults. The reflections within the deep accreted sediments (approximately 5 km) are mainly mapped to far angles (30°–50°) in the common reflection angles, which correspond to the recorded offset distances greater than 4.5 km. This result indicates that the far offset/angle information is critical to image the deformation structures at depth. The new depth image from the common reflection angle migration provides seismic evidence of multiple thrust faults and their relationship with the megathrust fault that is essential for understanding the structure and evolution of the Nankai Trough seismogenic zone.  相似文献   

16.
Interferometric redatuming is a data‐driven method to transform seismic responses with sources at one level and receivers at a deeper level into virtual reflection data with both sources and receivers at the deeper level. Although this method has traditionally been applied by cross‐correlation, accurate redatuming through a heterogeneous overburden requires solving a multidimensional deconvolution problem. Input data can be obtained either by direct observation (for instance in a horizontal borehole), by modelling or by a novel iterative scheme that is currently being developed. The output of interferometric redatuming can be used for imaging below the redatuming level, resulting in a so‐called interferometric image. Internal multiples from above the redatuming level are eliminated during this process. In the past, we introduced point‐spread functions for interferometric redatuming by cross‐correlation. These point‐spread functions quantify distortions in the redatumed data, caused by internal multiple reflections in the overburden. In this paper, we define point‐spread functions for interferometric imaging to quantify these distortions in the image domain. These point‐spread functions are similar to conventional resolution functions for seismic migration but they contain additional information on the internal multiples in the overburden and they are partly data‐driven. We show how these point‐spread functions can be visualized to diagnose image defocusing and artefacts. Finally, we illustrate how point‐spread functions can also be defined for interferometric imaging with passive noise sources in the subsurface or with simultaneous‐source acquisition at the surface.  相似文献   

17.
The Sanjiang area in southwest China is considered as a tectonic intersection belt between the Tethys-Alps and the western Pacific, and has endured three-phase evolution processes: Proto-Tethys,Paleo-Tethys and Meso-Tethys[1―4]. In this area, its tectonics and struc- ture are extremely complicated, and intensively extru-sive deformation and faults are widely developed[1―3]. For that, the area is considered as the ideal na- ture-laboratory to study the evolution of Paleo-Tethys and also …  相似文献   

18.
An integrated multiscale seismic imaging flow is applied to dense onshore wide‐aperture seismic data recorded in a complex geological setting (thrust belt). An initial P‐wave velocity macromodel is first developed by first‐arrival traveltime tomography. This model is used as an initial guess for subsequent full‐waveform tomography, which leads to greatly improved spatial resolution of the P‐wave velocity model. However, the application of full‐waveform tomography to the high‐frequency part of the source bandwidth is difficult, due to the non‐linearity of this kind of method. Moreover, it is computationally expensive at high frequencies since a finite‐difference method is used to model the wave propagation. Hence, full‐waveform tomography was complemented by asymptotic prestack depth migration to process the full‐source bandwidth and develop a sharp image of the short wavelengths. The final traveltime tomography model and two smoothed versions of the final full‐waveform tomography model were used as a macromodel for the prestack depth migration. In this study, wide‐aperture multifold seismic data are used. After specific preprocessing of the data, 16 frequency components ranging from 5.4 Hz to 20 Hz were inverted in cascade by the full‐waveform tomography algorithm. The full‐waveform tomography successfully imaged SW‐dipping structures previously identified as high‐resistivity bodies. The relevance of the full‐waveform tomography models is demonstrated locally by comparison with a coincident vertical seismic profiling (VSP) log available on the profile. The prestack depth‐migrated images, inferred from the traveltime, and the smoothed full‐waveform tomography macromodels are shown to be, on the whole, consistent with the final full‐waveform tomography model. A more detailed analysis, based on common‐image gather computations, and local comparison with the VSP log revealed that the most accurate migrated sections are those obtained from the full‐waveform tomography macromodels. A resolution analysis suggests that the asymptotic prestack depth migration successfully migrated the wide‐aperture components of the data, allowing medium wavelengths in addition to the short wavelengths of the structure to be imaged. The processing flow that we applied to dense wide‐aperture seismic data is shown to provide a promising approach, complementary to more classical seismic reflection data processing, to quantitative imaging of complex geological structures.  相似文献   

19.
长白山天池火山区三维地壳结构层析成像   总被引:20,自引:7,他引:13       下载免费PDF全文
利用长白山天池火山区三维空间深地震测观测系统所采集的反射P波走时资料,采用层析成像技术,重建了该区地壳界面构造形态和速度分析图像。界面成像结果表明:研究区地壳界面总体上显示了由北西向东南加深的趋势;马鞍山—三道白河断裂和富尔河—红旗河断裂是本区两条主要的深部构造,尤其是马鞍山—三道白河断裂,北北东向穿越天池火山口,其两侧的地壳界面存在明显的错断,预示了该处地壳厚度陡变或深大断裂带的存在,速度成像结果显示在10km深度,明显的P波低速异常分布在天池周围;15km深度上它表现为一个近南北向的P波低速异常条带,其延展尺度南北向为80~90km,东西向30~40km;随着深度的增加,P波低速异常分布在天池西侧,其尺度有明显的缩小,分布范围更加集中,而且低速扰动幅度更大。这种P波速度异常的变化图像在一定程度上反映了天池火山口下方壳内岩浆系统的空间分状况。  相似文献   

20.
接收函数的克希霍夫2D偏移方法   总被引:10,自引:0,他引:10       下载免费PDF全文
本文将地震反射资料成像的Kirchhoff偏移方法引入到接收函数成像研究,提出了一种接收函数的Kirchhoff偏移方法,以适应介质速度的横向变化,提高接收函数成像的精度和分辨率. 模型检验表明,与传统的水平分层的共转换点偏移叠加方法相比,Kirchhoff偏移方法能够实现转换波的有效归位,消除水平分层共转换点偏移叠加造成的假象. 一个很重要的现象是,倾斜或弯曲界面的成像明显受控于远震的入射方向,其成像精度的提高有赖于不同方向接收函数的联合成像.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号