首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Shale, as a kind of brittle rock, often exhibits different nonlinear stress-strain behavior, failure and time-dependent behavior under different strain rates. To capture these features, this work conducted triaxial compression tests under axial strain rates ranging from 5×10?6 s?1 to 1×10?3 s?1. The results show that both elastic modulus and peak strength have a positive correlation relationship with strain rates. These strain rate-dependent mechanical behaviors of shale are originated from damage growth, which is described by a damage parameter. When axial strain is the same, the damage parameter is positively correlated with strain rate. When strain rate is the same, with an increase of axial strain, the damage parameter decreases firstly from an initial value (about 0.1 to 0.2), soon reaches its minimum (about 0.1), and then increases to an asymptotic value of 0.8. Based on the experimental results, taking yield stress as the cut-off point and considering damage variable evolution, a new measure of micro-mechanical strength is proposed. Based on the Lemaitre’s equivalent strain assumption and the new measure of micro-mechanical strength, a statistical strain-rate dependent damage constitutive model for shale that couples physically meaningful model parameters was established. Numerical back-calculations of these triaxial compression tests results demonstrate the ability of the model to reproduce the primary features of the strain rate dependent mechanical behavior of shale.  相似文献   

2.
Quantitative strain rates at outcrop scale are very difficult to obtain, but they may be estimated from crystals with curved inclusion trails by calculating rotation rates from growth rates and corresponding deflections of the internal foliation. Garnet in a quartzose pelite at Passo del Sole in the central Swiss Alps is extraordinarily valuable for calculation of strain rates during Alpine orogenesis, because the unusual zoning patterns clearly define the kinetics of its nucleation and growth. Complex concentric zoning patterns can be correlated from one crystal to another in a hand sample, based on compositional and microstructural similarities; the ubiquity of these features demonstrates that all garnet crystals nucleated at nearly the same time. Compositional bands whose radial widths are proportional to crystal size provide evidence for growth governed by the kinetics of intergranular diffusion of locally sourced nutrients. Together, these constraints increase the reliability of estimates of rates of garnet growth, and the strain‐rate calculations that depend on them. To obtain growth rates, PT conditions during garnet crystallization were modelled in a series of pseudosections, and compositional evolution was connected to rates of garnet growth by means of an independently determined heating rate. These growth rates, combined with measured amounts of curvature of inclusion trails, indicate that the time‐averaged strain rate at Passo del Sole during Alpine metamorphism was on the order of 10?14 s?1. Strain rates calculated using rotational v. non‐rotational models are similar in magnitude. The constraints on crystallization kinetics also allow direct calculation of strain rates during individual stages of garnet growth, revealing short‐term increases to values on the order of 10?13 s?1. These higher strain rates are correlated with the growth of concentric high‐Ca or high‐Mn zones in garnet, which implies that strain softening associated with the transient passage of fluids is responsible for acceleration of deformation during these intervals.  相似文献   

3.
Under contact metamorphic conditions, carbonate rocks in the direct vicinity of the Adamello pluton reflect a temperature‐induced grain coarsening. Despite this large‐scale trend, a considerable grain size scatter occurs on the outcrop‐scale indicating local influence of second‐order effects such as thermal perturbations, fluid flow and second‐phase particles. Second‐phase particles, whose sizes range from nano‐ to the micron‐scale, induce the most pronounced data scatter resulting in grain sizes too small by up to a factor of 10, compared with theoretical grain growth in a pure system. Such values are restricted to relatively impure samples consisting of up to 10 vol.% micron‐scale second‐phase particles, or to samples containing a large number of nano‐scale particles. The obtained data set suggests that the second phases induce a temperature‐controlled reduction on calcite grain growth. The mean calcite grain size can therefore be expressed in the form D = C2 eQ*/RT(dp/fp)m*, where C2 is a constant, Q* is an activation energy, T the temperature and m* the exponent of the ratio dp/fp, i.e. of the average size of the second phases divided by their volume fraction. However, more data are needed to obtain reliable values for C2 and Q*. Besides variations in the average grain size, the presence of second‐phase particles generates crystal size distribution (CSD) shapes characterized by lognormal distributions, which differ from the Gaussian‐type distributions of the pure samples. In contrast, fluid‐enhanced grain growth does not change the shape of the CSDs, but due to enhanced transport properties, the average grain sizes increase by a factor of 2 and the variance of the distribution increases. Stable δ18O and δ13C isotope ratios in fluid‐affected zones only deviate slightly from the host rock values, suggesting low fluid/rock ratios. Grain growth modelling indicates that the fluid‐induced grain size variations can develop within several ka. As inferred from a combination of thermal and grain growth modelling, dykes with widths of up to 1 m have only a restricted influence on grain size deviations smaller than a factor of 1.1. To summarize, considerable grain size variations of up to one order of magnitude can locally result from second‐order effects. Such effects require special attention when comparing experimentally derived grain growth kinetics with field studies.  相似文献   

4.
We derive the governing equations for the dynamic response of unsaturated poroelastic solids at finite strain. We obtain simplified governing equations from the complete coupled formulation by neglecting the material time derivative of the relative velocities and the advection terms of the pore fluids relative to the solid skeleton, leading to a so‐called us ? pw ? pa formulation. We impose the weak forms of the momentum and mass balance equations at the current configuration and implement the framework numerically using a mixed finite element formulation. We verify the proposed method through comparison with analytical solutions and experiments of quasi‐static processes. We use a neo‐Hookean hyperelastic constitutive model for the solid matrix and demonstrate, through numerical examples, the impact of large deformation on the dynamic response of unsaturated poroelastic solids under a variety of loading conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
High‐T, low‐P metamorphic rocks of the Palaeoproterozoic central Halls Creek Orogen in northern Australia are characterised by low radiogenic heat production, high upper crustal thermal gradients (locally exceeding 40 °C km?1) sustained for over 30 Myr, and a large number of layered mafic‐ultramafic intrusions with mantle‐related geochemical signatures. In order to account for this combination of geological and thermal characteristics, we model the middle crustal response to a transient mantle‐related heat pulse resulting from a temporary reduction in the thickness of the mantle lithosphere. This mechanism has the potential to raise mid‐crustal temperatures by 150–400 °C within 10–20 Myr following initiation of the mantle temperature anomaly, via conductive dissipation through the crust. The magnitude and timing of maximum temperatures attained depend strongly on the proximity, duration and lateral extent of the thermal anomaly in the mantle lithosphere, and decrease sharply in response to anomalies that are seated deeper than 50–60 km, maintained for <5 Myr in duration and/or have half‐widths <100 km. Maximum temperatures are also intimately linked to the thermal properties of the model crust, primarily due to their influence on the steady‐state (background) thermal gradient. The amplitudes of temperature increases in the crust are principally a function of depth, and are broadly independent of crustal thermal parameters. Mid‐crustal felsic and mafic plutonism is a predictable consequence of perturbed thermal regimes in the mantle and the lowermost crust, and the advection of voluminous magmas has the potential to raise temperatures in the middle crust very quickly. Although pluton‐related thermal signatures significantly dissipate within <10 Myr (even for very large, high‐temperature intrusive bodies), the interaction of pluton‐ and mantle‐related thermal effects has the potential to maintain host rock temperatures in excess of 400–450 °C for up to 30 Myr in some parts of the mid‐crust. The numerical models presented here support the notion that transient mantle‐related heat sources have the capacity to contribute significantly to the thermal budget of metamorphism in high‐T, low‐P metamorphic belts, especially in those characterised by low surface heat flow, very high peak metamorphic geothermal gradients and abundant mafic intrusions.  相似文献   

6.
To deeply understand the cracking mechanical behavior of brittle rock materials, numerical simulations of a rock specimen containing a single preexisting crack were carried out by the expanded distinct element method (EDEM). Based on the analysis of crack tips and a comparison between stress- and strain-based methods, the strain strength criterion was adopted in the numerical models to simulate the crack initiation and propagation processes under uniaxial and biaxial compression. The simulation results indicated that the crack inclination angle and confining pressure had a great influence on the tensile and shear properties, peak strength, and failure behaviors, which also showed a good agreement with the experimental results. If the specimen was under uniaxial compression, it was found that the initiation stress and peak strength first decreased and then increased with an increasing inclination angle α. Regardless of the size of α, tensile cracks initiated prior to shear cracks. If α was small (such as α ≤ 30°), the tensile cracks dominated the specimen failure, the wing cracks propagated towards the direction of uniaxial compression, and the propagation of shear cracks was inhibited by the high concentration of tensile stress. In contrast, if α was large (such as α ≥ 45°), mixed cracks dominated the specimen failure, and the external loading favored the further propagation of shear cracks. Analyzing the numerical results of the specimen with a 45° inclination angle under biaxial compression, it was revealed that lateral confinement had a significant influence on the initiation sequence and the mechanical properties of new cracks.  相似文献   

7.
The determination of the thermal (temperature–time) histories of high‐P metamorphic terranes has been commonly based on the concepts of slow cooling and closure temperatures. In this paper, we find that this approach cannot reconcile a geochronological data set obtained from the amphibolite‐facies allochthonous Leknes Group of the Lofoten islands, Norway, which reveals an extremely complex thermal history. Using detailed results from several different geochronometers such as 40Ar/39Ar, Rb–Sr and U–Pb, we show that a model invoking multiple, short‐lived thermal pulses related to hot‐fluid infiltration channelized by shear zones can reconcile this complicated data set. This model suggests that hot fluids infiltrated throughout basement shear zones and affected the overlying cold allochthon, partially resetting U/Pb rutile and titanite ages, crystallizing new zircon and produced identical 40Ar/39Ar and Rb/Sr ages in muscovite, biotite and amphibole in various rocks throughout the region. This paper shows the enormous potential of coupling laser Ar‐spot data with thermal modelling to identify and constrain the duration of short‐lived events. An optimal P–T–t history has been derived by modelling the age data from a previously dated large muscovite crystal (Hames & Andresen, 1996, Geology, 24 :1005) and using Zr‐in‐rutile thermometry which is consistent with all geochronological data and geological constraints from the basement zones and allochthon cover. This tectonothermal model history suggests that there have been three episodic hot‐fluid and 40Ar‐free infiltration events, resulting in the total resetting of Ar ages during the Scandian (425 Ma) for 1 Ma at 650°C and two reheating events at 415 Ma for 400 ka at 650°C and at 365 Ma for 50 ka at 600°C, which are modelled as thermal spikes above an ambient temperature of 300°C. Independent confirmation of these parameters was provided by Pb‐diffusion modelling in rutile and titanite. The model suggests that the amphibolite facies rocks of the Leknes Group probably remained cold before being exhumed for at least 60 Ma (425–365 Ma) and successfully explains the presence of different minerals that crystallized or were totally/partially reset in the allochthon and in the basement. The migration of hot fluids for short periods of times within conduits extending through the basement and allochthon rock units is likely associated with episodic seismic activity during the Caledonian orogeny.  相似文献   

8.
Differences in rates of nucleation and diffusion‐limited growth for biotite porphyroblasts in adjacent centimetre‐scale layers of a garnet‐biotite schist from the Picuris Mountains of New Mexico are revealed by variations in crystal size and abundance between two layers with strong compositional similarity. Relationships between fabrics recorded by inclusion patterns in biotite and garnet porphyroblasts are interpreted to reflect garnet growth following biotite growth, without substantial alteration of the biotite sizes. Sizes and locations of biotite crystals, obtained via high‐resolution X‐ray computed tomography, document that of the two adjacent layers, one has a larger mean crystal volume (9.5 × 10?4v. 2.4 × 10?4 cm3), fewer biotite crystals per unit volume (232 v. 576 crystals cm?3), and a higher volume fraction of biotite (23%v. 14%). The two layers have similar mineral assemblages and mineral chemistry. Both layers show evidence for diffusional control of nucleation and growth. Pseudosection analysis suggests that the large‐biotite layer began to crystallize biotite at a temperature ~67 °C greater than the small‐biotite layer. Diffusion rates differed between layers, because of their different temperature ranges of crystallization, but this effect can be quantified. The bulk compositional difference between the layers, manifested in different modal amounts of biotite, has an effect on the biotite sizes that is also quantifiable and insufficient to account for the difference in biotite size. After these other possible causes of variation in crystal sizes have been eliminated, variability in nucleation and diffusion rates remain as the dominant factors responsible for the difference in porphyroblastic textures. Numerical simulations suggest that relative to the small‐biotite layer, the large‐biotite layer experienced elevated diffusion rates because of the higher crystallization temperature, as well as increased nucleation rates in order to achieve the observed size and number density of crystals. The simulations can replicate the observed textures only by invoking unreasonably large values for the thermal dependence of nucleation rates (activation energies), strongly suggesting that the observed textural differences arise from variations between layers in the abundance and energetics of potential nucleation sites.  相似文献   

9.
Ultra-soft soil with high moisture content will experience large strain deformation under one-dimensional compression with little or no gain in effective stress. Such deformation behaviour does not comply with Terzaghi’s effective stress gain theory. The e-log sv \sigma_{v}^{\prime } relationship of ultra-soft soil is non-linear with large compression index in the first order of log cycle. This paper proposes three compression indices (Cc1* C_{c1}^{*} , Cc2* C_{c2}^{*} and Cc3* C_{c3}^{*} ) for stresses covering three log cycles. Good prediction of settlement magnitude is possible with these newly proposed compression parameters for ultra-soft soil. In addition, implicit finite difference model applying the large strain theory is also proposed and validated with results from laboratory measurements. The time factor curves for ultra-soft soil with large strain compression are also proposed and validated.  相似文献   

10.
We suggest a model of radon emanation under compression or extension strain from a medium equivalent to rocks containing pores and cracks. The model is shown in several examples to be suitable for simulating the nucleation of rock bursts in deep mines and earthquakes. According to correlation of strain and radon measurements at the same sites, a relative strain change of n×10?7 corresponds to a 200% change of radon activity concentration. This high sensitivity means that radon data can be good tracers of tectonic movements.  相似文献   

11.
The displacement discontinuity method (DDM) is frequently used in geothermal and petroleum applications for modeling the behavior of fractures in linear‐elastic rocks. The DDM requires O(N2) memory and O(N3) floating point operations (where N is the number of unknowns) to construct the coefficient matrix and solve the linear system of equations by direct methods. Therefore, the conventional implementation of the DDM is not computationally efficient for very large systems of cracks, often limiting its application to small‐scale problems. This work presents an approach for solving large‐scale fracture problems using the fast multipole method (FMM). The approach uses both the DDM and a kernel‐independent version of the FMM along with a preconditioned generalized minimal residual algorithm to accelerate the solution of linear systems of equations using desktop computers. Using the fundamental solutions for constant displacement discontinuity in a two‐dimensional elastic medium, several numerical examples involving fracture networks representing fractured reservoirs are treated. Numerical results show good agreement with analytical solutions and demonstrate the efficiency of the FMM implementation of the DDM for large‐scale simulations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A new phenomenological macroscopic constitutive model for the numerical simulation of quasi‐brittle fracture and ductile concrete behavior, under general triaxial stress conditions, is presented. The model is particularly addressed to simulate a wide range of confinement stress states, as also, to capture the strong influence of the mean stress value in the concrete failure mechanisms. The model is based on a two‐surface damage‐plastic formulation. The mechanical behavior in different domains of the stress space is separately described by means of a quasi‐brittle or ductile material response:

13.
Recognition of non‐linear constitutive rock/soil model from experimental results is often multi‐modal in the large parameter space. A genetic evolution algorithm is thus proposed for its recognition, including that of structure of the model and coefficients in the model. The structure of the model can be firstly determined according to mechanical mechanism if the mechanism is clearly understood or searched by using evolutionary algorithm. The coefficients to be determined are then searched in global optional space. With the new evolutionary algorithm, the non‐linear stress–strain–time constitutive law to describe strain softening behaviours of diatomaceous soil under consolidated and undrained state was recognized by learning stress–strain–time behaviour of an intact sample under consolidated pressure of σc=0.1 MPa and strain velocity ofa=0.175%/min. This model gave reasonable prediction for diatomaceous soils under varying consolidated pressures (0.1–3.5 MPa) and strain velocities (0.0044–1.75%/min). It indicates that the methodology proposed in this paper is robust enough and strongly attractive for recognition of non‐linear constitutive model of soil and rock materials. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
The Greiner shear zone in the Tauern Window, Eastern Alps, changes from a zone of distributed (dominantly sinistral) shear in supracrustal rocks to a series of narrow, gully forming dextral splays where it enters basement gneisses. Within these splays, granodiorite is transformed into quartz‐poor biotite and/or chlorite schists, reflecting hydration, removal of Si, Ca and Na, and concentration of Fe, Mg and Al. Stable isotope analyses show a prominent increase in δD and a decrease in δ18O from granodiorite into the shear zones. These changes indicate significant channelized flow of an externally derived, low‐δ18O, high‐δD fluid through the shear zones. The shear zone schists are chemically similar to blackwall zones developed around serpentinite bodies elsewhere in the Greiner zone and the stable isotope data support alteration via serpentinite‐derived fluid. Monazite in schist from one shear zone yields spot dates of 29–20 Ma, indicating that the fluid influx and switch from sinistral to dextral shear occurred at or shortly after the thermal peak of the Alpine orogeny (c. 30 Ma). We suggest that Alpine metamorphism of serpentinites released large amounts of high‐δD, low‐δ18O, Si‐undersaturated, Fe + Mg‐saturated fluids that became channelized along prior zones of weakness in the granodiorite. Infiltration of this fluid facilitated growth of chlorite and biotite, which in turn localized later dextral strain in the narrow splays via cleavage‐parallel slip. This dextral strain event can be linked to other structures that accommodated tectonic escape of major crustal blocks during dextral transpression in the Eastern Alps. This study shows that serpentinite devolatilization can play an important role in modifying both the chemistry and rheology of surrounding rocks during orogenesis.  相似文献   

15.
Coupled thermal‐mechanical models are used to investigate interactions between metamorphism, deformation and exhumation in large convergent orogens, and the implications of coupling and feedback between these processes for observed structural and metamorphic styles. The models involve subduction of suborogenic mantle lithosphere, large amounts of convergence (≥ 450 km) at 1 cm yr?1, and a slope‐dependent erosion rate. The model crust is layered with respect to thermal and rheological properties — the upper crust (0–20 km) follows a wet quartzite flow law, with heat production of 2.0 μW m?3, and the lower crust (20–35 km) follows a modified dry diabase flow law, with heat production of 0.75 μW m?3. After 45 Myr, the model orogens develop crustal thicknesses of the order of 60 km, with lower crustal temperatures in excess of 700 °C. In some models, an additional increment of weakening is introduced so that the effective viscosity decreases to 1019 Pa.s at 700 °C in the upper crust and 900 °C in the lower crust. In these models, a narrow zone of outward channel flow develops at the base of the weak upper crustal layer where T≥600 °C. The channel flow zone is characterised by a reversal in velocity direction on the pro‐side of the system, and is driven by a depth‐dependent pressure gradient that is facilitated by the development of a temperature‐dependent low viscosity horizon in the mid‐crust. Different exhumation styles produce contrasting effects on models with channel flow zones. Post‐convergent crustal extension leads to thinning in the orogenic core and a corresponding zone of shortening and thrust‐related exhumation on the flanks. Velocities in the pro‐side channel flow zone are enhanced but the channel itself is not exhumed. In contrast, exhumation resulting from erosion that is focused on the pro‐side flank of the plateau leads to ‘ductile extrusion’ of the channel flow zone. The exhumed channel displays apparent normal‐sense offset at its upper boundary, reverse‐sense offset at its lower boundary, and an ‘inverted’ metamorphic sequence across the zone. The different styles of exhumation produce contrasting peak grade profiles across the model surfaces. However, P–T–t paths in both cases are loops where Pmax precedes Tmax, typical of regional metamorphism; individual paths are not diagnostic of either the thickening or the exhumation mechanism. Possible natural examples of the channel flow zones produced in these models include the Main Central Thrust zone of the Himalayas and the Muskoka domain of the western Grenville orogen.  相似文献   

16.
The phenomenon of normal grain growth in pure single phase systems is modeled with the Monte Carlo technique and a series of simulations are performed in 2- and 3-dimensions. The results are compared with natural and experimental monomineralic rock samples. In these simulations various lattice models with different anisotropic features in grain boundary energy are examined in order to check the universality of the simulation results. The obtained microstructure varies with the artificial parameter T in each lattice model, where T means scaled temperature and controls thermal fluctuation on grain boundary motion. As T (thermal fluctuation) increases, the boundary energy anisotropy characterizing each lattice model becomes less important for the evolution of the microstructure. As a result the difference in the grain size distribution among the lattice models, which is significantly large for low T , is reduced with increasing T . The distribution independent of both the lattice model and the dimension is obtained at sufficiently high T and is very close to the normal distribution when carrying out the weighting procedure with a weight of the square of each grain radius. A comparison of the planar grain size distribution of the natural and experimental rock samples with the 3-D simulation results reveals that the simulations reproduce very well the distributions observed in the real rock samples. Although various factors such as the presence of secondary minerals and a fluid phase, which are not included in the simulation modeling, are generally considered to influence the real grain growth behavior, the good agreement of the distribution indicates that the overall grain growth behavior in real rocks may still be described by the simplified model used in the present simulations. Thus the grain size distribution obtained from the present simulations is possessed of the universal form characterizing real normal grain growth of which the driving force is essentially grain boundary energy reduction through grain boundary migration. Received: 7 January 1997 / Accepted: 25 August 1997  相似文献   

17.
Thermal models for Barrovian metamorphism driven by doubling the thickness of the radiogenic crust typically meet difficulty in accounting for the observed peak metamorphic temperature conditions. This difficulty suggests that there is an additional component in the thermal budget of many collisional orogens. Theoretical and geological considerations suggest that viscous heating is a cumulative process that may explain the heat deficit in collision orogens. The results of 2D numerical modelling of continental collision involving subduction of the lithospheric mantle demonstrate that geologically plausible stresses and strain rates may result in orogen‐scale viscous heat production of 0.1 to >1 μW m?3, which is comparable to or even exceeds bulk radiogenic heat production within the crust. Thermally induced buoyancy is responsible for crustal upwelling in large domes with metamorphic temperatures up to 200 °C higher than regional background temperatures. Heat is mostly generated within the uppermost mantle, because of large stresses in the highly viscous rocks deforming there. This thermal energy may be transferred to the overlying crust either in the form of enhanced heat flow, or through magmatism that brings heat into the crust advectively. The amplitude of orogenic heating varies with time, with both the amplitude and time‐span depending strongly on the coupling between heat production, viscosity and collision strain rate. It is argued that geologically relevant figures are applicable to metamorphic domes such as the Lepontine Dome in the Central Alps. We conclude that deformation‐generated viscous dissipation is an important heat source during collisional orogeny and that high metamorphic temperatures as in Barrovian type metamorphism are inherent to deforming crustal regions.  相似文献   

18.
Creation of pathways for melt to migrate from its source is the necessary first step for transport of magma to the upper crust. To test the role of different dehydration‐melting reactions in the development of permeability during partial melting and deformation in the crust, we experimentally deformed two common crustal rock types. A muscovite‐biotite metapelite and a biotite gneiss were deformed at conditions below, at and above their fluid‐absent solidus. For the metapelite, temperatures ranged between 650 and 800 °C at Pc=700 MPa to investigate the muscovite‐dehydration melting reaction. For the biotite gneiss, temperatures ranged between 850 and 950 °C at Pc=1000 MPa to explore biotite dehydration‐melting under lower crustal conditions. Deformation for both sets of experiments was performed at the same strain rate (ε.) 1.37×10?5 s?1. In the presence of deformation, the positive ΔV and associated high dilational strain of the muscovite dehydration‐melting reaction produces an increase in melt pore pressure with partial melting of the metapelite. In contrast, the biotite dehydration‐melting reaction is not associated with a large dilational strain and during deformation and partial melting of the biotite gneiss melt pore pressure builds more gradually. Due to the different rates in pore pressure increase, melt‐enhanced deformation microstructures reflect the different dehydration melting reactions themselves. Permeability development in the two rocks differs because grain boundaries control melt distribution to a greater extent in the gneiss. Muscovite‐dehydration melting may develop melt pathways at low melt fractions due to a larger volume of melt, in comparison with biotite‐dehydration melting, generated at the solidus. This may be a viable physical mechanism in which rapid melt segregation from a metapelitic source rock can occur. Alternatively, the results from the gneiss experiments suggest continual draining of biotite‐derived magma from the lower crust with melt migration paths controlled by structural anisotropies in the protolith.  相似文献   

19.
In the Transangarian region of the Yenisey Ridge in eastern Siberia (Russia), Fe‐ and Al‐rich metapelitic schists of the Korda plate show field and petrological evidence of two superimposed metamorphic events. An early middle Proterozoic event with age of c.1100 Ma produced low‐pressure, andalusite‐bearing assemblages at c. 3.5–4 kbar and 540–560 °C. During a subsequent late Proterozoic event at c. 850 Ma, a medium‐pressure, regional metamorphic overprint produced kyanite‐bearing mineral assemblages that replaced minerals formed in the low‐pressure event. Based on the results of geothermobarometry and PT path calculations it can be shown that pressure increased from 4.5 to 6.7 kbar at a relatively constant temperature of 540–600 °C towards a major suture zone called the Panimba thrust. In order to produce such nearly isothermal loading of 1–7 °C km ?1, we propose a model for the tectono‐metamorphic evolution of the study area based on crustal thickening caused by south‐westward thrusting of the 5–7 km‐thick upper‐plate metacarbonates over lower‐plate metapelites with velocity of c. 350 m Myr?1. A small temperature increase (up to 20 ± 15 °C) of the upper part of the overlapped plate is explained by specific behaviour of steady‐state geotherms calculated using lower radioactive heat production of metacarbonates as compared with metapelites. The suggested thermal‐mechanical model corresponds well with PT paths inferred from obtained thermobarometric data and correlates satisfactorily with PT trajectories predicted by other two‐dimensional thermal models for different crustal thickening and exhumation histories.  相似文献   

20.
Here, we present results of the first 40Ar/39Ar dating of osumilite, a high‐T mineral that occurs in some volcanic and high‐grade metamorphic rocks. The metamorphic osumilite studied here is from a metapelitic rock within the Rogaland–Vest Agder Sector, Norway, an area that experienced regional granulite facies metamorphism and subsequent contact metamorphism between 1,100 Ma and 850 Ma. The large grain size (~1 cm) of osumilite in the studied rock, which preserves a nominally anhydrous assemblage, increases the potential for large portions of individual grains to have remained essentially unaffected by the effects of diffusive argon loss, potentially preserving prograde ages. Step‐heating diffusion experiments yielded a maximum activation energy of ~461 kJ/mol and a pre‐exponential factor of ~8.34 × 108 cm2/s for Ar diffusion in osumilite. These parameters correspond to a relatively high closure temperature of ~620°C for a cooling rate of 10°C/Ma in an osumilite crystal with a 175 µm radius. Fragments of osumilite separated from the sample preserve a range of ages between c. 1,070 and 860 Ma. The oldest ages are inferred to date the growth of coarse‐grained osumilite during prograde granulite facies regional metamorphism, which pre‐date contact metamorphism that has historically been ascribed to the growth of osumilite in the region. The majority of fragments record ages between c. 920 and 860 Ma, inferred to reflect the growth of osumilite and/or diffusive argon loss during contact metamorphism. The retention of old 40Ar/39Ar dates was facilitated by the low diffusivity of Ar in osumilite (i.e. a closed system), large grain sizes, and anhydrous metamorphic conditions. The ability to date osumilite with the 40Ar/39Ar method provides a valuable new thermochronometer that may constrain the timing and duration of high‐T magmatic and metamorphic events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号