首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The new pollen record from the upper 12.75 m of a sediment core obtained in Lake Ladoga documents regional vegetation and climate changes in northwestern Russia over the last 13.9 cal. ka. The Lateglacial chronostratigraphy is based on varve chronology, while the Holocene stratigraphy is based on AMS 14C and OSL dates, supported by comparison with regional pollen records. During the Lateglacial (c. 13.9–11.2 cal. ka BP), the Lake Ladoga region experienced several climatic fluctuations as reflected in vegetation changes. Shrub and grass communities dominated between c. 13.9 and 13.2 cal. ka BP. The increase in Picea pollen at c. 13.2 cal. ka BP probably reflects the appearance of spruce in the southern Ladoga region at the beginning of the Allerød interstadial. After c. 12.6 cal. ka BP, the Younger Dryas cooling caused a significant decrease in spruce and increase in Artemisia with other herbs, indicative of tundra‐ and steppe‐like vegetation. A sharp transition from tundra‐steppe habitats to sparse birch forests characterizes the onset of Holocene warming c. 11.2 cal. ka BP. Pine forests dominated in the region from c. 9.0 to 8.1 cal. ka BP. The most favourable climatic conditions for deciduous broad‐leaved taxa existed between c. 8.1 and 5.5 cal. ka BP. Alder experiences an abrupt increase in the local vegetation c. 7.8 cal. ka BP. The decrease in tree pollen taxa (especially Picea) and the increase in herbs (mainly Poaceae) probably reflect human activity during the last 2.2 cal. ka. Pine forests have dominated the region since that time. Secale and other Cerealia pollen as well as ruderal herbs are permanently recorded since c. 0.8 cal. ka BP.  相似文献   

2.
The Last Termination (19 000–11 000 a BP) with its rapid and distinct climate shifts provides a perfect laboratory to study the nature and regional impact of climate variability. The sedimentary succession from the ancient lake at Hässeldala Port in southern Sweden with its distinct Lateglacial/early Holocene stratigraphy (>14.1–9.5 cal. ka BP) is one of the few chronologically well‐constrained, multi‐proxy sites in Europe that capture a variety of local and regional climatic and environmental signals. Here we present Hässeldala's multi‐proxy records (lithology, geochemistry, pollen, diatoms, chironomids, biomarkers, hydrogen isotopes) in a refined age model and place the observed changes in lake status, catchment vegetation, summer temperatures and hydroclimate in a wider regional context. Reconstructed mean July temperatures increased between c. 14.1 and c. 13.1 cal. ka BP and subsequently declined. This latter cooling coincided with drier hydroclimatic conditions that were probably associated with a freshening of the Nordic Seas and started a few hundred years before the onset of Greenland Stadial 1 (c. 12.9 cal. ka BP). Our proxies suggest a further shift towards colder and drier conditions as late as c. 12.7 cal. ka BP, which was followed by the establishment of a stadial climate regime (c. 12.5–11.8 cal. ka BP). The onset of warmer and wetter conditions preceded the Holocene warming over Greenland by c. 200 years. Hässeldala's proxies thus highlight the complexity of environmental and hydrological responses across abrupt climate transitions in northern Europe.  相似文献   

3.
This paper investigates a detailed well‐dated Lateglacial floristic colonisation in the eastern Baltic area, ca. 14 000–9000 cal. a BP, using palynological, macrofossil, loss‐on‐ignition, and 14C data. During 14 000–13 400 cal. a BP, primarily treeless pioneer tundra vegetation existed. Tree birch (Betula sect. Albae) macro‐remains and a high tree pollen accumulation rate indicate the presence of forest‐tundra with birch and possibly pine (Pinus sylvestris L.) trees during 13 400–12 850 cal. a BP. Palaeobotanical data indicate that the colonisation and development of forested areas were very rapid, arising within a period of less than 50 years. Thus far, there are no indications of conifer macrofossils in Estonia to support the presence of coniferous forests in the Lateglacial period. Signs of Greenland Interstadial 1b cooling during 13 100 cal. a BP are distinguishable. Biostratigraphic evidence indicates that the vegetation was again mostly treeless tundra during the final colder episode of the Lateglacial period associated with Greenland Stadial 1, approximately 12 850–11 650 cal. a BP. This was followed by onset of the Holocene vegetation, with the expansion of boreal forests, in response to rapid climatic warming. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Late Quaternary histories of two North American desert biomes—C4 grasslands and C3 shrublands—are poorly known despite their sensitivity and potential value in reconstructing summer rains and winter temperatures. Plant macrofossil assemblages from packrat midden series in the northern Chihuahuan Desert show that C4 grasses and annuals typical of desert grassland persisted near their present northern limits throughout the last glacial–interglacial cycle. By contrast, key C3 desert shrubs appeared somewhat abruptly after 5000 cal. yr BP. Bioclimatic envelopes for select C4 and C3 species are mapped to interpret the glacial–interglacial persistence of desert grassland and the mid‐to‐late Holocene expansion of desert shrublands. The envelopes suggest relatively warm Pleistocene temperatures with moist summers allowed for persistence of C4 grasses, whereas winters were probably too cold (or too wet) for C3 desert shrubs. Contrary to climate model results, core processes associated with the North American Monsoon and moisture transport to the northern Chihuahuan Desert remained intact throughout the last glacial–interglacial cycle. Mid‐latitude effects, however, truncated midsummer (July–August) moisture transport north of 35° N. The sudden expansion of desert shrublands after 5000 cal. yr BP may be a threshold response to warmer winters associated with increasing boreal winter insolation, and enhanced El Niño–Southern Oscillation variability. Published in 2006 by John Wiley & Sons, Ltd.  相似文献   

5.
It is widely recognised that the acquisition of high‐resolution palaeoclimate records from southern mid‐latitude sites is essential for establishing a coherent picture of inter‐hemispheric climate change and for better understanding of the role of Antarctic climate dynamics in the global climate system. New Zealand is considered to be a sensitive monitor of climate change because it is one of a few sizeable landmasses in the Southern Hemisphere westerly circulation zone, a critical transition zone between subtropical and Antarctic influences. New Zealand has mountainous axial ranges that amplify the climate signals and, consequently, the environmental gradients are highly sensitive to subtle changes in atmospheric and oceanic conditions. Since 1995, INTIMATE has, through a series of international workshops, sought ways to improve procedures for establishing the precise ages of climate events, and to correlate them with high precision, for the last 30 000 calendar years. The NZ‐INTIMATE project commenced in late 2003, and has involved virtually the entire New Zealand palaeoclimate community. Its aim is to develop an event stratigraphy for the New Zealand region over the past 30 000 years, and to reconcile these events against the established climatostratigraphy of the last glacial cycle which has largely been developed from Northern Hemisphere records (e.g. Last Glacial Maximum (LGM), Termination I, Younger Dryas). An initial outcome of NZ‐INTIMATE has been the identification of a series of well‐dated, high‐resolution onshore and offshore proxy records from a variety of latitudes and elevations on a common calendar timescale from 30 000 cal. yr BP to the present day. High‐resolution records for the last glacial coldest period (LGCP) (including the LGM sensu stricto) and last glacial–interglacial transition (LGIT) from Auckland maars, Kaipo and Otamangakau wetlands on eastern and central North Island, marine core MD97‐2121 east of southern North Island, speleothems on northwest South Island, Okarito wetland on southwestern South Island, are presented. Discontinuous (fragmentary) records comprising compilations of glacial sequences, fluvial sequences, loess accumulation, and aeolian quartz accumulation in an andesitic terrain are described. Comparisons with ice‐core records from Antarctica (EPICA Dome C) and Greenland (GISP2) are discussed. A major advantage immediately evident from these records apart from the speleothem record, is that they are linked precisely by one or more tephra layers. Based on these New Zealand terrestrial and marine records, a reasonably coherent, regionally applicable, sequence of climatically linked stratigraphic events over the past 30 000 cal. yr is emerging. Three major climate events are recognised: (1) LGCP beginning at ca. 28 000 cal. yr BP, ending at Termination I, ca. 18 000 cal. yr BP, and including a warmer and more variable phase between ca. 27 000 and 21 000 cal. yr BP, (2) LGIT between ca. 18 000 and 11 600 cal. yr BP, including a Lateglacial warm period from ca. 14 800 to 13 500 cal. yr BP and a Lateglacial climate reversal between ca. 13 500 and 11 600 cal. yr BP, and (3) Holocene interglacial conditions, with two phases of greatest warmth between ca. 11 600 and 10 800 cal. yr BP and from ca. 6 800 to 6 500 cal. yr BP. Some key boundaries coincide with volcanic tephras. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
We examine pollen, macrofossils and sedimentological proxies from the Ridge Site, an 18‐m sequence of glacial and non‐glacial sediments exposed along the bank of the Ridge River in the southern Hudson Bay Lowlands (HBL), Canada. As the HBL is located in the previously glaciated region of North America, palaeorecords from this region have important implications for understanding ice‐sheet palaeogeography and climate for the late Pleistocene. Two diamicton units were interpreted as subglacial till deposited by a glacier flowing toward the south‐southwest (lower diamicton) and west‐southwest (upper diamicton), respectively. Confined between these tills is a 6‐m non‐glacial unit, constrained to Marine Isotope Stage 3 (MIS 3; c. 57 000 to c. 29 000 a BP) by three radiocarbon dates. Quantitative analyses of the pollen record (dominated by Sphagnum, Cyperaceae, Pinus, Picea, Salix, Alnus and Betula) suggest that average summer temperature (June, July, August) was 14.6±1.51 °C, which is similar to that of the present day at the site. Total annual precipitation was 527±170 mm as compared to 705 mm present‐day. The macrofossil record confirmed the local presence of Betula, Salix and conifers. Our results, in combination with other records from the periphery of the Laurentide Ice Sheet, suggest that vast boreal forest‐type vegetation, along with a drier interstadial climate, existed in the region during MIS 3. We also compare pollen‐derived palaeoclimate reconstructions from the Ridge Site with reconstructions from a previously published site along the Nottaway River, HBL, which was dated to MIS 5a–d (c. 109 000 to c. 82 000 a BP). This comparison suggests that, with additional data, it may be possible to differentiate MIS 3 and MIS 5 deposits in the HBL on the basis of relative continentality, with MIS 3 characterized by lower total annual precipitation, and MIS 5 by values similar or greater than present‐day.  相似文献   

7.
High‐resolution multi‐proxy analyses of a sediment core section from Lake Jeserzersee (Saissersee) in the piedmont lobe of the Würmian Drau glacier (Carinthia, Austria) reveal pronounced climatic oscillations during the early late glacial (ca. 18.5–16.0k cal a BP). Diatom‐inferred epilimnetic summer water temperatures show a close correspondence with temperature reconstructions from the adjacent Lake Längsee record and, on a hemispheric scale, with fluctuations of ice‐rafted debris in the North Atlantic. This suggests that North Atlantic climate triggered summer climate variability in the Alps during the early late glacial. The expansion of pine (mainly dwarf pine) between ca. 18.5 and 18.1k cal a BP indicates warming during the so‐called ‘Längsee oscillation’. The subsequent stepwise climate deterioration between ca. 18.1 and 17.6k cal a BP culminated in a tripartite cold period between ca. 17.6 and 16.9k cal a BP with diatom‐inferred summer water temperatures 8.5–10 °C below modern values and a shift from wet to dry conditions. This period probably coincides with a major Alpine glacier advance termed the Gschnitz stadial. A warmer interval between ca. 16.9 and 16.4k cal a BP separates this cold phase from a second, shorter and less pronounced cold phase between ca. 16.4 and 16.0k cal a BP, which is thought to correlate with the Clavadel/Senders glacier advance in the Alps. The following temperature increase, coupled with wet (probably snow‐rich) conditions, caused the expansion of birch during the transition period to the late glacial interstadial. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Krüger, L. C., Paus, A., Svendsen, J. I. & Bjune, A. E. 2011: Lateglacial vegetation and palaeoenvironment in W Norway, with new pollen data from the Sunnmøre region. Boreas, 10.1111/j.1502‐3885.2011.00213.x. ISSN 0300‐9483. Two sediment sequences from Sunnmøre, northern W Norway, were pollen‐analytically studied to reconstruct the Lateglacial vegetation history and climate. The coastal Dimnamyra was deglaciated around 15.3 ka BP, whereas Løkjingsmyra, further inland, became ice‐free around 14 ka BP. The pioneer vegetation dominated by snow‐bed communities was gradually replaced by grassland and sparse heath vegetation. A pronounced peak in Poaceae around 12.9 ka BP may reflect warmer and/or drier conditions. The Younger Dryas (YD) cooling phase shows increasing snow‐bed vegetation and the local establishment of Artemisia norvegica. A subsequent vegetation closure from grassland to heath signals the Holocene warming. Birch forests were established 500–600 years after the YD–Holocene transition. This development follows the pattern of the Sunnmøre region, which is clearly different from the Empetrum dominance in the Lateglacial interstadial further south in W Norway. The Lateglacial oscillations GI‐1d (Older Dryas) and GI‐1b (Gerzensee) are hardly traceable in the north, in contrast to southern W Norway. The southern vegetation was probably closer to an ecotone and more susceptible to climate changes.  相似文献   

9.
Bolshaya Imandra, the northern sub-basin of Lake Imandra, was investigated by a hydro-acoustic survey followed by sediment coring down to the acoustic basement. The sediment record was analysed by a combined physical, biogeochemical, sedimentological, granulometrical and micropalaeontological approach to reconstruct the regional climatic and environmental history. Chronological control was obtained by 14C dating, 137Cs, and Hg markers as well as pollen stratigraphy and revealed that the sediment succession offers the first continuous record spanning the Lateglacial and Holocene for this lake. Following the deglaciation prior to c. 13 200 cal. a BP, the lake's sub-basin initially was occupied by a glacifluvial river system, before a proglacial lake with glaciolacustrine sedimentation established. Rather mild climate, a sparse vegetation cover and successive retreat of the Scandinavian Ice Sheet (SIS) from the lake catchment characterized the Bølling/Allerød interstadial, lasting until 12 710 cal. a BP. During the subsequent Younger Dryas chronozone, until 11 550 cal. a BP, climate cooling led to a decrease in vegetation cover and a re-advance of the SIS. The SIS disappeared from the catchment at the Holocene transition, but small glaciers persisted in the mountains at the eastern lake shore. During the Early Holocene, until 8400 cal. a BP, sedimentation changed from glaciolacustrine to lacustrine and rising temperatures caused the spread of thermophilous vegetation. The Middle Holocene, until 3700 cal. a BP, comprises the regional Holocene Thermal Maximum (8000–4600 cal. a BP) with relatively stable temperatures, denser vegetation cover and absence of mountain glaciers. Reoccurrence of mountain glaciers during the Late Holocene, until 30 cal. a BP, presumably results from a slight cooling and increased humidity. Since c. 30 cal. a BP Lake Imandra has been strongly influenced by human impact, originating in industrial and mining activities. Our results are in overall agreement with vegetation and climate reconstructions in the Kola region.  相似文献   

10.
This study presents a multi‐proxy record from Lake Kotokel in the Baikal region at decadal‐to‐multidecadal resolution and provides a reconstruction of terrestrial and aquatic environments in the area during a 2000‐year interval of globally harsh climate often referred to as the Last Glacial Maximum (LGM). The studied lake is situated near the eastern shoreline of Lake Baikal, in a climatically sensitive zone that hosts boreal taiga and cold deciduous forests, cold steppe associations typical for northern Mongolia, and mountain tundra vegetation. The results provide a detailed picture of the period in focus, indicating (i) a driest phase (c. 24.0–23.4 cal. ka BP) with low precipitation, high summer evaporation, and low lake levels, (ii) a transitional interval of unstable conditions (c. 23.4–22.6 cal. ka BP), and (iii) a phase (c. 22.6–22.0 cal. ka BP) of relatively high precipitation (and moisture availability) and relatively high lake levels. One hotly debated issue in late Quaternary research is regional summer thermal conditions during the LGM. Our chironomid‐based reconstruction suggests at least 3.5 °C higher than present summer temperatures between c. 22.6 and 22.0 cal. ka BP, which are well in line with warmer and wetter conditions in the North Atlantic region inferred from Greenland ice‐cores. Overall, it appears that environments in central Eurasia during the LGM were affected by much colder than present winter temperatures and higher than present summer temperatures, although the effects of temperature oscillations were strongly influenced by changes in humidity.  相似文献   

11.
Despite the high potential of pollen records for climate reconstruction, pollen–climate relationships may be biased due to past and present human activities on the landscape. We use (i) transfer functions based on modern pollen–climate relationships to infer seasonal temperature and summer precipitation for the period 11 500–4500 cal. a BP and (ii) lake‐level change records based on different sedimentary proxies in multiple cores that are mainly indicative for summer hydrology at Lago dell'Accesa (central Italy). Quantitative reconstructions indicate lowest summer precipitation during two phases (8500–7700 cal. a BP and after 6000 cal. a BP) and a gradual winter temperature increase from 11 500 to ca. 8000 cal. a BP. Lowest summer precipitation was reconstructed during these phases characterised by vegetation shifts from open forests dominated by summergreen oaks (Quercus) to forests dominated by evergreen oaks (Quercus ilex), which are at present most abundant where summer drought is stronger. Similarly, the lake‐level record indicates two long‐lasting low summer precipitation phases (8800–7700 and 6400–4400 cal. a BP) that were interrupted by short‐term high summer precipitation events. Based on the broad agreement between the pollen‐inferred summer precipitation and the low‐frequency lake‐level changes, we suggest that the duration of the high summer precipitation events may have been too short to maintain drought‐sensitive trees, which may have been affected by high mortality rates when summer dry conditions returned. Although past and modern pollen–climate relationships may very likely have been affected by human activities since the Neolithic (i.e. when exploitation of the landscape started), we reject the hypothesis of a significant anthropogenic bias in the pollen‐based climate reconstruction. In addition, we suggest that pollen‐based and lake‐level reconstructions may have different inherent abilities of capturing high‐ and low‐frequency precipitation signals. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A c. 13 800 cal. a BP palynological record from Tschuch'ye Lake (eastern Yakutia), when combined with other palaeobotanical records from western Beringia, supports previous conclusions that Larix and Pinus pumila spread from multiple cryptic refugia during the Lateglacial period and middle Holocene, respectively. The antiquity and spatial distribution of Larix in many of these records suggest that full‐glacial landscapes probably had a small but important tree component. The Tschuch'ye record further indicates the absence of a Younger Dryas climatic reversal and is in accord with the preponderance of other data from western Beringia, which indicate warmer than present climates between c. 12 900 and 9100 cal. a BP. The subsequent spread of Pinus pumila, which has similar temperature requirements as Larix, denotes a shift to wetter but still warm climates during the middle Holocene, with palynological data suggesting optimal conditions in far western areas of western Beringia c. 7000–5000 cal. a BP. The postglacial occurrence of relatively warm/dry and warm/wet intervals is consistent with results of a regional climate‐model simulation that indicates warmer than present temperatures and decreased effective moisture at 11 000 cal. a BP and persistence of warm conditions but with greater moisture and longer growing season at 6000 cal. a BP.  相似文献   

13.
This paper presents two new pollen records and quantitative climate reconstructions from northern Chukotka documenting environmental changes over the last 27.9 ka. Open tundra- and steppe-like habitats dominated between 27.9 and 18.7 cal. ka BP. Betula and Alnus shrubs might have grown in sheltered microhabitats but disappeared after 18.7 cal. ka BP. Although the climate was rather harsh, local herb-dominated communities supported herbivores as is evident by the presence of coprophilous spores in the sediments. The increase in Salix and Cyperaceae ~16.1 cal. ka BP suggests climate amelioration. Shrub Betula appeared ~15.9 cal. ka BP, and became dominant after ~15.52 cal. ka BP, whilst typical steppe communities drastically reduced. Very high presence of Botryococcus in the Lateglacial sediments reflects widespread shallow habitats, probably due to lake level increase. Shrub Alnus became common after ~13 cal. ka BP reflecting further climate amelioration. Simultaneously, herb communities gradually decreased in the vegetation reaching a minimum ~11.8 cal. ka BP. A gradual decrease of algae remains suggests a reduction of shallow-water habitats. Shrubby and graminoid tundra was dominant ~11.8–11.1 cal. ka BP, later Salix stands significantly decreased. The forest-tundra ecotone established in the Early Holocene, shortly after 11.1 cal. ka BP. Low contents of green algae in the Early Holocene sediments likely reflect deeper aquatic conditions. The most favourable climate conditions were between ~10.6 and 7 cal. ka BP. Vegetation became similar to the modern after ~7 cal. ka BP but Pinus pumila came to the Ilirney area at about 1.2 cal. ka BP. It is important to emphasize that the study area provided refugia for Betula and Alnus during MIS 2. It is also notable that our records do not reflect evidence of Younger Dryas cooling, which is inconsistent with some regional environmental records but in good accordance with some others.  相似文献   

14.
A growing body of evidence implies that the concept of 'treeless tundra' in eastern and northern Europe fails to explain the rapidity of Lateglacial and postglacial tree population dynamics of the region, yet the knowledge of the geographic locations and shifting of tree populations is fragmentary. Pollen, stomata and plant macrofossil stratigraphies from Lake Kurjanovas in the poorly studied eastern Baltic region provide improved knowledge of ranges of north‐eastern European trees during the Lateglacial and subsequent plant population responses to the abrupt climatic changes of the Lateglacial/Holocene transition. The results prove the Lateglacial presence of tree populations (Betula, Pinus and Picea) in the eastern Baltic region. Particularly relevant is the stomatal and plant macrofossil evidence showing the local presence of reproductive Picea populations during the Younger Dryas stadial at 12 900–11 700 cal. a BP, occurring along with Dryas octopetala and arctic herbs, indicating semi‐open vegetation. The spread of PinusBetula forest at ca. 14 400 cal. a BP, the rise of Picea at ca. 12 800 cal. a BP and the re‐establishment of PinusBetula forest at ca. 11 700 cal. a BP within a span of centuries further suggest strikingly rapid, climate‐driven ecosystem changes rather than gradual plant succession on a newly deglaciated land. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A pollen record from Huguangyan Maar Lake documents regional palaeovegetation and palaeoclimate changes in southern China over the last 30 000 years. Huguangyan Maar Lake is located close to the South China Sea (SCS) coastline and is influenced by the East Asian Monsoon (EAM). The pollen assemblages show a succession of vegetation and climate changes. During the Last Glaciation, 30–15.8 cal. ka BP, the Huguangyan area was dominated by subtropical evergreen‐deciduous forest with grassland surrounding the lake, indicating a colder and drier climate than today. During 15.8–11 cal. ka BP, the study area experienced several climatic fluctuations. From 11 to 2 cal. ka BP, the climate shifted to warmer and wetter conditions. After the Holocene Optimum in the early Holocene, the temperature and precipitation decreased. The sediment record of the last 2000 years cannot be used to interpret natural palaeoclimate changes due to the intense anthropogenic influences. Overall, however, the Huguangyan pollen archive highlights the rapid responses of subtropical vegetation to insolation changes in southern China.  相似文献   

16.
Detailed 10Be and 14C dating and supporting pollen analysis of Alpine Lateglacial glacial and landslide deposits in the Hohen Tauern Mountains (Austria) constrain a sequence‐based stratigraphy comprising a major landslide (13.0±1.1 ka) overlain by till and termino‐lateral moraines of an advancing (12.6±1.0 ka) and retreating (11.3±0.8 ka) glacier in turn overlain by a minor landslide (10.8±1.1 ka). These results define glacier activity during the Younger Dryas age Egesen stadial bracketed by landslide activities during the Bølling‐Allerød interstadial and the Preboreal. In contrast to recent studies on Holocene glaciation in the Alps, no traces of any Holocene glacier advance bigger than during the Little Ice Age are documented. Furthermore, this study demonstrates the advantages of using an allostratigraphical approach based on unconformity‐bounded sedimentary units as a tool for glacial stratigraphy in formerly glaciated mountain regions, rather than a stratigraphy based on either isolated morphological features or lithostratigraphical characteristics.  相似文献   

17.
We analysed pollen from a sediment core from Fiddaun, a small Lateglacial lake basin in western Ireland. Results reflect the general Lateglacial vegetation development in Ireland, as reconstructed from other pollen records. The Fiddaun diagram shows a number of short‐lived regressive vegetation phases during the Interstadial. The close similarity between two pollen records from the same region (Fiddaun and Lurga) indicates that these fluctuations probably reflect regional rather than local changes. Comparison with a previously published climate reconstruction, based on a chironomid‐inferred mean July air temperature reconstruction, lithology, and oxygen and carbon isotopes of lake marl from the Fiddaun record, allowed us to establish the relationship between summer temperature and vegetation changes. Results reveal that two temporary regressive shifts in the pollen record correspond to cold oscillations, which have been correlated to Greenland Interstadial 1b and 1d. It seems that the first cold oscillation (GI‐1d) had the most distinct effect on vegetation in Ireland. In contrast, it appears that the transition from Juniperus shrubland and Empetrum heath to grassland, which is estimated at ~13.7 ka BP, was not caused by decreasing summer temperatures, as no substantial change is observed in the climate proxies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Full‐glacial pollen assemblages from four radiocarbon‐dated interstadial deposits in southwestern Ohio and southeastern Indiana imply the presence of herbaceous vegetation (tundra or muskeg with subarctic indicator Selaginella selaginoides) on the southern margin of the Miami lobe of the Laurentide Ice Sheet ca. 20 000 14C yr BP. Scattered Picea (spruce) and possibly Pinus (pine) may have developed regionally ca. 19 000 14C yr BP, and ca. 18 000 14C yr BP, respectively. Spruce stumps in growth position support a local source of pollen. Prior to the ca. 14 000 14C yr BP glacial advance, small amounts of Quercus (oak) and other deciduous pollen suggest development of regional boreal (conifer–hardwood) forests. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Cryolithological, ground ice and fossil bioindicator (pollen, diatoms, plant macrofossils, rhizopods, insects, mammal bones) records from Bol'shoy Lyakhovsky Island permafrost sequences (73°20′N, 141°30′E) document the environmental history in the region for the past c. 115 kyr. Vegetation similar to modern subarctic tundra communities prevailed during the Eemian/Early Weichselian transition with a climate warmer than the present. Sparse tundra‐like vegetation and harsher climate conditions were predominant during the Early Weichselian. The Middle Weichselian deposits contain peat and peaty soil horizons with bioindicators documenting climate amelioration. Although dwarf willows grew in more protected places, tundra and steppe vegetation prevailed. Climate conditions became colder and drier c. 30 kyr BP. No sediments dated between c. 28.5 and 12.05 14C kyr BP were found, which may reflect active erosion during that time. Herb and shrubby vegetation were predominant 11.6–11.3 14C kyr BP. Summer temperatures were c. 4 °C higher than today. Typical arctic environments prevailed around 10.5 14C kyr BP. Shrub alder and dwarf birch tundra were predominant between c. 9 and 7.6 kyr BP. Reconstructed summer temperatures were at least 4 °C higher than present. However, insect remains reflect that steppe‐like habitats existed until c. 8 kyr BP. After 7.6 kyr BP, shrubs gradually disappeared and the vegetation cover became similar to that of modern tundra. Pollen and beetles indicate a severe arctic environment c. 3.7 kyr BP. However, Betula nana, absent on the island today, was still present. Together with our previous study on Bol'shoy Lyakhovsky Island covering the period between about 200 and 115 kyr, a comprehensive terrestrial palaeoenvironmental data set from this area in western Beringia is now available for the past two glacial–interglacial cycles.  相似文献   

20.
A pollen record from the Huelmo site (ca. 41°30′S) shows that vegetation and climate changed at millennial time‐scales during the last glacial to Holocene transition in the mid‐latitude region of western South America. The record shows that a Nothofagus parkland dominated the landscape between 16 400 and 14 600 14C yr BP, along with Magellanic Moorland and cupressaceous conifers. Evergreen North Patagonian rainforest taxa expanded in pulses at 14 200 and 13 000 14C yr BP, following a prominent rise in Nothofagus at 14 600 14C yr BP. Highly diverse, closed canopy rainforests dominated the lowlands between 13 000 and 12 500 14C yr BP, followed by the expansion of cold‐resistant podocarps and Nothofagus at ca. 12 500 and 11 500 14C yr BP. Local disturbance by fire favoured the expansion of shade‐intolerant opportunistic taxa between 10 900 and 10 200 14C yr BP. Subsequent warming pulses at 10 200 and 9100 14C yr BP led to the expansion of thermophilous, summer‐drought resistant Valdivian rainforest trees until 6900 14C yr BP. Our results suggest that cold and hyperhumid conditions characterised the final phase of the Last Glacial Maximum (LGM), between 16 400 and 14 600 14C yr BP. The last ice age Termination commenced with a prominent warming event that led to a rapid expansion of North Patagonian trees and the abrupt withdrawal of Andean ice lobes from their LGM positon at ca. 147 000 14C yr BP. Hyperhumid conditions prevailed between 16 400 and 13 000 14C yr BP, what we term the ‘extreme glacial mode’ of westerly activity. This condition was brought about by a northward shift and/or intensification of the southern westerlies. The warmest/driest conditions of the last glacial–interglacial transition occurred between 9100 and 6900 14C yr BP. During this period, the westerlies shifted to an ‘extreme interglacial mode’ of activity, via a poleward migration of stormtracks. Our results indicate that a highly variable climatic interval lasting 5500 14C years separate the opposite extremes of vegetation and climate during the last glacial‐interglacial cycle, i.e. the end of the LGM and the onset of the early Holocene warm and dry period. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号