首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we consider asymptotic behavior of a hybrid action of f(R) gravity model which proposed by Saffari and Rahvar (2008), in the Solar system scale, which can explain Pioneer anomalous acceleration. We use the resultant weak field gravitational potential which comes from the hybrid action to test its impacts on the Solar system dynamics, by comparing theoretical precession of perihelion of a test particle, , with corrections to the standard Newtonian-Einstenian precessions of perihelia of some planets, which recently estimated by [Pitjeva, 2005a], [Pitjeva, 2005b], [22] and [23]. Here we show that the asymptotic behavior of hybrid action is in more accordance with observation relative to the other modifications such as power law and logarithmic corrections (Iorio, 2008). We also show that an extra additional lensing of the prediction of General Relativity is reproduced. Finally we consider the stability condition of planetary orbits in the presence of the hybrid action.  相似文献   

2.
Adi Nusser 《New Astronomy》2009,14(4):365-368
The time scale for cooling of the gravitationally bound gaseous intracluster medium (ICM) is not determined by radiative processes alone. If the ICM is in quasi-hydrostatic equilibrium in the fixed gravitational field of the dark matter halo then energy losses incurred by the gravitational potential energy of the gas should also be taken into account. This “gravitational heating” has been known for a while using explicit solutions to the equations of motion. Here, we re-visit this effect by applying the virial theorem to gas in quasi-hydrostatic equilibrium in an external gravitational field, neglecting the gravity of the gas. For a standard NFW form of halo profiles and for a finite gas density, the response of the gas temperature to changes in the total energy is significantly delayed. The effective cooling time could be prolonged by more than an order of magnitude inside the scale radius (rs) of the halo. Gas lying at a distance twice the scale radius, has negative heat capacity so that the temperature increases as a result of energy losses. Although external heating (e.g. by AGN activity) is still required to explain the lack of cool ICM near the center, the analysis here may circumvent the need for heating in farther out regions where the effective cooling time could be prolonged to become larger than the cluster age and also explains the increase of temperature with radius in these regions.  相似文献   

3.
The measurement of the gravitational properties of antimatter is currently a hot research area in experimental physics. Using an outcome of QED calculations by Alves et al. (arXiv:0907.4110, 2009), this letter proves that QED and repulsive gravity are incompatible by showing that an extension of QED with the assumption of negative gravitational mass for antimatter yields a concrete prediction that is already falsified by the recent Eöt-Wash experiments: if repulsive gravity, and thus negative gravitational mass, would be observed by any of the upcoming experiments, then QED is thus experimentally falsified; the same goes for QCD. An immediate consequence is that virtual particle-antiparticle pairs from contemporary quantum theory cannot be a model for Hajdukovic’s virtual gravitational dipoles, nor for the dipolar medium of Blanchet and Le Tiec. There may be ways to reformulate quantum theory to restore consistency with experiment if repulsive gravity would be observed, but these involve a departure from the framework of four dimensions and four forces of nature: an observation of repulsive gravity would thus provide a reason to reject the quantum paradigm in its entirety and to search for new fundamental physics.  相似文献   

4.
Einstein's equations of general relativity are solved in terms of gravitational potential derivatives, withT equal to mass and/or field energy such thatT 0 outside a body. The line element equation then describes the variance of test particle internal geometrical structure and time-rate due to work done in a field, not the space-time curvature. Specific properties of gravitational fields and bodies come from this new solution: (a) The gravitational field consists of electromagnetic spin 2 gravitons which produce the gravitational force through the magnetic vector. (b) The gravitational mass is the Newtonian mass, not the relativistic mass, of a moving body. (c) An action principle exists in gravitation theory. (d) Attractive gravity exists between matter and antimatter. (e) Unification with quantum physics appears possible.  相似文献   

5.
An artificial satellite, flying in a purely gravitational field is a natural probe, such that, by a very accurate orbit determination, would allow a perfect estimation of the field. A true satellite experiences a number of perturbational, non-gravitational forces acting on the shell of the spacecraft; these can be revealed and accurately measured by a spaceborne accelerometer. If more accelerometers are flown in the same satellite, they naturally eliminate (to some extent) the common perturbational accelerations and their differences are affected by the second derivatives of the gravity fields only (gradiometry). The mission GOCE is based on this principle. Its peculiar dynamical observation equations are reviewed. The possibility of estimating the gravity field up to some harmonic degree (200) is illustrated.  相似文献   

6.
A version of the virial theorem is derived in a brane-world scenario in the framework of a warped DGP model where the action on the brane is an arbitrary function of the Ricci scalar, $\mathcal{L}(R)$ . The extra terms in the modified Einstein equations generate an equivalent mass term (geometrical mass), which give an effective contribution to the gravitational energy and offer viable explanation to account for the virial mass discrepancy in clusters of galaxies. We also obtain the radial velocity dispersion of galaxy clusters and show that it is compatible with the radial velocity dispersion profile of such clusters. Finally, we compare the result of the model with $\mathcal{L}(R)$ gravity theories.  相似文献   

7.
In this paper, we have studied the magnetized quark matter (QM) and strange quark matter (SQM) distributions in the presence of \(f(R,T)\) gravity in the background of Friedmann-Lemaître-Robertson-Walker (FLRW) metric. To get exact solutions of modified field equations we have used \(f(R,T ) = R + 2 f(T)\) model given by Harko et al. with two different parametrization of geometrical parameters i.e. the parametrization of the deceleration parameter \(q \), and the scale factor \(a \) in hybrid expansion form. Also, we have obtained Einstein Static Universe (ESU) solutions for QM and SQM distributions in \(f(R,T)\) gravity and General Relativity (GR). All models in \(f(R,T)\) gravity and GR for FRW and ESU Universes with QM also SQM distributions, we get zero magnetic field. These results agree with the solutions of Akta? and Aygün in \(f(R,T)\) gravity. However, we have also discussed the physical consequences of our obtained models.  相似文献   

8.
The Einstein Gravity Explorer mission (EGE) is devoted to a precise measurement of the properties of space-time using atomic clocks. It tests one of the most fundamental predictions of Einstein’s Theory of General Relativity, the gravitational redshift, and thereby searches for hints of quantum effects in gravity, exploring one of the most important and challenging frontiers in fundamental physics. The primary mission goal is the measurement of the gravitational redshift with an accuracy up to a factor 104 higher than the best current result. The mission is based on a satellite carrying cold atom-based clocks. The payload includes a cesium microwave clock (PHARAO), an optical clock, a femtosecond frequency comb, as well as precise microwave time transfer systems between space and ground. The tick rates of the clocks are continuously compared with each other, and nearly continuously with clocks on earth, during the course of the 3-year mission. The highly elliptic orbit of the satellite is optimized for the scientific goals, providing a large variation in the gravitational potential between perigee and apogee. Besides the fundamental physics results, as secondary goals EGE will establish a global reference frame for the Earth’s gravitational potential and will allow a new approach to mapping Earth’s gravity field with very high spatial resolution. The mission was proposed as a class-M mission to ESA’s Cosmic Vision Program 2015–2025.
S. SchillerEmail:
  相似文献   

9.
Under the assumption of a power law (k·R n=C,C=const.) between the gravitational constantk and the radius of curvatureR of the Universe and forP=1/3 the exact solution is sought for the cosmological equations of Brans and Dicke. The solution turns out to be valid for closed space and the parameter of the scalar-tensor theory is necessarily negative. The radius of curvature increases linearly with respect to the age of the Universe while the gravitational constant grows with the square of the radius of curvature. It has been shown (Lessner, 1974) that in this case (KR 2) the spatial component of the field equations is independent of the remaining equations. However, our solution satisfies this independent equation. This solution for the radiation-dominated era corresponds to the solution for the matter-dominated era found by Dehnen and one of the authors (Dehnen and Obregón, 1971). Our solution, as is the solution previously obtained for the matter-dominated era, is in contradiction to Dirac's hypothesis in which the gravitational constant should decrease with time in an expanding Universe.  相似文献   

10.
Because the precise measurement of the Martian gravitational field plays a significant role in the future Mars exploration program, the future dedicated Mars satellite-to-satellite tracking (Mars-SST) gravity mission in China is investigated in detail for producing the next generation of the Mars gravity field model with high accuracy. Firstly, a new semi-numerical synthetical error model of the cumulative Martian geoid height influenced by the major error sources of the space-borne instruments is precisely established and efficiently verified. Secondly, the deep space network in combination with the satellite-to-satellite tracking in the low-low (DSN-SST-LL) mode is a preferred design owing to the high precision determination of the gravity maps, the low technical complexity of the satellite system and the successful experiences with the Earth’s Gravity Recovery and Climate Experiment (GRACE) projects and the lunar Gravity Recovery and Interior Laboratory (GRAIL) program. Finally, the future twin Mars-SST satellites plan to adopt the optimal matching accuracy indices of the satellite-equipped sensors (e.g., \(10^{-7}\) m/s in the inter-satellite range-rate from the interferometric laser ranging system (ILRS), 35 m in the orbital position tracked by the DSN and \(3\times 10^{-11}\) m/s2 in the non-conservative force from the drag-free control system (DFCS)) and the preferred orbital parameters (e.g., the orbital altitude of \(100\pm 50\) km and the inter-satellite range of \(50\pm 10\) km).  相似文献   

11.
Based on the assumption, that potential energy of matter in a mass filled space contributes a negative term to the energy tensor, solutions of the Einstein field equations are possible that exhibit no singularities, since the action of gravity changes sign when the density of potential energy exceeds the density of mass-energy. The solution, in which potential energy and mass-energy are in balance, is identical with Einstein's static universe. It is shown that all the observational facts, that are usually considered as confirming the big bang model, as the cosmological red shift, the abundances of light elements and the existence of the microwave background radiation, can be understood also in a static world model, when it is taken into account that due to the finite velocity of gravitational interaction all moving quanta lose momentum to the gravitational tensor potential. As in the static cosmological model the overwhelming fraction of the total mass exists in form of a hot intergalactic plasma. The model gives a simple explanation for the diffuse x-ray background and a solution to the missing mass problem without invoking any kind of new physics or of yet undiscovered particles. Also the causality problem and the curvature problem posed by the energy density of the quantum mechanical vacuum fields find a natural solution.  相似文献   

12.
G. M. Webb 《Solar physics》1986,106(2):287-313
The equations of magnetohydrostatic equilibria for a plasma in a gravitational field are investigated analytically. For equilibria with one ignorable spatial coordinate, the equations reduce to a single nonlinear elliptic equation for the magnetic potential A. Similarity solutions of the elliptic equation are obtained for the case of an isothermal atmosphere in a uniform gravitational field. The solutions are obtained from a consideration of the invariance group of the elliptic equation. The importance of symmetries of the elliptic equation also appears in the determination of conservation laws. It turns out that the elliptic equation can be written as a variational principle, and the symmetries of the variational functional lead (via Noether's theorem) to conservation laws for the equation. As an example of the application of the similarity solutions, we construct a model magnetostatic atmosphere in which the current density J is proportional to the cube of the magnetic potential, and falls off exponentially with distance vertical to the base, with an e-folding distance equal to the gravitational scale height. The solutions show the interplay between the gravitational force, the J × B force (B, magnetic field induction) and the gas pressure gradient.  相似文献   

13.
This paper is devoted to investigate the spherically symmetric wormhole models in f(RT) gravity, where T and R are trace of stress energy tensor and the Ricci scalar, respectively. In this context, we discuss three distinct cases of fluid distributions viz, anisotropic, barotropic and isotropic matter contents. After considering the exponential f(RT) model, the behavior of energy conditions are analyzed that will help us to explore the general conditions for wormhole geometries in this gravity. It is inferred that the usual matter in the throat could obey the energy conditions but the gravitational field emerging from higher order terms of modified gravity favor the existence of the non-standard geometries of wormholes. The stability as well as the existence of wormholes are also analyzed in this theory.  相似文献   

14.
Khater  A. H.  Callebaut  D. K.  Kamel  E. S. 《Solar physics》1998,178(2):285-315
The equations of magnetohydrodynamic equilibria for a plasma in a gravitational field are investigated analytically. For equilibria with one ignorable spatial coordinate, the equations reduce to a single nonlinear elliptic equation for the magnetic potential , known as the Grad–Shafranov equation. Specifying the arbitrary functions in the latter equation, one gets a nonlinear elliptic equation. Analytical solutions of the elliptic equation are obtained for the case of a nonlinear isothermal atmosphere in a uniform gravitational field. The solutions are obtained by using the Painlevé analysis, and are adequate for describing parallel filaments of diffuse, magnetized plasma suspended horizontally in equilibrium in a uniform gravitational field.  相似文献   

15.
Kinetic equations for ultrarelativistic particles with due account of gravitational interactions with massive particles in the Robertson-Walker universe are obtained. On the basis of an exact solution of the kinetic equations thus obtained, a conclusion is made as to the high degree of the uniformity of the relict radiation on scales whih are less than 10.  相似文献   

16.
In the framework of unifying gravity and electromagnetism, we have shown that accelerating objects emit gravitational wave as those determined by Larmor formula for the accelerating charged particle. We have found new formulae for the power of Gravitational waves radiated by spinning and orbiting objects. The minimum wavelength of the gravitational wave emitted by an object of mass m and radius R is .  相似文献   

17.
Numerical simulations of asteroid breakups, including both the fragmentation of the parent body and the gravitational interactions between the fragments, have allowed us to reproduce successfully the main properties of asteroid families formed in different regimes of impact energy, starting from a non-porous parent body. In this paper, using the same approach, we concentrate on a single regime of impact energy, the so-called catastrophic threshold usually designated by , which results in the escape of half of the target’s mass. Thanks to our recent implementation of a model of fragmentation of porous materials, we can characterize for both porous and non-porous targets with a wide range of diameters. We can then analyze the potential influence of porosity on the value of , and by computing the gravitational phase of the collision in the gravity regime, we can characterize the collisional outcome in terms of the fragment size and ejection speed distributions, which are the main outcome properties used by collisional models to study the evolutions of the different populations of small bodies. We also check the dependency of on the impact speed of the projectile.In the strength regime, which corresponds to target sizes below a few hundreds of meters, we find that porous targets are more difficult to disrupt than non-porous ones. In the gravity regime, the outcome is controlled purely by gravity and porosity in the case of porous targets. In the case of non-porous targets, the outcome also depends on strength. Indeed, decreasing the strength of non-porous targets make them easier to disrupt in this regime, while increasing the strength of porous targets has much less influence on the value of . Therefore, one cannot say that non-porous targets are systematically easier or more difficult to disrupt than porous ones, as the outcome highly depends on the assumed strength values. In the gravity regime, we also confirm that the process of gravitational reaccumulation is at the origin of the largest remnant’s mass in both cases. We then propose some power-law relationships between and both target’s size and impact speed that can be used in collisional evolution models. The resulting fragment size distributions can also be reasonably fitted by a power-law whose exponent ranges between −2.2 and −2.7 for all target diameters in both cases and independently on the impact velocity (at least in the small range investigated between 3 and 5 km/s). Then, although ejection velocities in the gravity regime tend to be higher from porous targets, they remain on the same order as the ones from non-porous targets.  相似文献   

18.
The exact solution is sought for the cosmological equations of Brans and Dicke's scalar-tensor theory when a power law exists between the gravitational constant and the radius of curvature of the universe. For the space of negative curvature no solution is possible. On the contrary for a closed space the gravitational constant and the radius of curvature increase linearly with respect to the age of the universe. The parameter of the scalar-tensor theory is necessarily negative and can be determined by the present values of the mass-density of the universe, the Hubble-constant and the gravitational constant. The solution has no analogy in Einstein's theory with vanishing cosmological constant, even when the deviations from Einstein's values of the solar relativistic effects are small.  相似文献   

19.
The strongly perturbed dynamical environment near asteroids has been a great challenge for the mission design. Besides the non-spherical gravity, solar radiation pressure, and solar tide, the orbital motion actually suffers from another perturbation caused by the gravitational orbit–attitude coupling of the spacecraft. This gravitational orbit–attitude coupling perturbation (GOACP) has its origin in the fact that the gravity acting on a non-spherical extended body, the real case of the spacecraft, is actually different from that acting on a point mass, the approximation of the spacecraft in the orbital dynamics. We intend to take into account GOACP besides the non-spherical gravity to improve the previous close-proximity orbital dynamics. GOACP depends on the spacecraft attitude, which is assumed to be controlled ideally with respect to the asteroid in this study. Then, we focus on the orbital motion perturbed by the non-spherical gravity and GOACP with the given attitude. This new orbital model can be called the attitude-restricted orbital dynamics, where restricted means that the orbital motion is studied as a restricted problem at a given attitude. In the present paper, equilibrium points of the attitude-restricted orbital dynamics in the second degree and order gravity field of a uniformly rotating asteroid are investigated. Two kinds of equilibria are obtained: on and off the asteroid equatorial principal axis. These equilibria are different from and more diverse than those in the classical orbital dynamics without GOACP. In the case of a large spacecraft, the off-axis equilibrium points can exist at an arbitrary longitude in the equatorial plane. These results are useful for close-proximity operations, such as the asteroid body-fixed hovering.  相似文献   

20.
The case is made for modifying the equations of general relativity so as to permit a time-variable gravitational constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号