首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Four sources of surface heat flux (SHF) and the satellite remote sensing sea surface temperature (SST) data are combined to investigate the heat budget closure of the Huanghai Sea (HS) in winter. It is found that heat loss occurs all over the HS during winter and the area averaged heat content change decreases with a rate of -106 W/m2. Comparing with the area averaged SHF of -150 W/m-2 from the four SHF data sets, it can be concluded that the SHF plays a dominant role in the HS heat budget during winter. In contrast, the heat advection transported by the Huanghai Warm Current (Yellow Sea Warm Current, HWC) accounted for up to 29% of the HS heat content change. Close correlation, especially in February, between the storm events and the SST increase demonstrates that the HWC behaves strongly as a wind-driven compensation current.  相似文献   

2.
We selected surface flux datasets to investigate the heat fluxes during “hot events”; (HEs), defined as short-term, large-scale phenomena involving very high sea surface temperature (SST). Validation of the heat fluxes against in-situ ones, which are estimated from in-situ observation in HE sampling conditions, shows the accuracies (bias ± RMS error) of net shortwave radiation, net long wave radiation, latent heat and sensible heat fluxes are 20 ± 45.0 W m−2, −9 ± 12.3 W m−2, −2.3 ± 31.5 W m−2 and 1.5 ± 5.0 W m−2, respectively. Statistical analyses of HEs show that, during these events, net solar radiation remains high and then decreases from 246 to 220 W m−2, while latent heat is low and then increases from 100 W m−2 to 124 W m−2. Histogram peaks indicate net solar radiation of 270 W m−2 and latent heat flux of 90 W m−2 during HEs. Further, HEs are shown to evolve in three phases: formation, mature, and ending phases. Mean heat gain (HG) in the HE formation phase of 60 W m−2 is larger than the reasonably estimated annual mean HG range of 0–25 W m−2 in the Indo-Pacific Warm Pool. Such large daily HG in the HE formation phase can be expected to increase SSTs and produce large amplitudes of diurnal SST variations during HEs, which have been observed by both satellite and in-situ measurements in our previous studies.  相似文献   

3.
The seasonal variabilities of a latent-heat flux (LHF), a sensible-heat flux (SHF) and net surface heat flux are examined in the northern South China Sea (NSCS), including their spatial characteristics, using the in situ data collected by ship from 2006 to 2007. The spatial distribution of LHF in the NSCS is mostly controlled by wind in summer and autumn owing to the lower vertical gradient of air humidity, but is influenced by both wind and near-surface air humidity vertical gradient in spring and winter. The largest area-averaged LHF is in autumn, with the value of 197.25 W/m 2 , followed by that in winter; the third and the forth are in summer and spring, respectively. The net heat flux is positive in spring and summer, so the NSCS absorbs heat; and the solar shortwave radiation plays the most important role in the surface heat budget. In autumn and winter, the net heat flux is negative in most of the observation region, so the NSCS loses heat; and the LHF plays the most important role in the surface heat budget. The net heating is mainly a result of the offsetting between heating due to the shortwave radiation and cooling due to the LHF and the upward (outgoing) long wave radiation, since the role of SHF is negligible. The ratio of the magnitudes of the three terms (shortwave radiation to LHF to long-wave radiation) averaged over the entire year is roughly 3:2:1, and the role of SHF is the smallest.  相似文献   

4.
湍流扩散过程导致的硝酸盐垂向输运对海水表层的浮游植物生长和初级生产力的大小有着重要影响。本文基于2018年夏季黄、东海水文环境、硝酸盐浓度和湍动能耗散率的同步、原位数据,分析了海域温度、盐度和硝酸盐的空间分布特征,结果表明营养盐含量丰富的黄海冷水团、长江冲淡水、东海北部底层混合水与黑潮次表层水是影响研究海域硝酸盐分布的主要水团。利用垂向湍扩散硝酸盐通量公式,计算了三个选定断面上的硝酸盐垂向扩散通量,其高值区与湍流扩散系数的高值区的位置基本一致。针对存在明显硝酸盐跃层的站位,计算得到跨硝酸盐跃层的垂向通量FND的范围在-9.78—36.60mmol/(m2·d)之间,在黄海冷水团区,夏季温跃层限制了该区营养盐向近表层的湍流垂向扩散;东海北部底层混合水区,湍流垂向扩散向上层补充了大量硝酸盐,促进了跃层之上浮游植物的生长;黑潮次表层水影响海区,夏季中层水体混合较弱,跨跃层的垂向通量也普遍偏低。开展硝酸盐垂向扩散通量的计算与分析,对进一步明确营养盐的输运机制有着重要研究意义。  相似文献   

5.
Variability of the Kuroshio in the East China Sea in 1992   总被引:3,自引:3,他引:0  
INTRODUCTIONMostofpreviousstudiesshowthatthedynamicmethodswereoftenusedtocomputethevelocityandVToftheKuroshiointheEastChinaSea(Guan,1988;Nishizawaetal.,1982;SunandKaneko,1993).Duringrecentyearsdifferentkindsofinversemethodshavebeentriedby*ThisprojectwassupportedbytheNationalNaturalScienceFoundationofChinaundercontractNo.49776287.1.Secondinstituteofoceanography,StateOceanicAdministration,Hangzhou310012,ChinaYuanetul(1988,1991,1992a,1992b,1993,1994,1995).Theircalculatedresultsshowt…  相似文献   

6.
Various important features could be found on the open ocean deep convection and the subsequent deep water formation from large eddy simulation (LES), and the results were applied to the East Sea (Japan Sea). It was found that under a strong cold wind outburst with the heat flux of 1000 Wm−2 for 5 days generates a deep convection which can penetrate to the depth 1500 m, but under the continuous cooling with the heat flux of 250 Wm−2 the growth of a mixed layer is suppressed at 700 m. The effects of the spatial and temporal variations of the surface forcing were investigated with regard to the penetrative depth of convection, the generation of baroclinic eddies, the volume of the water mass formation, and the intensity of the rim current. The deep water formations in the intermediate and deep layer of the East Sea were explained in terms of the simulation results, and the intensity of the consequent circulation and the volume of water mass formation were compared with the observation data. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Most marginal seas in the North Pacific are fed by nutrients supported mainly by upwelling and many are undersaturated with respect to atmospheric CO2 in the surface water mainly as a result of the biological pump and winter cooling. These seas absorb CO2 at an average rate of 1.1 ± 0.3 mol C m−2yr−1 but release N2/N2O at an average rate of 0.07 ± 0.03 mol N m−2yr−1. Most of primary production, however, is regenerated on the shelves, and only less than 15% is transported to the open oceans as dissolved and particulate organic carbon (POC) with a small amount of POC deposited in the sediments. It is estimated that seawater in the marginal seas in the North Pacific alone may have taken up 1.6 ± 0.3 Gt (1015 g) of excess carbon, including 0.21 ± 0.05 Gt for the Bering Sea, 0.18 ± 0.08 Gt for the Okhotsk Sea; 0.31 ± 0.05 Gt for the Japan/East Sea; 0.07 ± 0.02 Gt for the East China and Yellow Seas; 0.80 ± 0.15 Gt for the South China Sea; and 0.015 ± 0.005 Gt for the Gulf of California. More importantly, high latitude marginal seas such as the Bering and Okhotsk Seas may act as conveyer belts in exporting 0.1 ± 0.08 Gt C anthropogenic, excess CO2 into the North Pacific Intermediate Water per year. The upward migration of calcite and aragonite saturation horizons due to the penetration of excess CO2 may also make the shelf deposits on the Bering and Okhotsk Seas more susceptible to dissolution, which would then neutralize excess CO2 in the near future. Further, because most nutrients come from upwelling, increased water consumption on land and damming of major rivers may reduce freshwater output and the buoyancy effect on the shelves. As a result, upwelling, nutrient input and biological productivity may all be reduced in the future. As a final note, the Japan/East Sea has started to show responses to global warming. Warmer surface layer has reduced upwelling of nutrient-rich subsurface water, resulting in a decline of spring phytoplankton biomass. Less bottom water formation because of less winter cooling may lead to the disappearance of the bottom water as early as 2040. Or else, an anoxic condition may form as early as 2200 AD. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
东海与邻近海域水、热、盐通量的季节变化研究   总被引:1,自引:0,他引:1  
本文基于高分辨率的区域海洋数值模式对东海及邻近海域进行温、盐、流的数值模拟,模拟结果与实测结果拟合较好。结果表明:东海与邻近海域的水交换过程具有显著的季节变化特征。从流量的角度看,台湾海峡、台湾-西表岛之间水道和西表岛-冲绳岛之间水道是外海水流入东海的3个主要水道,而冲绳岛-奄美大岛、吐噶喇海峡、大隅海峡、济州岛东部和黄东海断面是海水流出东海的水道;其年平均体积输运值分别为1.06×106 m3/s、20.49×106 m3/s、3.20×106 m3/s、-0.92×106 m3/s、-20.59×106 m3/s、-0.30×106 m3/s、-2.37×106 m3/s和-0.37×106 m3/s(向内为正)。对比发现,东海与邻近海域之间各水道的体积、热量和盐量输运均具有相似的季节变化趋势,其最大值往往出现在夏季(7月或8月),最小值往往出现在冬季(1月或2月)。从7月到11月整个东海是流量净流出的过程,而从12月到翌年6月是流量净流入的过程,全年流量基本上保持平衡状态。东海终年存在向黄海的净输入,其体积、热量和盐量的年平均输运值分别为0.37×106 m3/s,0.027×1015 W和12.7×106 kg/s。  相似文献   

9.
The long-term mean (31-year mean) surface heat fluxes over the Japan Sea are estimated by the bulk method using the most of the available vessel data with the resolution of 1o×1o. The long-term annual mean net heat flux is about –53 W m–2 (negative sign means upward heat flux) with the annual range from 133 W m–2 in May to –296 W m–2 in December. The small gain of heat in the area near Vladivostok seems to indicate the existence of cold water flowing from the north. In that area in winter, the mean loss of heat attains about 200 W m–2, and the Bowen's ratio is over the unity. The largest insolation occurs in May in the Japan Sea, and the upward latent heat flux becomes the largest in November in this area. The heat flux of Haney type is also calculated, and the result, shows that the constantQ 1 has the remarkable seasonal and spatial variation, while the coefficientQ 2 has relatively small variation throughout all seasons. Under the assumption of constant volume transport of 1.35×106 m3s–1 through the Tsugaru Strait, the long-term averages of the volume transport through the Tsushima and Soya Straits are estimated to be about 2.20 and 0.85×106 m3s–1 from the result of the mean surface heat flux, respectively.  相似文献   

10.
Based on the recent research results on dry and wet deposition of nutrient elements and sulphate,we estimate the atmospheric flux of nutrient elements and sulphate to the southern Yellow Sea and the East China Sea in each season.The results suggest that the concentrations of nutrient elements and sulphate in aerosol and precipitation show an apparent seasonal cycle with the maximum values in winter and the minimum values in summer.Depositions of nitrate and sulphate are dominated by wet deposition,while the deposition for phosphate is mainly dry deposition.Moreover,compared with the riverine inputs,the atmospheric deposition may be the main source of dissolved inorganic nutrients in the southern Yellow Sea and the East China Sea.  相似文献   

11.
基于2010 年11 月对长江口外东海中北部海域的综合调查, 系统研究了该海域的无机碳体系参数的分布特征、海?气界面二氧化碳通量及其影响因素。研究结果表明, 该海域秋季溶解无机碳(DIC)高值区主要出现在调查海域东北部及长江口附近海域, 而调查海域南部DIC 含量较少且变化平缓, 其主要是受台湾东部流向东北方向的黑潮支流及长江冲淡水的影响; 表层海水CO2分压(pCO2)值变化范围为40.8~63.5 Pa, 呈现沿黑潮支流流入方向由东南向西北逐渐增高的趋势。秋季表层海水pCO2与温度(T)、盐度(S)有较好的负相关性, 说明海水温度升高和盐度增加, pCO2降低, 反之亦然。另外, 通过估算得出, 秋季CO2海-气交换通量为2.69~33.66 mmol/(m2·d), 平均值为(14.35 ± 7.06 )mmol/(m2·d),其在长江口邻近海域相对较大, 而在调查海域南部相对较小; 2010 年秋季水体向大气释放CO2的量(以碳计)为(2.35 ± 1.16)×104 t/d, 是大气CO2较强的源, 说明东海中北部海域秋季总体上是CO2的源。  相似文献   

12.
根据2007年11月在东海和南黄海海域表层海水测得的TCO2和TA数据,计算了表层海水pCO2,结合现场环境对表层海水CO2体系各参数的分布进行了讨论,探讨了pCO2与海水温度及叶绿素的相关性,利用Wanninkhof(1992)提出的通量模式并采用加权平均法估算了整个调查海域的海-气CO2的净通量。结果表明:观测海域表层海水CO2系统各参量的分布呈明显的不均匀性,在水团的混合处往往是各参量的高值或低值中心。由相关性分析可知,pCO2的分布主要受海水温度的影响,生物活动的影响较弱。受秋季较大风速的影响,调查海域表现为强的CO2源,秋季可向大气释放CO2约为556×104tC。  相似文献   

13.
1993和1994年东海黑潮的变异   总被引:4,自引:0,他引:4  
基于“长风丸”1993~1994年共8个航次的水文调查资料,采用改进逆方法计算了东海黑潮的流速、流量和热通量.计算结果表明:(1)PN断面黑潮流速在秋季时均呈双核结构;而在其他季节,有时为单核,有时为双核;黑潮主核心皆位于坡折处.黑潮以东及黑潮以下都存在南向逆流.(2)TK断面较复杂,可出现单、双或三核结构.在吐噶喇海峡中部、北部出现流核的机率较高.海峡南端及海峡深处都存在西向逆流,而且海峡南端的逆流在秋季较强.(3)在A断面,对马暖流核心位于陆坡上,但有时偏西或偏东.Vmax值的变动范围为26~46cm/s.黄海暖流位于其西侧,流速则相对减小.(4)东海黑潮流量在这两年中,在春季均出现最小值,在夏季出现最大或较大值.黑潮流量,以PN断面为例,每年四季平均流量值1994年与1993年几乎相同,但略小于1992年的平均流量值.8个航次中通过PN、TK断面的平均净流量分别为27.1×106和25.0×106m3/s.(5)8个航次中,通过PN、TK断面的热通量的平均值分别为1.99×1015和1.78×1015W.(6)在计算海域秋季和冬季均是由海洋向大气放热;夏季则均从大气吸热;春季则不确定.海面上热交换率在冬季最大,而春、夏季较小.  相似文献   

14.
张琪  龙景超 《海洋预报》2021,38(1):80-86
通过HadSST3原始观测数据和HadISST1重组数据,分析了东中国海海温在增暖停滞期(1998-2014年)的变化特征.研究表明:两组数据的海温变化特征和程度相似.在增暖停滞期,渤海、黄海和东海海温线性趋势主要表现为负,降温最多的集中在长江口附近,约-1℃.渤海、黄海及东海部分区域的净热通量对海温降低起正作用,而在...  相似文献   

15.
利用1958—2006年OAFlux热通量资料,分析了东中国海海域潜热通量的长期变化特征,并探讨了与局地和太平洋海域影响因素的关系。结果表明:近50 a东中国海潜热通量显著增加,沿黑潮主轴增幅最大。通过分析阿留申低压区(30°N~60°N,160°E~140°W)风场的变化,发现其风应力旋度与东中国海潜热通量变化的主要影响因素海气比湿差存在显著的正相关,表明可能是北太平洋风应力旋度的变化而不是东中国海域风场的变化导致了潜热的长期增加。超前和滞后相关分析表明,东中国潜热通量的变化比北太平洋风应力旋度的变化存在4 a左右的延迟,可能是副热带环流对风场变化调整所需的时间。  相似文献   

16.
A significant surface net heat loss appears around the Kuroshio and the Tsushima Warm Current regions. The area where the surface heat loss occurs should require heat to be supplied by the current to maintain the long-term annual heat balance. Oceanic heat advection in these regions plays an important role in the heat budget. The spatial distribution of the heat supply by the Tsushima Warm Current near the surface was examined by calculating the horizontal heat supply in the surface layer of the East Sea (the Japan Sea) (ESJS), directly from historical sea surface temperature and current data. We have also found a simple estimation of the effective vertical scale of heat supply by the current to compensate net heat loss using the heat supplied by the current in the surface 10 m layer. The heat supplied by the current for the annual heat balance was large in the Korea/Tsushima Strait and along the Japanese Coast, and was small in the northwestern part of the ESJS. The amount of heat supplied by the current was large in the northwestern part and small in the south-eastern part of the ESJS. These features suggest that the heat supplied by the Tsushima Warm Current is restricted to near the surface around the northeastern part and extends to a deeper layer around the southeastern part of the ESJS. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Primary productivity in the East China Sea and its adjacent area was measured by the13C tracer method during winter, summer and fall in 1993 and 1994. The depth-integrated primary productivity in the Kuroshio Current ranged from 220 to 350 mgC m−2d−1, and showed little seasonal variability. High primary productivity (above 570 mgC m−2d−1) was measured at the center of the continental shelf throughout the observation period. The productivity at the station nearest to the Changjiang estuary exhibited a distinctive seasonal change from 68 to 1,500 mgC m−2d−1. Depth-integrated primary productivity was 2.7 times higher in the shelf area than the rates at the Kuroshio Current. High chlorophyll-a specific productivity (mgC mgChl.-a−2d−1) throughout the euphotic zone was mainly found in the shelf area rather than off-shelf area, probably due to higher nutrient availability and higher activity of phytoplankton at the subsurface layer in the shelf area.  相似文献   

18.
1992年东海黑潮的变异   总被引:10,自引:2,他引:8  
基于1992年4个航次的水文调查资料,运用改进逆方法计算了东海黑潮的流速、流量和热通量.计算结果表明:(1)PN断面黑潮在春季和秋季都有两个流核,冬季和夏季则只有一个流核.主核心皆位于坡折处.Vmax值春季最大,冬季和夏季次之,而秋季最小.黑潮以东及以下都存在逆流.(2)TK断面黑潮在冬季为两核,春、夏季为3核.海峡南端及海峡深处存在西向逆流.(3)通过A断面的对马暖流Vmax值在秋季最大,冬季最小.黄海暖流位于其西侧,相对较弱.(4)通过PN断面净北向流量夏季最大,秋季最小,而冬、春季介于上述二者之间,1992年四季平均值为28.0×106m3/s;TK断面的净东向流量也是在夏季最大;A断面净北向流量则在秋季最大.(5)PN断面4个航次的平均热通量为2.03×1015W.TK断面3个航次的平均热通量为2.00×1015W.(6)在计算海区,冬、春和秋季都是由海洋向大气放热;夏季则从大气吸热.冬季海面上热交换率最大,而夏季热交换率最小.关键词##4东海;;黑潮;;季节变化  相似文献   

19.
INTRODUCTIONTherehavebeenmanystudiesandcomputationsonVToftheKuroshiointheEastChinaThisprojectwassupportedbytheNationalNaturalScienceFoundationofChinaundercontractNo.49476278.Asanditsvacation.Forexample,(1)basedonhydrographicobservationsatactionG(PN)f...  相似文献   

20.
2016年8月7-14日中国第七次北极科学考察期间,在83°N附近设立的长期浮冰站开展了辐射和湍流通量观测研究。结果表明,观测期间反照率变化范围为0.64~0.92,平均反照率为0.78;基于现场观测数据评估了PW79、HIRHAM、ARCSYM和CCSM3 4种不同复杂度的反照率参数化方案在天气尺度的表现,最为复杂的CCSM3结果优于其他参数化方案,但不能体现降雪条件下的反照率快速增长。浮冰区冰雪面平均净辐射为18.10 W/m2,平均感热通量为1.73 W/m2,平均潜热通量为5.55 W/m2,海冰表面消融率为(0.30±0.22) cm/d,表明此时北冰洋浮冰正处于快速消融期。冰面的平均动量通量为0.098(kg·m/s)/(m2·s),动量通量与风速有很好的对应关系,相关系数达0.80。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号