首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Between November 2001 and March 2002 an Australian/Japanese collaborative study completed six passes of a transect line in the Seasonal-Ice Zone (south of 62°S) along 140°E. Zooplankton samples were collected with a NORPAC net on 22–28 November, and a Continuous Plankton Recorder on 10–15 January, 11–12 February, 19–22 February, 25–26 February, and 10–11 March. Zooplankton densities were lowest on 22–28 November (ave=61 individuals (ind) m−3), when almost the entire transect was covered by sea ice. By 10–15 January sea surface temperature had increased by ∼2 °C across the transect line, and the study area was ice-free. Total zooplankton abundance had increased to maximum levels for the season (ave=1301 ind m−3; max=1979 ind m−3), dominated by a “Peak Community” comprising Oithona similis, Ctenocalanus citer, Clausocalanus laticeps, foraminiferans, Limacina spp., appendicularians, Rhincalanus gigas and large calanoid copepodites (C1–3). Total densities declined on each subsequent transect, returning to an average of 169 ind m−3 on 10–11 March. The seasonal density decline was due to the decline in densities of “Peak Community” taxa, but coincided with the rise of Euphausia superba larvae into the surface waters, increased densities of Salpa thompsoni, and an increased contribution of C4 to adult stages to the populations of Calanoides acutus, Calanus propinquus and Calanus simillimus. The seasonal community succession appeared to be influenced by the low sea ice extent and southward projection of the ACC in this region. The relatively warm ACC waters, together with low krill biomass, favoured high densities of small grazers during the January/February bloom conditions. The persistence of relatively warm surface waters in March and the seasonal decrease in chlorophyll a biomass provided favorable conditions for salps, which were able to penetrate south of the Southern Boundary.  相似文献   

2.
Time-series measurements of 234Th activities and particulate organic carbon (POC) concentrations were made at time-series stations (K1, K2, K3, and KNOT) in the northwestern North Pacific from October 2002 to August 2004. Seasonal changes in POC export fluxes from the surface layer (∼100 m) were estimated using 234Th as a tracer. POC fluxes varied seasonally from approximately 0 to 180 mg C m−2 d−1 and were higher in spring–summer than in autumn–winter. The export ratio (e-ratio) ranged from 6% to 55% and was also higher in spring–summer. Annual POC fluxes were estimated to be 31 g C m−2 y−1 in the subarctic region (station K2) and 23 g C m−2 y−1 in the region between the subarctic and subtropical gyres (station K3). POC fluxes and e-ratios in the northwestern North Pacific were much higher than those in most other oceans. The annual POC flux corresponded to 69% of annual new production estimated from the seasonal difference of the nutrient in the Western Subarctic Gyre (45 g C m−2 y−1). These results indicate that much of the organic carbon assimilated in the surface layer of the northwestern North Pacific is transferred to the deep ocean in particulate form. Our conclusions support previous reports that diatoms play an important role in the biological pump.  相似文献   

3.
4.
The fluxes of total mass, organic carbon (OC), biogenic opal, calcite (CaCO3) and long-chain C37 alkenones (ΣAlk37) were measured at three water depths (275, 455 and 930 m) in the Cariaco Basin (Venezuela) over three separate annual upwelling cycles (1996–1999) as part of the CARIACO sediment trap time-series. The strength and timing of both the primary and secondary upwelling events in the Cariaco Basin varied significantly during the study period, directly affecting the rates of primary productivity (PP) and the vertical transport of biogenic materials. OC fluxes showed a weak positive correlation (r2=0.3) with PP rates throughout the 3 years of the study. The fluxes of opal, CaCO3 and ΣAlk37 were strongly correlated (0.6<r2<0.8) with those of OC. The major exception was the lower than expected ΣAlk37 fluxes measured during periods of strong upwelling. All sediment trap fluxes were significantly attenuated with depth, consistent with marked losses during vertical transport. Annually, strong upwelling conditions, such as those observed during 1996–1997, led to elevated opal fluxes (e.g., 35 g m−2 yr−1 at 275 m) and diminished ΣAlk37 fluxes (e.g., 5 mg m−2 yr−1 at 275 m). The opposite trends were evident during the year of weakest upwelling (1998–1999), indicating that diatom and haptophyte productivity in the Cariaco Basin are inversely correlated depending on upwelling conditions.The analyses of the Cariaco Basin sediments collected via a gravity core showed that the rates of OC and opal burial (10–12 g m−2 yr−1) over the past 5500 years were generally similar to the average annual water column fluxes measured in the deeper traps (10–14 g m−2 yr−1) over the 1996–1999 study period. CaCO3 burial fluxes (30–40 g m−2 yr−1), on the other hand, were considerably higher than the fluxes measured in the deep traps (∼10 g m−2 yr−1) but comparable to those obtained from the shallowest trap (i.e. 38 g m−2 yr−1 at 275 m). In contrast, the burial rates of ΣAlk37 (0.4–1 mg m−2 yr−1) in Cariaco sediments were significantly lower than the water column fluxes measured at all depths (4–6 mg m−2 yr−1), indicating the large attenuation in the flux of these compounds at the sediment–water interface. The major trend throughout the core was the general decrease in all biogenic fluxes with depth, most likely due to post-depositional in situ degradation. The major exception was the relatively low opal fluxes (∼5 g m−2 yr−1) and elevated ΣAlk37 fluxes (∼2 mg m−2 yr−1) measured in the sedimentary interval corresponding to 1600–2000 yr BP. Such compositions are consistent with a period of low diatom and high haptophyte productivity, which based on the trends observed from the sediment traps, is indicative of low upwelling conditions relative to the modern day.  相似文献   

5.
Whereas diatoms (class Bacillariophyceae) often dominate phytoplankton taxa in the Amazon estuary and shelf, their contribution to phytoplankton dynamics and impacts on regional biogeochemistry are poorly understood further offshore in the western tropical Atlantic Ocean (WTAO). Thus, relative contribution of diatoms to phytoplankton biomass and primary production rates and associated environmental conditions were quantified during three month-long cruises in January–February 2001, July–August 2001, and April–May 2003. The upper water column was sampled at 6 light depths (100%, 50%, 25%, 10%, 1% and 0.1% of surface irradiance) at 64 stations between 3° and 14°N latitude and 41° and 58°W longitude. Each station was categorized as ‘oceanic’ or ‘plumewater’, based on principal component analysis of eight physical, chemical and biological variables. All stations were within the North Brazil Current, and plumewater stations were characterized by shallower mixed layers with lower surface salinities and higher dissolved silicon (dSi) concentrations than oceanic stations. The major finding was a much greater role of diatoms in phytoplankton biomass and productivity at plumewater stations relative to oceanic stations. Mean depth-integrated bSi concentrations at the plumewater and oceanic stations were 14.2 and 3.7 mmol m−2, respectively. Mean depth-integrated SiP rates at the plumewater and oceanic stations were 0.17 and 0.02 mmol m−2 h−1, respectively. Based on ratios of SiP and PP rates, and typical Si:C ratios, diatoms contributed on average 29% of primary productivity at plumewater stations and only 3% of primary productivity at oceanic stations. In contrast, phytoplankton biomass (as chlorophyll a concentrations) and primary production (PP) rates (as 14C uptake rates) integrated over the euphotic zone were not significantly different at plumewater and oceanic stations. Chlorophyll a concentrations ranged from 8.5 to 42.4 mg m−2 and 4.0 to 38.0 mg m−2 and PP rates ranged from 2.2 to 11.2 mmol m−2 h−2 and 1.8 to 10.8 mmol m−2 h−2 at plumewater and oceanic stations, respectively. A conservative estimate of annual integrated SiP in offshore waters of Amazon plume between April and August is 0.59 Tmol Si, based on mean SiP rates in plumewaters and satellite-derived estimates of the area of the Amazon plume. In conclusion, river plumewaters dramatically alter the silicon dynamics of the WTAO, forming extensive diatom-dominated phytoplankton blooms that may contribute significantly to the global Si budget as well as contributing to energy and matter flow off of the continental shelf.  相似文献   

6.
The bathymetric distribution, abundance and diel vertical migrations (DVM) of zooplankton were investigated along the axis of the Cap-Ferret Canyon (Bay of Biscay, French Atlantic coast) by a consecutive series of synchronous net hauls that sampled the whole water column (0–2000 m in depth) during a diel cycle. The distribution of appendicularians (maximum 189 individuals m−3), cladocerans (maximum 287 individuals m−3), copepods (copepods<4 mm, maximum 773 individuals m−3, copepods>4 mm, maximum 13 individuals m−3), ostracods (maximum 8 individuals m−3), siphonophores (maximum >2 individuals m−3) and peracarids (maximum >600 individuals 1000 m−3) were analysed and represented by isoline diagrams. The biomass of total zooplankton (maximum 18419 μg C m−3, 3780 μg N m−3) and large copepods (>4 mm maximum 2256 μg C m−3, 425 μg N m−3) also were determined. Vertical migration was absent or affected only the epipelagic zone for appendicularians, cladocerans, small copepods and siphonophores. Average amplitude of vertical migration was about 400–500 m for ostracods, some hyperiids and mysids, and large copepods, which were often present in the epipelagic, mesopelagic, and bathypelagic zones. Large copepods can constitute more than 80% of the biomass corresponding to total zooplankton. They may play an important role in the active vertical transfer of carbon and nitrogen.  相似文献   

7.
Abundance, vertical distribution and stage composition of Calanus finmarchicus was analysed for a period of four and half years, 1971–1975, based on data collected at weather station India in the North Atlantic (59°N, 19°W). The passage of the Great Salinity Anomaly in the area was reflected by a decrease in the salinity from 1973 to 1975. Calanus finmarchicus arrives at the surface by the end of March and stays in the upper 50 m, but with a stage segregation in the vertical distribution, until the descent periods at the end of May–June and in August–September. During this period two or three cohorts develop, apparently in close relation with the phytoplankton pulses. Abundance is highly variable, with maximum values ranging from 8770 ind m−2 in 1974 to 56,541 ind m−2 in 1973. There was no clear effect of the Great Salinity Anomaly, the maximum abundance occurring the year the Great Salinity Anomaly arrived, 1973, and the minimum values occurring the next year, 1974, when the effect of the Great Salinity Anomaly was well established. However, the structure of the population seems to have been affected during the Great Salinity Anomaly. Possible interactions between phytoplankton blooms, the Great Salinity Anomaly and C. finmarchicus population dynamics are discussed.  相似文献   

8.
The Benthic Boundary Layer (BBL) assemblages from the Cap-Ferret Canyon (Bay of Biscay) were quantitatively sampled at two sites located within its main channel near mooring deployments (Mooring Sites MS 1: ca. 2400 m; MS 2: ca. 3000 m) with a suprabenthic sled equipped with four nets fishing at different heights above the bottom. The macrofaunal abundance above the sea-floor was mainly represented by Isopoda (42.2%), Amphipoda (19.0%), Euphausiacea (17.3%), Cumacea (13.5%), Mysidacea (2.8%) and Tanaidacea (2.6%). At both sampling sites, the highest total densities were generally recorded in the immediate vicinity of the sea floor (10–40 cm water layer), and a drastic decrease occurred higher in the BBL community. The BBL assemblages from the two sampling sites were similar in their faunal composition (major taxa), and their mean density estimates were not statistically different (MS 1 : 525.3 ind. 100 m−2; MS 2 : 283.3 ind. m−2) although the recorded values during each cruise were always lower at the deeper site. The BBL macrofauna abundance showed obvious temporal fluctuations at both sites, probably linked with a seasonal organic input from the euphotic zone (vertical flux) via phytodetritus deposition on the sea bottom.  相似文献   

9.
《Marine Chemistry》2007,103(1-2):185-196
Large-volume sampling of 234Th and drifting sediment trap deployments were conducted as part of the 2004 Western Arctic Shelf–Basin Interactions (SBI) spring (May 15–June 23) and summer (July 17–August 26) process cruises in the Chukchi Sea. Measurements of 234Th and particulate organic carbon (POC) export fluxes were obtained at five stations during the spring cruise and four stations during the summer cruise along Barrow Canyon (BC) and along a parallel shelf-to-basin transect from East Hanna Shoal (EHS) to the Canada Basin. 234Th and POC fluxes obtained with in situ pumps and drifting sediment traps agreed to within a factor of 2 for 70% of the measurements. POC export fluxes measured with in situ pumps at 50 m along BC were similar in spring and summer (average = 14.0 ± 8.0 mmol C m 2 day 1 and 16.5 ± 6.5 mmol C m 2 day 1, respectively), but increased from spring to summer at the EHS transect (average = 1.9 ± 1.1 mmol C m 2 day 1 and 19.5 ± 3.3 mmol C m 2 day 1, respectively). POC fluxes measured with sediment traps at 50 m along BC were also similar in both seasons (31.3 ± 9.3 mmol C m 2 day 1 and 29.1 ± 14.2 mmol C m 2 day 1, respectively), but were approximately twice as high as POC fluxes measured with in situ pumps. Sediment trap POC fluxes measured along the EHS transect also increased from spring to summer (3.0 ± 1.9 mmol C m 2 day 1 and 13.0 ± 6.4 mmol C m 2 day 1, respectively), and these fluxes were similar to the POC fluxes obtained with in situ pumps. Discrepancies in POC export fluxes measured using in situ pumps and sediment traps may be reasonably explained by differences in the estimated POC/234Th ratios that arise from differences between the techniques, such as time-scale of measurement and size and composition of the collected particles. Despite this variability, in situ pump and sediment trap-derived POC fluxes were only significantly different at a highly productive station in BC during the spring.  相似文献   

10.
Organic carbon fluxes through the sediment/water interface in the high-latitude North Atlantic were calculated from oxygen microprofiles. A wire-operated in situ oxygen bottom profiler was deployed, and oxygen profiles were also measured onboard (ex situ). Diffusive oxygen fluxes, obtained by fitting exponential functions to the oxygen profiles, were translated into organic carbon fluxes and organic carbon degradation rates. The mean Corg input to the abyssal plain sediments of the Norwegian and Greenland Seas was found to be 1.9 mg C m−2 d−1. Typical values at the seasonally ice-covered East Greenland continental margin are between 1.3 and 10.9 mg C m−2 d−1 (mean 3.7 mg C m−2 d−1), whereas fluxes on the East Greenland shelf are considerably higher, 9.1–22.5 mg C m−2 d−1. On the Norwegian continental slope Corg fluxes of 3.3–13.9 mg C m−2 d−1 (mean 6.5 mg C m−2 d−1) were found. Fluxes are considerably higher here compared to stations on the East Greenland slope at similar water depths. By repeated occupation of three sites off southern Norway in 1997 the temporal variability of diffusive O2 fluxes was found to be quite low. The seasonal signal of primary and export production from the upper water column appears to be strongly damped at the seafloor. Degradation rates of 0.004–1.1 mg C cm−3 a−1 at the sediment surface were calculated from the oxygen profiles. First-order degradation constants, obtained from Corg degradation rates and sediment organic carbon content, are in the range 0.03–0.6 a−1. Thus, the corresponding mean lifetime of organic carbon lies between 1.7 and 33.2 years, which also suggests that seasonal variations in Corg flux are small. The data presented here characterize the Norwegian and Greenland Seas as oligotrophic and relatively low organic carbon deep-sea environments.  相似文献   

11.
Two in situ iron-enrichment experiments were conducted in the Pacific sector of the Southern Ocean during summer 2002 (SOFeX). The “north patch,” established within the Subantarctic Zone (∼56°S), was characterized by high nitrate (∼21 mmol m−3) but low silicic acid (2 mmol m−3) concentrations. North patch iron enrichment increased chlorophyll (Chl) by 12-fold to 2.1 mg m−3 and primary productivity (PPEU) by 8-fold to 188 mmol C m−2 d−1. Surprisingly, despite low silicic acid concentrations, diagnostic pigment and size-fraction composition changes indicated an assemblage shift from prymnesiophytes toward diatoms. The “south patch,” poleward of the Southern Boundary of the Antarctic Circumpolar Current (SBACC) (∼66°S), had high concentrations of nitrate (∼27 mmol m−3) and silicic acid (64 mmol m−3). South patch iron enrichment increased Chl by 9-fold to 3.8 mg m−3 and PPEU 5-fold to 161 mmol C m−2 d−1 but, notably, did not alter the phytoplankton assemblage from the initial composition of ∼50% diatoms. South patch iron addition also reduced total particulate organic carbon:Chl from ∼300 to 100; enhanced the presence of novel non-photosynthetic, but fluorescent, compounds; and counteracted a decrease in photosynthetic performance as photoperiod decreased. These experiments show unambiguously that in the contemporary, high nitrate Southern Ocean increasing iron supply increases primary productivity, confirming the initial premise of the Martin Iron Hypothesis. However, despite a 5-fold increase in PPEU under iron-replete conditions in late summer, the effect of iron on annual productivity in the Southern Ocean poleward of the SBACC is limited by seasonal ice coverage and the dark of polar winter.  相似文献   

12.
The life-histories and the secondary production of four dominant peracarid crustaceans (the mysids Boreomysis arctica and Parapseudomma calloplura, the amphipod Rhachotropis caeca, and the isopod Ilyarachna longicornis) in bathyal depths of the Bay of Biscay (NE Atlantic; between 383 and 420 m) and the Catalan Sea (Northwestern Mediterranean; between 389 and 1355 m) were established. Both the Atlantic and the Mediterranean populations of the major part of the target-species had two generations/year with mean cohort-production intervals (CPI) ranging from 5.5 mo for Ilyarachna longicornis to 6.3 mo for Parapseudomma calloplura. The Hynes method showed secondary production to vary in the Bay of Biscay between 0.113 mg DW m−2 yr−1 for I. longirostris and 3.069 mg DW m−2 yr−1 for P. calloplura, with P/B ratios between 4.57 (I. longirostris) and 7.93 (Boreomysis arctica). In the Catalan Sea, production varied between 0.286 mg DW m−2 yr−1 for I. longirostris and 1.096 mg DW m−2 yr−1 for P. calloplura, with P/B between 5.72 (I. longirostris) and 6.66 (P. calloplura). Application of two different empiric models to the whole peracarid assemblage gave similar levels of secondary production in both study areas (between 29.26 and 32.14 mgDWm−2 yr−1 in the Bay of Biscay; between 26.23 and 26.54 mg DW m−2 yr−1 in the Catalan Sea). From the analysis of gut contents of 22 species the dominant species in each study area were assigned to two basic trophic levels, detritus feeders and predators. Also, cumulative curves of dominance showed high diversity (low dominance) for peracarid assemblages distributed at mid-bathyal depths (524–693 m) both in the Bay of Biscay off Arcachon and in the Catalan Sea off Barcelona. We also discuss and compare, both within and between areas, how environmental features may explain the observed diversity patterns, the trophic structure, and the production results obtained for the suprabenthos assemblages.  相似文献   

13.
Sedimentation of particulate carbon from the upper 200–300 m in the central Greenland Sea from August 1993 to June 1995 was less than 2 g C m−2 yr−1. Daily rates of sedimentation of particulate organic carbon reached highest values of about 18 mg m−2 d−1 in fall 1994. For total particulate material, maximum rates of sedimentation of about 250 mg m−2 d−1 were recorded in spring and fall 1994. For chlorophyll equivalent, highest rates of sedimentation of about 140 μg m−2 d−1 were recorded in spring 1994. As reported in related investigations, the transient accumulation of DOC in surface waters during summer, as well as respiration and mortality of deep overwintering zooplankton stocks, appeared to dominate the fate of photosynthetically fixed organic carbon. The above processes may account for roughly 43 g C m−2 in the upper 200 m of the central Greenland Sea. For comparison, the seasonal deficit in dissolved inorganic carbon was reported to be about 23 g C m−2 in the upper 20 m of surface water, and estimates for new annual production were reported to be about 57 g C m−2. In our investigation, the biological carbon pump was not unusually effective in transporting carbon out of the productive surface layer.  相似文献   

14.
The latitudinal distributions of phytoplankton biomass, composition and production in the Atlantic Ocean were determined along a 10,000-km transect from 50°N to 50°S in October 1995, May 1996 and October 1996. Highest levels of euphotic layer-integrated chlorophyll a (Chl a) concentration (75–125 mg Chl m−2) were found in North Atlantic temperate waters and in the upwelling region off NW Africa, whereas typical Chl a concentrations in oligotrophic waters ranged from 20 to 40 mg Chl m−2. The estimated concentration of surface phytoplankton carbon (C) biomass was 5–15 mg C m−2 in the oligotrophic regions and increased over 40 mg C m−2 in richer areas. The deep chlorophyll maximum did not seem to constitute a biomass or productivity maximum, but resulted mainly from an increase in the Chl a to C ratio and represented a relatively small contribution to total integrated productivity. Primary production rates varied from 50 mg C m−2 d−1 at the central gyres to 500–1000 mg C m−2 d−1 in upwelling and higher latitude regions, where faster growth rates (μ) of phytoplankton (>0.5 d−1) were also measured. In oligotrophic waters, microalgal growth was consistently slow [surface μ averaged 0.21±0.02 d−1 (mean±SE)], representing <20% of maximum expected growth. These results argue against the view that the subtropical gyres are characterized by high phytoplankton turnover rates. The latitudinal variations in μ were inversely correlated to the changes in the depth of the nitracline and positively correlated to those of the integrated nitrate concentration, supporting the case for the role of nutrients in controlling the large-scale distribution of phytoplankton growth rates. We observed a large degree of temporal variability in the phytoplankton dynamics in the oligotrophic regions: productivity and growth rates varied in excess of 8-fold, whereas microalgal biomass remained relatively constant. The observed spatial and temporal variability in the biomass specific rate of photosynthesis is at least three times larger than currently assumed in most satellite-based models of global productivity.  相似文献   

15.
A quantitative study of metazoan meiofauna was carried out at continental shelf and slope stations affected by the oxygen-minimum zone in the eastern South Pacific off Chile. Densities of meiobenthos at the investigated stations off Antofagasta (22°S), Concepción (36°S), and Chiloé (42°S) ranged from 1282.1 to 8847.8 ind 10 cm−2. Oxygen deficiency led only to average abundances, despite higher food availability and freshness at the corresponding sites. Sediment organic carbon, chlorophyll-a, and phaeopigment contents were used as measures of the input from water-column primary production, which accumulated at the oxygen-minimum zone stations. The highest abundances were found at a station with an oxygen content of 0.79 mL L−1, which was slightly elevated from what is defined as oxygen minimum (0.5 mL L−1). The most oxygenated site yielded the lowest densities. Meiofauna assemblages became more diverse with increasing bottom-water oxygenation, whereas nematodes were the most abundant taxon at every station, followed by annelids, copepods, and nauplii.  相似文献   

16.
Dense communities of shallow-water suspension feeders are known to sidestep the microbial loop by grazing on ultraplankton at its base. We quantified the diet, rates of water processing, and abundance of the deep-sea hexactinellid sponge Sericolophus hawaiicus, and found that, like their demosponge relatives in shallow water, hexactinellids are a significant sink for ultraplankton. S. hawaiicus forms a dense bed of sponges on the Big Island of Hawaii between 360 and 460 m depth, with a mean density of 4.7 sponges m−2. Grazing of S. hawaiicus on ultraplankton was quantified from in situ samples using flow cytometry, and was found to be unselective. Rates of water processing were determined with dye visualization and ranged from 1.62 to 3.57 cm s−1, resulting in a processing rate of 7.9±2.4 ml sponge−1 s−1. The large amount of water processed by these benthic suspension feeders results in the transfer of approximately 55 mg carbon and 7.3 mg N d−1 m−2 from the water column to the benthos. The magnitude of this flux places S. hawaiicus squarely within the functional group of organisms that link the pelagic microbial food web to the benthos.  相似文献   

17.
Coccoliths collected by sediment traps deployed on the slope of the Bay of Biscay (northeastern Atlantic), from June 1990 to August 1991, were examined to determine their contribution to the transport of carbonate on a mid-latitude continental margin. They also were used as tracers of particle transfer processes on this slope. Two traps located at 1900 m, respectively at 2300 (Mooring Site 1) and 3000 m (Mooring Site 2) water depths provided high-resolution (4–7 days) time-series samples covering a 14-month period at MS2 and a 3-month period at MS1. Coccoliths from 28 species were identified over the course of the experiment, among which Emiliania huxleyi was always dominant (relative abundance range: 59–93%). Total coccoliths number fluxes were high but variable, ranging from 390×106 to 1610×106 coccoliths m−2 day−1 at MS1, and from 58×106 to 1500×106 coccoliths m−2 day−1 at MS2. The time-weighted mean flux, calculated for the whole experiment at MS2, was 499×106 coccoliths m−2 day−1. Estimate of coccoliths minimal contribution to total carbonate flux at 1900 m depth averaged 12%, which represented a weighted mean flux of 7.3 mg m−2 day−1 (2.7 g m−2 yr−1). Lateral transport of coccoliths resuspended from shelf and/or upper slope sediments seems to be the dominant transfer process to depth on this northeastern Atlantic slope. Nevertheless, the clear seasonal succession observed in the species composition implies that the deposition/resuspension/transport sequence is rapid (presumably less than a few months). Several short and unsmoothed signals directly issued from coccoliths bloom events also were recorded in our traps, a result that indicates rapid settling rates. The overall coccolith sedimentation processes appear as being quite diversified, but quantitative and qualitative analyses of aggregates collected by the traps suggest that they are important carriers of coccoliths in this margin environment.  相似文献   

18.
Hydrographic, geochemical, and direct velocity measurements along two zonal (7.5°N and 4.5°S) and two meridional (35°W and 4°W) lines occupied in January–March, 1993 in the Atlantic are combined in an inverse model to estimate the circulation. At 4.5°S, the Warm Water (potential temperature θ>4.5°C) originating from the South Atlantic enters the equatorial Atlantic, principally at the western boundary, in the thermocline-intensified North Brazil Undercurrent (33±2.7×106 m3 s−1 northward) and in the surface-intensified South Equatorial Current (8×106 m3 s−1 northward) located to the east of the North Brazil Undercurrent. The Ekman transport at 4.5°S is southward (10.7±1.5×106 m3 s−1). At 7.5°N, the Western Boundary Current (WBC) (17.9±2×106 m3 s−1) is weaker than at 4.5°S, and the northward flow of Warm Water in the WBC is complemented by the basin-wide Ekman flow (12.3±1.0×106 m3 s−1), the net contribution of the geostrophic interior flow of Warm Water being southward. The equatorial Ekman divergence drives a conversion of Thermocline Water (24.58⩽σ0<26.75) into Surface Water (σ0<24.58) of 7.5±0.5×106 m3 s−1, mostly occurring west of 35°W. The Deep Water of northern origin flows southward at 7.5°N in an energetic (48±3×106 m3 s−1) Deep Western Boundary Current (DWBC), whose transport is in part compensated by a northward recirculation (21±4.5×106 m3 s−1) in the Guiana Basin. At 4.5°S, the DWBC is much less energetic (27±7×106 m3 s−1 southward) than at 7.5°N. It is in part balanced by a deep northward recirculation east of which alternate circulation patterns suggest the existence of an anticyclonic gyre in the central Brazil Basin and a cyclonic gyre further east. The deep equatorial Atlantic is characterized by a convergence of Lower Deep Water (45.90⩽σ4<45.83), which creates an upward diapycnal transport of 11.0×106 m3 s−1 across σ4=45.83. The amplitude of this diapycnal transport is quite sensitive to the a priori hypotheses made in the inverse model. The amplitude of the meridional overturning cell is estimated to be 22×106 m3 s−1 at 7.5°N and 24×106 m3 s−1 at 4.5°S. Northward heat transports are in the range 1.26–1.50 PW at 7.5°N and 0.97–1.29 PW at 4.5°S with best estimates of 1.35 and 1.09 PW.  相似文献   

19.
Biochemical and productivity measurements and nutrient enrichment experiments were conducted on three cruises in summer and two cruises in winter on the shelf and the basin of the northern South China Sea (SCS) between 2001 and 2004. Phytoplankton production, in terms of depth-integrated new production (INP) or depth-integrated primary production (IPP), was higher in winter than in summer and on the shelf than in the basin. In winter, with deepening of the mixed layer, nitrate from the shallow nitracline that characterized the SCS waters was made available in the surface and supported the highest production of the year. Averaged INP measured in winter (0.25 g C m−2 d−1) was about twice the summer average (0.12 g C m−2 d−1) and was 0.19 g C m−2 d−1 on the shelf compared with 0.15 g C m−2 d−1 in the basin. In winter, average INP on the shelf was higher than the basin (0.34 versus 0.21 g C m−2 d−1); whereas in summer, averaged INP on the shelf (0.13 g C m−2 d−1) and the basin (0.11 g C m−2 d−1) were similar. While averaged IPP measured in the basin was higher in winter than in summer (0.53 versus 0.35 g C m−2 d−1), IPP on the shelf showed little temporal variation (0.82 in winter versus 0.84 g C m−2 d−1 in summer). Considerable spatial and inter-annual variation in production was measured in the shelf waters during summer, which could be linked to discharge volume and plume flow direction of the Zhujiang River. While the shelf waters in summer were mostly nitrogen starved or nitrogen and phosphorus co-limited, excessive river runoff may cause the nutritive state to shift to phosphorus deficiency. Waters with low surface salinities and high fluorescence from riverine mixing could be found extending from the Zhujiang mouth to as far as offshore southern Taiwan after a typhoon passed the northern SCS and brought heavy rainfall. Overall, both nutrient advection in winter and river discharge from the China coast in summer made new nitrogen available and shaped the dynamics of phytoplankton production in these oligotrophic waters.  相似文献   

20.
Seawater samples were collected for microbial analyses between 55 and 235 m depth across the Arctic Ocean during the SCICEX 97 expedition (03 September–02 October 1997) using a nuclear submarine as a research platform. Abundances of prokaryotes (range 0.043–0.47×109 dm−3) and viruses (range 0.68–11×109 dm−3) were correlated (r=0.66, n=150) with an average virus:prokaryote ratio of 26 (range 5–70). Biomass of prokaryotes integrated from 55 to 235 m ranged from 0.27 to 0.85 g C m−2 exceeding that of phytoplankton (0.005–0.2 g C m−2) or viruses (0.02–0.05 g C m−2) over the same depth range by an order of magnitude on average. Using transmission electron microscopy (TEM), we estimated that 0.5% of the prokaryote community on average (range 0–1.4%) was visibly infected with viruses, which suggests that very little of prokaryotic secondary production was lost due to viral lysis. Intracellular viruses ranged from 5 to >200/cell, with an average apparent burst size of 45±38 (mean±s.d.; n=45). TEM also revealed the presence of putative metal-precipitating bacteria in 8 of 13 samples, which averaged 0.3% of the total prokaryote community (range 0–1%). If these prokaryotes are accessible to protistan grazers, the Fe and Mn associated with their capsules might be an important source of trace metals to the planktonic food web. After combining our abundance and mortality data with data from the literature, we conclude that the biomass of prokaryoplankton exceeds that of phytoplankton when averaged over the upper 250 m of the central Arctic Ocean and that the fate of this biomass is poorly understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号