首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Full-depth conductivity-temperature-depth-oxygen profiler (CTDO2) data at low latitudes in the western North Pacific in winter 1999 were analyzed with water-mass analysis and geostrophic calculations. The result shows that the deep circulation carrying the Lower Circumpolar Water (LCPW) bifurcates into eastern and western branch currents after entering the Central Pacific Basin. LCPW colder than 0.98°C is carried by the eastern branch current, while warmer LCPW is carried mainly by the western branch current. The eastern branch current flows northward in the Central Pacific Basin, supplying water above 0.94°C through narrow gaps into an isolated deep valley in the Melanesian Basin, and then passes the Mid-Pacific Seamounts between 162°10′E and 170°10′E at 18°20′N, not only through the Wake Island Passage but also through the western passages. Except near bottom, dissolved oxygen of LCPW decreases greatly in the northern Central Pacific Basin, probably by mixing with the North Pacific Deep Water (NPDW). The western branch current flows northwestward over the lower Solomon Rise in the Melanesian Basin and proceeds westward between 10°40′N and 12°20′N at 150°E in the East Mariana Basin with volume transport of 4.1 Sv (1 Sv=106 m3 s−1). The current turns north, west of 150°E, and bifurcates around 14°N, south of the Magellan Seamounts, where dissolved oxygen decreases sharply by mixing with NPDW. Half of the current turns east, crosses 150°E at 14–15°N, and proceeds northward primarily between 152°E and 156°E at 18°20′N toward the Northwest Pacific Basin (2.1 Sv). The other half flows northward west of 150°E and passes 18°20′N just east of the Mariana Trench (2.2 Sv). It is reversed by a block of topography, proceeds southward along the Mariana Trench, then detours around the south end of the trench, and proceeds eastward along the Caroline Seamounts to the Solomon Rise, partly flowing into the West Mariana and East Caroline Basins. A deep western boundary current at 2000–3000 m depth above LCPW (10.0 Sv) closes to the coast than the deep circulation. The major part of it (8.5 Sv) turns cyclonic around the upper Solomon Rise from the Melanesian Basin and proceeds along the southern boundary of the East Caroline Basin. Nearly half of it proceeds northward in the western East Caroline Basin, joins the current from the east, then passes the northern channel, and mostly enters the West Caroline Basin (4.6 Sv), while another half enters this basin from the southern side (>3.8 Sv). The remaining western boundary current (1.5 Sv) flows over the middle and lower Solomon Rise, proceeds westward, then is divided by the Caroline Seamounts into southern (0.9 Sv) and northern (0.5 Sv) branches. The southern branch current joins that from the south in the East Caroline Basin, as noted above. The northern branch current proceeds along the Caroline Seamounts and enters the West Mariana Basin.  相似文献   

2.
Direct velocity measurements undertaken using a nine-system mooring array (M1–M9) from 2004 to 2005 and two additional moorings (M7p and M8p) from 2003 to 2004 reveal the spatial and temporal properties of the deep-circulation currents southwest of the Shatsky Rise in the western North Pacific. The western branch of the deep-circulation current flowing northwestward (270–10° T) is detected almost exclusively at M2 (26°15′N), northeast of the Ogasawara Plateau. It has a width less than the 190 km distance between M1 (25°42′N) and M3 (26°48′N). The mean current speed near the bottom at M2 is 3.6±1.3 cm s?1. The eastern branch of the deep-circulation current is located at the southwestern slope of the Shatsky Rise, flowing northwestward mainly at M8 (30°48′N) on the lower part of the slope of the Shatsky Rise with a mean near-bottom speed of 5.3±1.4 cm s?1. The eastern branch often expands to M7 (30°19′N) at the foot of the rise with a mean near-bottom speed of 2.8±0.7 cm s?1 and to M9 (31°13′N) on the middle of the slope of the rise with a speed of 2.5±0.7 cm s?1 (nearly 4000 m depth); it infrequently expands furthermore to M6 (29°33′N). The width of the eastern branch is 201±70 km on average, exceeding that of the western branch. Temporal variations of the volume transports of the western and eastern branches consist of dominant variations with periods of 3 months and 1 month, varying between almost zero and significant amount; the 3-month-period variations are significantly coherent to each other with a phase lag of about 1 month for the western branch. The almost zero volume transport occurs at intervals of 2–4 months. In the eastern branch, volume transport increases with not only cross-sectional average current velocity but also current width. Because the current meters were too widely spaced to enable accurate estimates of volume transport, mean volume transport is overestimated by a factor of nearly two, yielding values of 4.1±1.2 and 9.8±1.8 Sv (1 Sv=106 m3 s?1) for the western and eastern branches, respectively. In addition, a northwestward current near the bottom at M4 (27°55′N) shows a marked variation in speed between 0 and 20 cm s?1 with a period of 45 days. This current may be part of a clockwise eddy around a seamount located immediately east of M4.  相似文献   

3.
Fourteen neutrally buoyant SOFAR floats at a nominal depth of 1800 m were tracked acoustically for 3.7 yr in the vicinity of the western boundary and the equator of the Atlantic Ocean. The trajectories revealed a swift, narrow, southward-flowing deep western boundary current (DWBC) extending from 7N across the equator. Two floats crossed the equator in the DWBC and went to 10S. Two other floats left the DWBC and drifted eastward in the equatorial band (3S–3N). Three floats entered the DWBC from the equatorial current system and drifted southward. These results suggest that at times the DWBC flows directly southward across the equator with a mean velocity of 8–9 cm/s averaged over long distances (∼2800 km). At other times DWBC water is diverted eastward near the equator for long periods (2–3 yr), which can reduce the mean along-boundary velocity to 1–2 cm/s. This is much less than the instantaneous along-boundary velocities in the DWBC, which are often above 25 cm/s and occasionally exceed 50 cm/s. Mean eastward-flowing jets were observed near 2N and 2S bounding a mean westward jet centered on the equator (1S–1N). The southern jet at 2S coincides with a CFC-rich plume centered south of the equator. The CFC plume is inferred to have been advected by the southern jet across the Atlantic and into the Gulf of Guinea.  相似文献   

4.
From August 2002 to September 2004 a high-resolution mooring array was maintained across the western Arctic boundary current in the Beaufort Sea north of Alaska. The array consisted of profiling instrumentation, providing a timeseries of vertical sections of the current. Here we present the first-year velocity measurements, with emphasis on the Pacific water component of the current. The mean flow is characterized as a bottom-intensified jet of O (15 cm s−1) directed to the east, trapped to the shelfbreak near 100 m depth. Its width scale is only 10–15 km. Seasonally the flow has distinct configurations. During summer it becomes surface-intensified as it advects buoyant Alaskan Coastal water. In fall and winter the current often reverses (flows westward) under upwelling-favorable winds. Between the storms, as the eastward flow re-establishes, the current develops a deep extension to depths exceeding 700 m. In spring the bottom-trapped flow advects winter-transformed Pacific water emanating from the Chukchi Sea. The year-long mean volume transport of Pacific water is 0.13±0.08 Sv to the east, which is less than 20% of the long-term mean Bering Strait inflow. This implies that most of the Pacific water entering the Arctic goes elsewhere, contrary to expected dynamics and previous modeling results. Possible reasons for this are discussed. The mean Atlantic water transport (to 800 m depth) is 0.047±0.026 Sv, also smaller than anticipated.  相似文献   

5.
A reduced estimate of Agulhas Current transport provides the motivation to examine the sensitivity of Indian Ocean circulation and meridional heat transport to the strength of the western boundary current. The new transport estimate is 70 Sv, much smaller than the previous value of 85 Sv. Consideration of three case studies for a large, medium and small Agulhas Current transport demonstrate that the divergence of heat transport over the Indian Ocean north of 32°S has a sensitivity of 0.08 PW per 10 Sv of Agulhas transport, and freshwater convergence has a sensitivity of 0.03×109 kg s−1 per 10 Sv of transport. Moreover, a smaller Agulhas Current leads to a better silica balance and a smaller meridional overturning circulation for the Indian Ocean. The mean Agulhas Current transport estimated from time-series current meter measurements is used to constrain the geostrophic transport in the western boundary region in order to re-evaluate the circulation, heat and freshwater transports across 32°S. The Indonesian Throughflow is taken to be 12 Sv at an average temperature of 18°C. The constrained circulation exhibits a vertical–meridional circulation with a net northward flow below 2000 dbar of 10.1 Sv. The heat transport divergence is estimated to be 0.66 PW, the freshwater convergence to be 0.54×109 kg s−1, and the silica convergence to be 335 kmol s−1. Meridional transports are separated into barotropic, baroclinic and horizontal components, with each component conserving mass. The barotropic component is strongly dependent on the estimated size of the Indonesian Throughflow. Surprisingly, the baroclinic component depends principally on the large-scale density distribution and is nearly invariant to the size of the overturning circulation. The horizontal heat and freshwater flux components are strongly influenced by the size of the Agulhas Current because it is warmer and saltier than the mid-ocean. The horizontal fluxes of heat and salt penetrate down to 1500 m depth, suggesting that warm and salty Red Sea Water may be involved in converting the intermediate and upper deep waters which enter the Indian Ocean from the Southern Ocean into warmer and saltier waters before they exit in the Agulhas Current.  相似文献   

6.
We conducted full-depth hydrographic observations between 8°50′ and 44°30′N at 165°W in 2003 and analyzed the data together with those from the World Ocean Circulation Experiment and the World Ocean Database, clarifying the water characteristics and deep circulation in the Central and Northeast Pacific Basins. The deep-water characteristics at depths greater than approximately 2000 dbar at 165°W differ among three regions demarcated by the Hawaiian Ridge at around 24°N and the Mendocino Fracture Zone at 37°N: the southern region (10–24°N), central region (24–37°N), and northern region (north of 37°N). Deep water at temperatures below 1.15 °C and depths greater than 4000 dbar is highly stratified in the southern region, weakly stratified in the central region, and largely uniform in the northern region. Among the three regions, near-bottom water immediately east of Clarion Passage in the southern region is coldest (θ<0.90 °C), most saline (S>34.70), highest in dissolved oxygen (O2>4.2 ml l?1), and lowest in silica (Si<135 μmol kg?1). These characteristics of the deep water reflect transport of Lower Circumpolar Deep Water (LCDW) due to a branch current south of the Wake–Necker Ridge that is separated from the eastern branch current of the deep circulation immediately north of 10°N in the Central Pacific Basin. The branch current south of the Wake–Necker Ridge carries LCDW of θ<1.05 °C with a volume transport of 3.7 Sv (1 Sv=106 m3 s?1) into the Northeast Pacific Basin through Horizon and Clarion Passages, mainly through the latter (~3.1 Sv). A small amount of the LCDW flows northward at the western boundary of the Northeast Pacific Basin, joins the branch of deep circulation from the Main Gap of the Emperor Seamounts Chain, and forms an eastward current along the Mendocino Fracture Zone with volume transport of nearly 1 Sv. If this volume transport is typical, a major portion of the LCDW (~3 Sv) carried by the branch current south of the Wake–Necker and Hawaiian Ridges may spread in the southern part of the Northeast Pacific Basin. In the northern region at 165°W, silica maxima are found near the bottom and at 2200 dbar; the minimum between the double maxima occurs at a depth of approximately 4000 dbar (θ~1.15 °C). The geostrophic current north of 39°N in the upper deep layer between 1.15 and 2.2 °C, with reference to the 1.15 °C isotherm, has a westward volume transport of 1.6 Sv at 39–44°30′N, carrying silica-rich North Pacific Deep Water from the northeastern region of the Northeast Pacific Basin to the Northwest Pacific Basin.  相似文献   

7.
The North Atlantic Deep Western Boundary Current (DWBC) was surveyed at the Blake Outer Ridge over 14 days in July and August 1992 to determine its volume transport and to investigate its bottom boundary layer (BBL). This site was chosen because previous investigations showed the DWBC to be strong and bottom-intensified on the ridge’s flanks and to have a thick BBL. The primary instrument used was the Absolute Velocity Profiler, a free-falling velocity and conductivity–temperature–depth device. In two sections across the width of the DWBC, volume transports of 17±1 Sv and 18±1 Sv were measured for all water flowing equatorward below a potential temperature of 6°C (1 Sv=1×106 m3 s-1). Transport values were derived using both absolute velocities and AVP-referenced geostrophic velocities and were the same within experimental uncertainty. Good agreement was found between our results and historical ones when both were similarly bounded and referenced. Although this was a short-term survey, the mean of a 9-day time series of absolute velocity profiles was the same as the means of year-long current-meter records at three depths in the same location. A turbulent planetary BBL was found everywhere under the current. The thickness of the bottom mixed layer (BML), where concentrations of density, nutrients, and suspended sediments were vertically uniform, was asymmetrical across the current and up to 5 times thicker than the BBL. There was no velocity shear above the BBL within the thicker BMLs, and the across-slope density gradient was very small. The extra-thick BML is perhaps maintained by a combination of processes, including turbulence, downwelling Ekman transport, a weak up-slope return flow above the BBL, and buoyant convection from the BBL into the BML. The frictional bottom stress was mostly balanced by a down-stream change in the current’s external potential energy evidenced by a drop in the velocity core of the current.  相似文献   

8.
Deep circulation in the southwestern East/Japan Sea through the Ulleung Interplain Gap (UIG), a possible pathway for deep-water exchange, was directly measured for the first time. Five concurrent current meter moorings were positioned to effectively span the UIG between the islands of Ulleungdo to the west and Dokdo to the east. They provided a 495-day time series of deep currents below 1800 m depth spanning the full breadth of the East Sea Deep and Bottom Water flowing from the Japan Basin into the Ulleung Basin. The UIG circulation is found to be mainly a two-way flow with relatively weak southward flows directed into the Ulleung Basin over about two-thirds of the western UIG. A strong, persistent, and narrow compensating northward outflow occurs in the eastern UIG near Dokdo and is first referred to here as the Dokdo Abyssal Current. The width of the abyssal current is about 20 km below 1800 m depth. The low-frequency variability of the transports is dominated by fluctuations with a period of about 40 days for inflow and outflow transports. The 40-day fluctuations of both transports are statistically coherent, and occur almost concurrently. The overall mean transport of the deep water below 1800 m into the Ulleung Basin over the 16.5 months is about 0.005 Sv (1 Sv=106 m3 s?1), with an uncertainty of 0.025 Sv indicating net transport is negligible below 1800 m through the UIG.  相似文献   

9.
This study deals with the inflow of warm and saline Atlantic water to the Nordic Seas, an important factor for climate, ecology and biological production in Northern Europe. The investigations are carried out along the Svinøy standard hydrographic section, which cuts through the Atlantic inflow to the Norwegian Sea just to the north of the Faroe–Shetland Channel. In the Svinøy section, we consider the Atlantic inflow as water with salinity above 35.0, corresponding to temperatures above 5°C. Current measurements for the period April 1995 to February 1999, positioned on the continental slope in water depths between 490 and 990 m, are combined with VM-ADCP, SeaSoar-CTD and CTD transects to estimate long-term transports and spatial features of the Atlantic inflow. A well-defined two-branched Norwegian Atlantic Current was revealed with an eastern and a western branch. The eastern branch appears as a narrow, topographically trapped, near barotropic, 30–50 km wide current, with a maximum speed of 117 cm/s. The western branch is also about 30–50 km wide, and appears as an unstable frontal jet about 400 m deep with a maximum speed of 87 cm/s. Between these two prominent branches, the observations show an average eddy field with a recirculation to the southwest. Transport estimates from the current records in the eastern branch show an annual mean inflow of 4.2 Sv (1 Sv=106 m3/s) with variation on a 25 h time scale ranging from −2.2 to 11.8 Sv, and between 2.0 and 8.0 Sv on a monthly time scale. The current record in the core of the eastern branch mirrors the estimated transport on a monthly time scale with a correlation coefficient of 0.86. Except for the year 1995–1996, this nearly four-year current record shows evidence of a systematic annual cycle with summer to winter variations in the proportion of 1 to 2. Comparison between the North Atlantic Oscillation (NAO) index and the current record on a three-month time scale shows a strong connection for most of the period. This reflects the strong coupling between the westerly winds and the inflow. The baroclinic transport west of the eastern branch, including the frontal jet, is inferred from hydrography in combination with VM-ADCP transects, and has a total mean of 3.4 Sv. Thus, investigations to date indicate a yearly mean Atlantic inflow of 7.6 Sv in the Svinøy section.  相似文献   

10.
Hydrographic, geochemical, and direct velocity measurements along two zonal (7.5°N and 4.5°S) and two meridional (35°W and 4°W) lines occupied in January–March, 1993 in the Atlantic are combined in an inverse model to estimate the circulation. At 4.5°S, the Warm Water (potential temperature θ>4.5°C) originating from the South Atlantic enters the equatorial Atlantic, principally at the western boundary, in the thermocline-intensified North Brazil Undercurrent (33±2.7×106 m3 s−1 northward) and in the surface-intensified South Equatorial Current (8×106 m3 s−1 northward) located to the east of the North Brazil Undercurrent. The Ekman transport at 4.5°S is southward (10.7±1.5×106 m3 s−1). At 7.5°N, the Western Boundary Current (WBC) (17.9±2×106 m3 s−1) is weaker than at 4.5°S, and the northward flow of Warm Water in the WBC is complemented by the basin-wide Ekman flow (12.3±1.0×106 m3 s−1), the net contribution of the geostrophic interior flow of Warm Water being southward. The equatorial Ekman divergence drives a conversion of Thermocline Water (24.58⩽σ0<26.75) into Surface Water (σ0<24.58) of 7.5±0.5×106 m3 s−1, mostly occurring west of 35°W. The Deep Water of northern origin flows southward at 7.5°N in an energetic (48±3×106 m3 s−1) Deep Western Boundary Current (DWBC), whose transport is in part compensated by a northward recirculation (21±4.5×106 m3 s−1) in the Guiana Basin. At 4.5°S, the DWBC is much less energetic (27±7×106 m3 s−1 southward) than at 7.5°N. It is in part balanced by a deep northward recirculation east of which alternate circulation patterns suggest the existence of an anticyclonic gyre in the central Brazil Basin and a cyclonic gyre further east. The deep equatorial Atlantic is characterized by a convergence of Lower Deep Water (45.90⩽σ4<45.83), which creates an upward diapycnal transport of 11.0×106 m3 s−1 across σ4=45.83. The amplitude of this diapycnal transport is quite sensitive to the a priori hypotheses made in the inverse model. The amplitude of the meridional overturning cell is estimated to be 22×106 m3 s−1 at 7.5°N and 24×106 m3 s−1 at 4.5°S. Northward heat transports are in the range 1.26–1.50 PW at 7.5°N and 0.97–1.29 PW at 4.5°S with best estimates of 1.35 and 1.09 PW.  相似文献   

11.
A novel autonomous free-fall lander vehicle, with a capability down to 6000 m, was deployed off Cape Verde for studies on bioluminescence in the deep sea. The system was equipped with a high-sensitivity Intensified Silicon Intensified Target (ISIT) video camera, a programmable control-recording unit and an acoustic current meter with depth and temperature sensors. The ISIT lander was used in three modes: (1) free falling at 34 m min−1, with the camera looking downwards at a mesh screen, recording impacts of luminescent organisms to obtain a vertical profile down to the abyssal sea floor, sampling at >100 l s−1; (2) rotating, with the lander on the sea floor and the camera orienting to the bottom current using a servo-controlled turntable, impacts of luminescent organisms carried by the bottom current onto a mesh screen mounted 0.5 m in front of the camera were recorded to estimate abundance in the benthic boundary layer; (3) baited, with the camera focused on a bait placed on the sea floor.Profiles recorded abundance of luminescent organisms as 26.7 m−3 at 500–999 m depth, decreasing to 1.6 m−3 at 2000–2499 m and 0.5 m−3 between 2500 m and the sea floor at 4046 m, with no further detectable significant change with depth. Rotator measurements at a 0.5 m height above the sea floor gave a mean abundance of 0.47 m−3 in the benthic boundary layer at 4046 m and of 2.04 m−3 at 3200 m. Thirty five minutes after the bait was placed on the sea floor at 3200 m, bioluminescent fauna apparently arrived at the bait and produced luminescent displays at a rate of 2 min−1. Moving, flashing light sources were observed and luminescent material was released into the bottom current.  相似文献   

12.
Hydrographic station and current meter data are used to estimate circulation and transport in the eastern basin of the Bransfield Strait. The short distance between adjacent hydrographic stations (20 km) allows evaluation of structures at scales seldom addressed in previous studies. The main feature of the derived circulation is the Bransfield Front and its associated baroclinic jet (the Bransfield Current). This frontal current crosses the northern half of the basin in a generally SW–NE direction, has maximum geostrophic speeds of 22 cm s−l (at the jet entrance), and has geostrophic transport relative to 500 dbar estimated to be 1 Sv. Dynamically significant mesoscale features associated with the Bransfield Current are seen to be relevant down to 500 dbar. Specific aspects inferred from our analysis are the apparent high degree of stationarity of the described circulation, the shallow intrusions of Circumpolar Deep Water through the northern boundary of the domain (from the Drake Passage), and the northward sinking of Weddell Sea water over most of the domain.  相似文献   

13.
The mesoscale dynamics of the Scottish side of the Faroe–Shetland Channel have been investigated using synoptic in situ and remote sensing observations. A cold core cyclonic eddy, identified from an AVHRR image, had a diameter of about 50 km and surface current speeds of up to 50 cm s-1; it appeared to be attached to the 800 m isobath as it moved north-eastward along the edge of the channel at about 8 cm s-1. Speeds in the slope current were about 50 cm s-1 but increased to 70 cm s-1 where the current was compressed by the eddy. Offshore, over the 1000 m isobath in the cooler water, speeds in the current were slower (ca. 20 cm s-1). North-west of the Shetlands the offshore edge of the slope current was deflected across the channel for a distance of about 70 km from the shelf edge. The speed of drifters in the slope current increased to over 60 cm s-1 as they moved anti-cyclonically around this deflection. CTD profiles suggest that the movement of the surface waters was mirrored in the deep water of the channel. The deflection carried a very large quantity of North Atlantic Water into the central part of the channel; its cause and ultimate fate are not known, although it is likely to have had a significant impact on the dynamics of the channel.  相似文献   

14.
The circulation and transport of Antarctic Bottom Water (σ4<45.87) in the region of the Vema Channel are studied along three WOCE hydrographic lines, the geostrophic velocities referenced to previously published direct current measurements. The primary supply of water to the deep Vema Channel is from the Argentine Basin's deep western boundary current, with no indication of an inflow from the southeast. In the northern Argentine Basin, detachment of lower North Atlantic Deep Water from the continental slope is associated with a deep thermohaline front near 34°S. To the north of this front, the upper part of the AABW bound for the Vema Channel (σ4<46.01) exhibits a significant NADW influence. Further modification of the throughflow water occurs near 30°30′S, where the channel orientation changes by ∼50°. Southward flow of bottom water on the eastern flank of the Vema Channel, amounting to ∼1.5 Sv, represents a significant countercurrent to the deep channel transport. Inclusion of this countercurrent reduces the net flow of AABW through the Vema Channel from 3.2±0.7 to 1.7±1.1 Sv. Water properties imply that the near-zero net flow over the Santos Plateau results from a near-closed cyclonic circulation fed by the deep Vema Channel throughflow. A disruption of the northward boundary current in the upper AABW (lower circumpolar water) is required by this flow pattern. The extension of the cyclonic circulation on the Santos Plateau enters the Brazil Basin as a ∼1 Sv flow distinct from the outflow in the Vema Channel Extension (6.2 Sv). The high magnitude of the latter suggests a southward recirculation of bottom water near the western boundary to the north of the region of study.  相似文献   

15.
Sulfate reduction rate measurements by the 35SO42− core injection method were carried out in situ with a benthic lander, LUISE, and in parallel by shipboard incubations in sediments of the Black Sea. Eight stations were studied along a transect from the Romanian shelf to the deep western anoxic basin. The highest rates measured on an areal basis for the upper 0–15 cm were 1.97 mmol m−2 d−1 on the shelf and 1.54 mmol m−2 d−1 at 181 m water depth just below the chemocline. At all stations sulfate reduction rates decreased to values <3 nmol cm−3 d−1 below 15 cm depth in the sediment. The importance of sulfate reduction relative to the total mineralization of organic matter was very low, 6%, on the inner shelf, which was paved with mussels, and increased to 47% on the outer shelf at 100 m depth. Where the oxic–anoxic interface of the water column impinged on the sea floor at around 150 m depth, the contribution of sulfate reduction increased from >50% just above the chemocline to 100% just below. In the deep sea, mean sulfate reduction rates were 0.6 mmol m−2 d−1 corresponding to an organic carbon oxidation of 1.3 mmol m−2 d−1. This is close to the mean sedimentation rate of organic carbon over the year in the western basin. A comparison with published data on sulfate reduction in Black Sea sediments showed that the present results tend to be higher in shelf sediments and lower in the deep-sea than most other data. Based on the present water column H2S inventory and the H2S flux out of the sediment, the calculated turnover time of H2S below the chemocline is 2100 years.  相似文献   

16.
A ship-mounted 153 kHz narrow-band ADCP and 1 m2 MOCNESS were deployed between 16 and 24 Sept. 1997 in the Ligurian central zone (∼43°20′N 7°48′E). Results from both instruments showed that the zooplankton community performed vertical migrations that conformed to the classical pattern of ascent at dusk (∼18:30 h) and descent at dawn (∼06:30 h). Depth-discrete net samples between 0 and 500 m showed that the community was dominated by two species, the euphausiid Meganyctiphanes norvegica (Northern krill) and the pteropod Cavolinia inflexa, which migrated in separate discrete bands that were detectable by the ADCP. Information from the ADCP was used to estimate vertical migration speed in two ways: (i) from the trajectory of the back-scattering bands over time and (ii) from the Doppler-shift vertical velocity measured within depth zones at the corresponding time and depth of these bands. Estimates of the migration speed of C. inflexa were between 2 and 7 cm s−1 upwards and between 4 and 7 cm s−1 downwards. M. norvegica was estimated to migrate at speeds between 7 and 8 cm s−1 upwards and over 11 cm s−1 downwards. The consistently lower migration speeds estimated from Doppler measurements as compared with estimates obtained from measuring trajectories of back-scattering bands over time was believed to result from a methodological artefact. The Doppler measurements were nevertheless useful in a relative sense in revealing the relative speed of individuals within swarms. It was shown that individuals at the front of the upwardly migrating band of M. norvegica moved more slowly than those at the rear. These results illustrate the extra biological information that can be obtained by ADCPs compared with conventional echo-sounders.  相似文献   

17.
《Marine Geology》2001,172(3-4):287-307
Submarine volcaniclastic deposits, both modern and ancient, pose a conundrum in distinguishing between syn- and post-eruptive processes. High-standing, submarine volcanic edifices of the late Quaternary southern Kermadec arc (SW Pacific) are point sources of pyroclastic/hyaloclastic deposits that are bathed and modified by a complex current system of the South Pacific gyre flowing southeast along the northern margin of New Zealand, which in part comprises the anticyclonic flow of the warm-cored East Cape Eddy (ECE). Flow of the ECE across the southern Kermadec arc provides a present-day case of extensive and in situ, post-eruptive, textural modification of modern pyroclastic/hyaloclastic deposits on the crests and upper flanks of submarine stratovolcanoes. Photographic observations (and limited textural data) from seven Kermadec volcanoes reveal pervasive evidence of sediment winnowing (including crag and tail structures, scour and moating around volcanic blocks, coarse sand-granule lag deposits, epifaunal deflection, lineated mud streaking, and moulded bioturbation mounds) and asymmetric current-ripple bedforms at water-depths of at least 1500 m. All bedforms indicate increasing current speed at progressively higher elevations (decreasing water-depth) for each volcano. Current-ripples mostly have discontinuous, asymmetric, shorted-crested, linguoid–lunate forms below 1000 m water-depth, progressing to semi-continuous, asymmetric, shorted-crested, linear-sinuous forms above 500 m. Current elutriation of the Kermadec deposits progressively removes fines with decreasing water-depth resulting in relatively fines-depleted, volcaniclastic sands and granules. This post-eruptive process overprints syn-eruptive processes that notionally generate more comminuted fine-grained clasts with decreasing water-depth as phreatomagmatic explosive eruptions become more vigorous. Current-elutriation also modifies volcaniclastic detritus prior to subsequent removal by episodic, mass-gravity flow. In addition the sand-granule traction load, driven by current-flow, moves sediment nearly continuously to gully and rill heads for removal down-slope, independently of syn-eruptive sediment flux. The underlying observation is that volcaniclastic deposits rarely reflect just syn-eruptive processes, and that significant in situ current-elutriation of at the least surficial pyroclastic/hyaloclastic eruption products can occur on submarine volcanoes.Threshold current velocities, derived assuming unidirectional flow over cohesionless sand-lapilli grainsizes, and accounting for bed friction, yield current velocities (at 100 cm above the bed) of ≤15 cm s−1 for water-depths >1500 m through to ∼70 cm s−1 for depths <500 m at the crests of Rumble III and V volcanoes. Estimated velocities are consistent with short-term current velocities of 30–40 cm s−1, measured directly from either acoustic doppler current profile data or relative geostrophic flow, since the latter do not account for seafloor topographic intensification. The variable hydrographic climatology of the ECE, known from sea-surface dynamic heights and repeat CTD surveys, is possibly recorded by seafloor substrates as evinced by worm-trails post-dating ripple formation and differing orientations of winnowed structures and ripples.  相似文献   

18.
The deep-circulation current in the North Pacific carries lower circumpolar deep water (LCDW), which is characterized by high dissolved oxygen and low echo intensity of reflected sound pulses. Using the characteristics of LCDW, we examined a branch current of the deep circulation passing through the Main Gap of the Emperor Seamounts Chain (ESC) by analyzing conductivity temperature depth profiler (CTD) data and data of velocity and echo intensity from a lowered acoustic Doppler current profiler (LADCP), which were obtained along 170°E immediately west of the ESC, along 180°W and 175°W over the northern slope of the Hess Rise, and along 165°W. The velocity and water characteristics showed that the eastern branch current of the deep circulation, which has penetrated into the Northwest Pacific Basin (NWPB) through Wake Island Passage, bifurcates around 30°N, 170°E in the NWPB into the westward main stream and a northward branch current, and that the latter current proceeds along the western side of the ESC and passes through the Main Gap of the ESC, flowing eastward. The current in the Main Gap at 170°E flows southeastward with eastward velocity cores around 4000 dbar and at depths greater than 4800 dbar centered at 5400 dbar. The current in the deeper core is stronger and reaches a maximum velocity of approximately 10 cm s?1. The eastward current in the Main Gap enters the Northeast Pacific Basin (NEPB) and flows eastward along the northern slope of the Hess Rise. As the current flows downstream, the characteristics of LCDW carried by the current are diluted gradually. To the east of the Hess Rise, the branch current joins another branch current of the deep circulation from the south carrying less-modified LCDW. As a result, LCDW carried from the Main Gap is renewed by mixing with the less-modified LCDW coming from the south. Carrying the mixed LCDW, the confluence flows eastward south of 37°N at 165°W toward the northeastern region of the NEPB, where the LCDW overturns and changes to North Pacific Deep Water (NPDW). NPDW is probably carried by the westward current in the upper deep layer north of 37°N at 165°W.  相似文献   

19.
Three sites offshore of the Saudi Arabia coast in the northern Red Sea were surveyed in November 2012 to search for deep-water coral (DWC) grounds using a Remotely Operated Vehicle. A total of 156 colonies were positively identified between 400 and 760 m, and were represented by seven species belonging to Scleractinia (3), Alcyonacea (3) and Antipatharia (1). The scleractinians Dasmosmilia valida Marenzeller, 1907, Eguchipsammia fistula (Alcock, 1902) and Rhizotrochus typus Milne-Edwards and Haime, 1848 were identified to species level, while the octocorals Acanthogorgia sp., Chironephthya sp., Pseudopterogorgia sp., and the antipatharian Stichopathes sp., were identified to genus level. Overall, the highest abundance of DWC was observed at Site A1, the closest to the coast. The most abundant species in the study area was D. valida, which lives attached to rocky substrates and represented 42% of the total coral population at site A1. Water column attributes at this depth were quite homogenous with temperature ca. 21.6 °C, salinity ca. 40.56, dissolved oxygen ca. 1.75 ml L−1 and current velocity from 0.6 to 34.5 cm s−1 with a mean value of 9.5 cm s−1. Interestingly, these DWC can cope with high temperature and salinity, compared to those in other regions.  相似文献   

20.
The goal of this study was to explore how net community production (NCP) is influenced by the relationship between primary production and community respiration in the western Arctic Ocean. Plankton NCP and respiration were determined by measuring changes in oxygen in light and dark bottle incubations, respectively. Rates of NCP averaged over shelf, slope and basin waters were positive in summer 2002 (57±191 mmol O2 m−2 d−1) and spring 2004 (85±86 mmol O2 m−2 d−1) and negative in summer 2004 (−25±176 mmol O2 m−2 d−1). Determinations of NCP obtained from bottle incubations were similar to rates inferred from in situ changes in dissolved inorganic carbon. An examination of the spatial variability of primary production and community respiration indicated that respiration is distributed more uniformly than primary production. A spatial offset between photosynthesis and respiration from the shelf to the Arctic basin was present in spring 2004, but was not seen at other times. NCP and the potential for export appear to be dependent on an uncoupling of primary production and community respiration. NCP continued into the summer after the stock of NO3 had been depleted. Our data suggest that the uniform distribution of respiration relative to primary production is an important factor influencing NCP and the potential for export in the western Arctic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号