首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GLOBAL CLIMATE CHANGE ADAPTATION: EXAMPLES FROM RUSSIAN BOREAL FORESTS   总被引:2,自引:0,他引:2  
The Russian Federation contains approximately 20% of the world's timber resources and more than half of all boreal forests. These forests play a prominent role in environmental protection and economic development at global, national, and local levels, as well as, provide commodities for indigenous people and habitat for a variety of plant and animal species. The response and feedbacks of Russian boreal forests to projected global climate change are expected to be profound. Large shifts in the distribution (up to 19% area reduction) and productivity of boreal forests are implied by scenarios of General Circulation Models (GCMs). Uncertainty regarding the potential distribution and productivity of future boreal forests complicates the development of adaptation strategies for forest establishment, management, harvesting and wood processing. Although a low potential exists for rapid natural adaptation of long-lived, complex boreal forests, recent analyses suggest Russian forest management and utilization strategies should be field tested to assess their potential to assist boreal forests in adaptation to a changing global environment. Current understanding of the vulnerability of Russian forest resources to projected climate change is discussed and examples of possible adaptation measures for Russian forests are presented, including: (1) artificial forestation techniques that can be applied with the advent of failed natural regeneration and to facilitate forest migration northward; (2) silvicultural measures that can influence the species mix to maintain productivity under future climates; (3) identifying forests at risk and developing special management adaptation measures for them; (4) alternative processing and uses of wood and non-wood products from future forests; and (5) potential future infrastructure and transport systems that can be employed as boreal forests shift northward into melting permafrost zones. Current infrastructure and technology can be employed to help Russian boreal forests adapt to projected global environmental change, however many current forest management practices may have to be modified. Application of this technical knowledge can help policymakers identify priorities for climate change adaptation.  相似文献   

2.
Deforestation has contributed significantly to net greenhouse gas emissions, but slowing deforestation, regrowing forests and other ecosystem processes have made forests a net sink. Deforestation will still influence future carbon fluxes, but the role of forest growth through aging, management, and other silvicultural inputs on future carbon fluxes are critically important but not always recognized by bookkeeping and integrated assessment models. When projecting the future, it is vital to capture how management processes affect carbon storage in ecosystems and wood products. This study uses multiple global forest sector models to project forest carbon impacts across 81 shared socioeconomic (SSP) and climate mitigation pathway scenarios. We illustrate the importance of modeling management decisions in existing forests in response to changing demands for land resources, wood products and carbon. Although the models vary in key attributes, there is general agreement across a majority of scenarios that the global forest sector could remain a carbon sink in the future, sequestering 1.2–5.8 GtCO2e/yr over the next century. Carbon fluxes in the baseline scenarios that exclude climate mitigation policy ranged from −0.8 to 4.9 GtCO2e/yr, highlighting the strong influence of SSPs on forest sector model estimates. Improved forest management can jointly increase carbon stocks and harvests without expanding forest area, suggesting that carbon fluxes from managed forests systems deserve more careful consideration by the climate policy community.  相似文献   

3.
A carbon sequestration strategy has recently been proposed in which a forest is actively managed, and a fraction of the wood is selectively harvested and stored to prevent decomposition. The forest serves as a ‘carbon scrubber’ or ‘carbon remover’ that provides continuous sequestration (negative emissions). Earlier estimates of the theoretical potential of wood harvest and storage (WHS) based on coarse wood production rates were 10?±?5 GtC y?1. Starting from this physical limit, here we apply a number of practical constraints: (1) land not available due to agriculture; (2) forest set aside as protected areas, assuming 50 % in the tropics and 20 % in temperate and boreal forests; (3) forests difficult to access due to steep terrain; (4) wood use for other purposes such as timber and paper. This ‘top-down’ approach yields a WHS potential 2.8 GtC y?1. Alternatively, a ‘bottom-up’ approach, assuming more efficient wood use without increasing harvest, finds 0.1–0.5 GtC y?1 available for carbon sequestration. We suggest a range of 1–3 GtC y?1 carbon sequestration potential if major effort is made to expand managed forests and/or to increase harvest intensity. The implementation of such a scheme at our estimated lower value of 1 GtC y?1 would imply a doubling of the current world wood harvest rate. This can be achieved by harvesting wood at a moderate harvesting intensity of 1.2 tC ha?1 y?1, over a forest area of 8 Mkm2 (800 Mha). To achieve the higher value of 3 GtC y?1, forests need to be managed this way on half of the world’s forested land, or on a smaller area but with higher harvest intensity. We recommend WHS be considered part of the portfolio of climate mitigation and adaptation options that needs further research.  相似文献   

4.
Effective policies for dealing with anticipated climatic changes must reflect the two-way interactions between climate, forests and society. Considerable analysis has focused on one aspect of forests - timber production - at a local and regional scale, but no fully integrated global studies have been conducted. The appropriate ecological and economic models appear to be available to do so. Nontimber aspects of forests dominate the social values provided by many forests, especially remote or unmanaged lands where the impacts of climatic change are apt to be most significant. Policy questions related to these issues and lands are much less well understood. Policy options related to afforestation are well studied, but other ways the forest sector can help ameliorate climatic change merit more extensive analysis. Promising possibilities include carbon taxes to influence the management of extant forests, and materials policies to lengthen the life of wood products or to encourage the substitution of CO2-fixing wood products for ones manufactured from less benign materials.  相似文献   

5.
Throughout history, humans have transformed natural forests into agricultural land, settlement areas and managed forests. Studies on the dynamics of forest change are one of the mainstays in land change science. The forest transition theory offers a powerful tool to analyze changes in human interference with forests. At the national level, a range of factors have been found to influence a country's forest change. The role of international wood product trade has, however, rarely been studied based on empirical data. We offer a global assessment of how this trade helps shape observed forest change, by relating forest stock change to net trade of wood products for the period 1997-2007 and by localizing the origin of wood consumed in a given nation. For many nations, traded wood products have a relevant impact on the course of ongoing forest transitions. We develop a general typology of how wood product trade can influence forest change and place various nations within this framework. We find that many wealthy nations with returning forests seem to accelerate this return by importing wood products. These imports appear to be provided by two main types of wood exporters: (a) by wealthy countries with low population densities and stable forests and (b) by relatively poor countries with declining forests, employing increasing population and welfare levels. We discuss these findings in the light of general theories on land use transitions and forest change and conclude by highlighting implications for national forest policies and global environmental governance, aiming at reducing negative impacts of wood products and enhancing the positive role they can play in replacing more fossil fuel intensive products.  相似文献   

6.
The conversion of tropical forests to croplands and grasslands is a major threat to global biodiversity, climate and local livelihoods and ecosystems. The enforcement of protected areas as well as the clarification and strengthening of collective and individual land property rights are key instruments to curb deforestation in the tropics. However, these instruments are territorial and can displace forest loss elsewhere. We investigate the effects of protected areas and various land tenure regimes on deforestation and possible spillover effects in Bolivia, a global tropical deforestation hotspot. We use a spatial Durbin model to assess and compare the direct and indirect effects of protected areas and different land tenure forms on forest loss in Bolivia from 2010 to 2017. We find that protected areas have a strong direct effect on reducing deforestation. Protected areas – which in Bolivia are all based on co-management schemes - also protect forests in adjacent areas, showing an indirect protective spillover effect. Indigenous lands however only have direct forest protection effects. Non-indigenous collective lands and small private lands, which are associated to Andean settlers, as well as non-titled lands, show a strong positive direct effect on deforestation. At the same time, there is some evidence that non-indigenous collective lands also encourage deforestation in adjacent areas, indicating the existence of spillovers. Interestingly, areas with high poverty rate tend to be less affected by deforestation whatever tenure form. Our study stresses the need to assess more systematically the direct and indirect effects of land tenure and of territorial governance instruments on land use changes.  相似文献   

7.
A carbon budget model was developed to examine the effects of forest management practices on carbon storage in U.S. private timberlands. The model explicitly incorporates the demand for wood products and its impact on harvesting and other management decisions. Forest carbon is divided into four components: carbon stored in trees, soils, forest litter, and understory vegetation. Changes in the forest carbon inventory result from tree growth and management activities, in particular harvesting. Harvesting of timber for wood products is determined by demand and supply forces. The model then tracks carbon in timber removals through primary and secondary processing and disposal stages. Harvesting also has effects on carbon in soils, forest litter, and understory vegetation. A base-run scenario projects increases in carbon storage in U.S. private timberlands by 2040; however, this increase is offset by carbon emissions resulting from harvesting.  相似文献   

8.
We studied forest land-use and carbon storage over a 40-year period in the Middle Zavolgie region of Russia, an area of approximately 287,000 km2. Data were obtained from state forest inventories for 1958 and 1995. In spite of the effects of disturbances and uncontrolled harvesting between 1958 and 1990, the forests of the Middle Zavolgie Region remained a considerable pool of ecosystem carbon (C). Over the study period the total area of forest lands decreased by approximately 2%, while the growing stock increased by 8%. There were significant changes in the age class structure of these forest ecosystems toward a larger proportion of young and middle aged stands. The total amount of carbon in the stem biomass of forests in all regions of Middle Zavolgie increased over the 40-year period and was equal to about 307 TgC in 1995. A regional approach for estimating the C dynamics of forest ecosystems in response to land use in the Middle Zavolgie region can contribute to understanding the potential role of Russian forests in C sequestration. This information is important for implementation of international conventions concerning national carbon budgets and reducing the potential negative impacts of climate change.  相似文献   

9.
Forest management is an important carbon mitigation strategy for developing countries. As demonstrated by the case of Mexico, community forest management is especially effective because it offers tangible local benefits while conserving forests and sequestering carbon. Community forestry receives minimal government support now, but the clean development mechanism (CDM) of the Kyoto Protocol could leverage additional resources to promote the approach in Mexico and elsewhere. We argue that adequately designed and implemented, community forestry management projects can avoid deforestation and restore forest cover and forest density. They comprise promising options for providing both carbon mitigation and sustainable rural development. These kinds of projects should be included in the CDM.  相似文献   

10.
The Russian boreal forest contains about 25% of the global terrestrial biomass, and even a higher percentage of the carbon stored in litter and soils. Fire burns large areas annually, much of it in low-severity surface fires – but data on fire area and impacts or extent of varying fire severity are poor. Changes in land use, cover, and disturbance patterns such as those predicted by global climate change models, have the potential to greatly alter current fire regimes in boreal forests and to significantly impact global carbon budgets. The extent and global importance of fires in the boreal zone have often been greatly underestimated. For the 1998 fire season we estimate from remote sensing data that about 13.3 million ha burned in Siberia. This is about 5 times higher than estimates from the Russian Aerial Forest Protection Service (Avialesookhrana) for the same period. We estimate that fires in the Russian boreal forest in 1998 constituted some 14–20% of average annual global carbon emissions from forest fires. Average annual emissions from boreal zone forests may be equivalent to 23–39% of regional fossil fuel emissions in Canada and Russia, respectively. But the lack of accurate data and models introduces large potential errors into these estimates. Improved monitoring and understanding of the landscape extent and severity of fires and effects of fire on carbon storage, air chemistry, vegetation dynamics and structure, and forest health and productivity are essential to provide inputs into global and regional models of carbon cycling and atmospheric chemistry.  相似文献   

11.
Tropical forests are responsible for a large proportion of the global terrestrial C flux annually for natural ecosystems. Increased atmospheric CO2 and changes in climate are likely to affect the distribution of C pools in the tropics and the rate of cycling through vegetation and soils. In this paper, I review the literature on the pools and fluxes of carbon in tropical forests, and the relationship of these to nutrient cycling and climate. Tropical moist and humid forests have the highest rates of annual net primary productivity and the greatest carbon flux from soil respiration globally. Tropical dry forests have lower rates of carbon circulation, but may have greater soil organic carbon storage, especially at depths below 1 meter. Data from tropical elevation gradients were used to examine the sensitivity of biogeochemical cycling to incremental changes in temperature and rainfall. These data show significant positive correlations of litterfall N concentrations with temperature and decomposition rates. Increased atmospheric CO2 and changes in climate are expected to alter carbon and nutrient allocation patterns and storage in tropical forest. Modeling and experimental studies suggest that even a small increase in temperature and CO2 concentrations results in more rapid decomposition rates, and a large initial CO2 efflux from moist tropical soils. Soil P limitation or reductions in C:N and C:P ratios of litterfall could eventually limit the size of this flux. Increased frequency of fires in dry forest and hurricanes in moist and humid forests are expected to reduce the ecosystem carbon storage capacity over longer time periods.  相似文献   

12.
This paper examines the potential role of forest set-asides in global carbon sequestration policy. While set asides that protect forests from timber harvests and land-use conversion may alleviate concerns with permanence, and they may provide large ancillary environmental benefits, they may also lead to large leakage. This paper uses a global land use and forestry model to examine the efficiency of three crediting schemes for set-asides. The results show that if set-asides are integrated into a global forestry carbon sequestration program that includes a wide range of other management options, then 300 million hectares of land would be set-aside, and up to 128 Pg C could be sequestered in global forests by 2105. Under alternative policies that focus exclusively on set-asides, more forestland can be set-asides, up to 3.2 billion hectare, but these policies invite large leakage in the near-term, and in the long-run, they less net carbon is removed from the atmosphere. Specifically, leakage is estimated to be 47–52%, depending on the policy, and by the end of the century, up to 17% less carbon will be sequestered in all forests.  相似文献   

13.
The adaptability of forests in the U.S. midwest to a changing climate is assessed. The forests of Missouri are simulated with a forest-gap model, a stochastic model of the annual growth and mortality of trees within mixed-species forest plots. The development of representative forest plots under an analog climate like that of the 1930s is compared to development under baseline climate conditions. With no management response, average forest biomass in the region declines by 11% within ten years, primarily due to moisture-stress induced mortality. Longer term declines in forest productivity on the order of 30% are simulated. A variety of possible management responses through planting or harvesting practices were evaluated. None of these adaptations appear to be practical, although the salvage harvest of stressed trees would offset the economifc losses associated with the early mortality. An investigation of anticipated trends in the broader forest products sector suggests that opportunities for further adaptation to offset the decline in primary productivity of this region's forest are quite limited. However, a shift to wood powered electrical generation in the region might justify a level of management that would allow some adaptation to the analog climate change.Acknowledgments: Support from the U.S. Department of Energy through the Pacific Northwest Laboratory is gratefully acknowledged. We thank Alan Solomon for providing the FORENA forest simulation model.  相似文献   

14.
The dynamics of terrestrial ecosystems depends on interactions between carbon, nutrient and hydrological cycles. Terrestrial ecosystems retain carbon in live biomass (aboveground and belowground), decomposing organic matter, and soil. Carbon is exchanged naturally between these systems and the atmosphere through photosynthesis, respiration, decomposition, and combustion. Human activities change carbon stock in these pools and exchanges between them and the atmosphere through land-use, land-use change, and forestry.In the present study we estimated the wood (stem) biomass, growing stock (GS) and carbon stock of Indian forests for 1984 and 1994. The forest area, wood biomass, GS, and carbon stock were 63.86 Mha, 4327.99 Mm3, 2398.19 Mt and 1085.06 Mt respectively in 1984 and with the reduction in forest area, 63.34 Mha, in 1994, wood biomass (2395.12 Mt) and carbon stock (1083.69 Mt) also reduced subsequently. The Conifers, of temperate region, stocked maximum carbon in their woods, 28.88 to 65.21 t C ha−1, followed by Mangrove forests, 28.24 t C ha−1, Dipterocarp forests, 28.00 t C ha−1, and Shorea robusta forests, 24.07 t C ha−1. Boswellia serrata, with 0.22 Mha forest area, stocked only 3.91 t C ha−1. To have an idea of rate of carbon loss the negative changes (loss of forest area) in forest area occurred during 1984–1994 (10yrs) and 1991–1994 (4yrs) were also estimated. In India, land-use changes and fuelwood requirements are the main cause of negative change. Total 24.75 Mt C was lost during 1984–1994 and 21.35 Mt C during 1991–94 at a rate of 2.48 Mt C yr−1 and 5.35 Mt C yr−1 respectively. While in other parts of India negative change is due to multiple reasons like fuelwood, extraction of non-wood forest products (NWFPs), illicit felling etc., but in the northeastern region of the country shifting cultivation is the only reason for deforestation. Decrease in forest area due to shifting cultivation accounts for 23.0% of the total deforestation in India, with an annual loss of 0.93 Mt C yr−1.  相似文献   

15.
Over the last decades there have been a considerable number of deforestation studies in Latin America reporting lower rates compared with other regions; although these studies are either regional or local and do not allow the comparison of the intraregional variability present among countries or forest types. Here, we present the results obtained from a systematic review of 369 articles (published from 1990 to 2014) about deforestation rates for 17 countries and forest types (tropical lowland, tropical montane, tropical and subtropical dry, subtropical temperate and mixed, and Atlantic forests). Drivers identified as direct or indirect causes of deforestation in the literature were also analysed. With an overall annual deforestation rate of −1.14 (±0.092 SE) in the region, we compared the rates per forest type and country. The results indicate that there is a high variability of forest loss rates among countries and forest types. In general, Chile and Argentina presented the highest deforestation rates (−3.28 and −2.31 yearly average, respectively), followed by Ecuador and Paraguay (−2.19 and −1.89 yearly average, respectively). Atlantic forests (−1.62) and tropical montane forests (−1.55) presented the highest deforestation rates for the region. In particular, tropical lowland forests in Ecuador (−2.42) and tropical dry forests in Mexico (−2.88) and Argentina (−2.20) were the most affected. In most countries, the access to markets and agricultural and forest activities are the main causes of deforestation; however, the causes vary according to the forest types. Deforestation measurements focused at different scales and on different forest types will help governments to improve their reports for international initiatives, such as reducing emissions from deforestation and forest degradation (REDD+) but, more importantly, for developing local policies for the sustainable management of forests and for reducing the deforestation in Latin America.  相似文献   

16.
The purpose of this study was to evaluate the global energy production potential of woody biomass from forestry for the year 2050 using a bottom-up analysis of key factors. Woody biomass from forestry was defined as all of the aboveground woody biomass of trees, including all products made from woody biomass. This includes the harvesting, processing and use of woody biomass. The projection was performed by comparing the future demand with the future supply of wood, based on existing databases, scenarios, and outlook studies. Specific attention was paid to the impact of the underlying factors that determine this potential and to the gaps and uncertainties in our current knowledge. Key variables included the demand for industrial roundwood and woodfuel, the plantation establishment rates, and the various theoretical, technical, economical, and ecological limitations related to the supply of wood from forests. Forests, as defined in this study, exclude forest plantations. Key uncertainties were the supply of wood from trees outside forests, the future rates of deforestation, the consumption of woodfuel, and the theoretical, technical, economical, or ecological wood production potentials of the forests. Based on a medium demand and medium plantation scenario, the global theoretical potential of the surplus wood supply (i.e., after the demand for woodfuel and industrial roundwood is met) in 2050 was calculated to be 6.1 Gm3 (71 EJ) and the technical potential to be 5.5 Gm3 (64 EJ). In practice, economical considerations further reduced the surplus wood supply from forests to 1.3 Gm3 year−1 (15 EJ year−1). When ecological criteria were also included, the demand for woodfuel and industrial roundwood exceeded the supply by 0.7 Gm3 year−1 (8 EJ year−1). The bioenergy potential from logging and processing residues and waste was estimated to be equivalent to 2.4 Gm3 year−1 (28 EJ year−1) wood, based on a medium demand scenario. These results indicate that forests can, in theory, become a major source of bioenergy, and that the use of this bioenergy can, in theory, be realized without endangering the supply of industrial roundwood and woodfuel and without further deforestation. Regional shortages in the supply of industrial roundwood and woodfuel can, however, occur in some regions, e.g., South Asia and the Middle East and North Africa.  相似文献   

17.
This paper presents carbon flux estimates arising from the effect of increasing demand on harvests and management of industrial forests in a global timber market. Results are presented for specific regions and the globe. Harvests and management of forests are predicted to store an additional 184 Tg (1 Tg = 1012 grams) of carbon per year in forests and wood products over the next 50 years, with a range of 108 to 251 Tg per year. Although harvests in natural boreal and tropical forest regions will cause carbon releases, new plantation establishment in subtropical emerging regions more than offsets these losses. Unlike many existing studies, these results suggest that harvests and management of North American forests will lead to carbon emissions from that region over the next 50 years. The results are quantitatively sensitive to the assumed growth in demand although the results are qualitatively similar in the sensitivity analysis.  相似文献   

18.
Harvesting in boreal forests and the biofuel carbon debt   总被引:2,自引:0,他引:2  
Owing to the extensive critique of food-crop-based biofuels, attention has turned toward second-generation wood-based biofuels. A question is therefore whether timber taken from the vast boreal forests on an increasing scale should serve as a source of wood-based biofuels and whether this will be effective climate policy. In a typical boreal forest, it takes 70–120 years before a stand of trees is mature. When this time lag and the dynamics of boreal forests more generally are taken into account, it follows that a high level of harvest means that the carbon stock in the forest stabilizes at a lower level. Therefore, wood harvesting is not a carbon-neutral activity. Through model simulations, it is estimated that an increased harvest of a boreal forest will create a biofuel carbon debt that takes 190–340 years to repay. The length of the payback time is sensitive to the type of fossil fuels that wood energy replaces  相似文献   

19.
The future forests of eastern North America will be shaped by at least three broad drivers: (i) vegetation change and natural disturbance patterns associated with the protracted recovery following colonial era land use, (ii) a changing climate, and (iii) a land-use regime that consists of geographically variable rates and intensities of forest harvesting, clearing for development, and land protection. We evaluated the aggregate and relative importance of these factors for the future forests of New England, USA by simulating a continuation of the recent trends in these drivers for fifty-years, nominally spanning 2010 to 2060. The models explicitly incorporate the modern distribution of tree species and the geographical variation in climate and land-use change. Using a cellular land-cover change model in combination with a physiologically-based forest landscape model, we conducted a factorial simulation experiment to assess changes in aboveground carbon (AGC) and forest composition. In the control scenario that simulates a hypothetical absence of any future land use or future climate change, the simulated landscape experienced large increases in average AGC—an increase of 53% from 2010 to 2060 (from 4.2 to 6.3 kg m−2). By 2060, climate change increased AGC stores by 8% relative to the control while the land-use regime reduced AGC by 16%. Among land uses, timber harvesting had a larger effect on AGC storage and changes in tree composition than did forest conversion to non-forest uses, with the most pronounced impacts observed on private corporate-owned land in northern New England. Our results demonstrate a large difference between the landscape’s potential to store carbon and the landscape’s current trajectory, assuming a continuation of the modern land-use regime. They also reveal aspects of the land-use regime that will have a disproportionate impact on the ability of the landscape to store carbon in the future, such as harvest regimes on corporate-owned lands. This information will help policy-makers and land managers evaluate trade-offs between commodity production and mitigating climate change through forest carbon storage.  相似文献   

20.
The paper quantifies the role of Indian forests as source or sink of carbon. The model used in the study takes into account the growing stock, additional tree organs, dead biomass, litter layer and soil organic matter, harvesting and harvesting losses, effects of pests, fire etc., allocation of timber to wood products, life span of products including recycling and allocation to landfills. The net carbon balance calculated as the net source or sink of the forest sector was assessed for the year 1993–94. The study isimportant in view of the obligation placed by the United Nations Framework Convention on Climate Change (UNFCCC) on the signatory nations to provide a periodic update of carbon budget in the atmosphere. For the available data and the underlying assumptions, the results of the carbon budget model indicated that the Indian forest sector acted as a source of 12.8 TgC (including accumulation of carbon in the dead biomass) for the year 1994. The results obtained reinforced the notion that an integrated approach is required in order to evaluate the forest sector's influence on the global atmospheric carbon levels. The model used in this study has the advantage that all the factors determining the carbon budget can be integrated and altered to determine their influence. The study also throws light on the issues that stand in the way of preparing through carbon budget for developing countries like India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号