首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the inspiral of double black holes, with masses in the Laser Interferometer Space Antenna ( LISA ) window of detectability, orbiting inside a massive circumnuclear, rotationally supported gaseous disc. Using high-resolution smoothed particle hydrodynamics simulations, we follow the black hole dynamics in the early phase when gas-dynamical friction acts on the black holes individually, and continue our simulation until they form a close binary. We find that in the early sinking the black holes lose memory of their initial orbital eccentricity if they corotate with the gaseous disc. As a consequence, the massive black holes bind forming a binary with a low eccentricity, consistent with zero within our numerical resolution limit. The cause of circularization resides in the rotation present in the gaseous background where dynamical friction operates. Circularization may hinder gravitational waves from taking over and leading the binary to coalescence. In the case of counter-rotating orbits, the initial eccentricity (if present) does not decrease, and the black holes may bind forming an eccentric binary. When dynamical friction has subsided, for equal mass black holes and regardless their initial eccentricity, angular momentum loss, driven by the gravitational torque exerted on the binary by surrounding gas, is nevertheless observable down to the smallest scale probed (≃1 pc). In the case of unequal masses, dynamical friction remains efficient down to our resolution limit, and there is no sign of formation of any ellipsoidal gas distribution that may further harden the binary. During inspiral, gravitational capture of gas by the black holes occurs mainly along circular orbits; eccentric orbits imply high relative velocities and weak gravitational focusing. Thus, the active galactic nucleus activity may be excited during the black hole pairing process and double active nuclei may form when circularization is completed, on distance scales of tens of parsecs.  相似文献   

2.
Globular cluster systems evolve, in galaxies, due to internal and external dynamics and tidal phenomena. One of the causes of evolution, dynamical friction, is responsible for the orbital decay of massive clusters into the innermost galactic regions. It is found that these clusters are effective source of matter to feed a central galactic black hole such to make it grow and shine as an AGN.  相似文献   

3.
We calculate the structure of a wake generated by, and the dynamical friction force on, a gravitational perturber travelling through a gaseous medium of uniform density and constant background acceleration   g ext  , in the context of Modified Newtonian Dynamics (MOND). The wake is described as a linear superposition of two terms. The dominant part displays the same structure as the wake generated in the Newtonian gravity scaled up by a factor  μ−1( g ext/ a 0)  , where a 0 is the constant MOND acceleration and μ the interpolating function. The structure of the second term depends greatly on the angle between   g ext  and the velocity of the perturber. We evaluate the dynamical drag force numerically and compare our MOND results with the Newtonian case. We mention the relevance of our calculations to orbit evolution of globular clusters and satellites in a gaseous protogalaxy. Potential differences in the X-ray emission of gravitational galactic wakes in MOND and in Newtonian gravity with a dark halo are highlighted.  相似文献   

4.
Tidally interacting galaxies offer an interesting field for the investigation of chaotic phenomena in stellar systems. When the galaxies are gravitationally bound, and one of them is much larger than the other, the latter can be regarded as a satellite of the former. The study of their dynamics is somewhat simplified in this case, which presents well observed examples in nature (e.g., globular clusters). Galactic satellites suffer orbital decay due to dynamical friction, a process that may be greatly enhanced in the presence of chaotic motions. Besides, the satellite is stripped by the field of tidal forces and, in the long run, it will disintegrate completely. Modern observations are able to show the signature of these processes taking place at present.  相似文献   

5.
The present work extends and deepens previous examinations of the evolution of globular cluster orbits in elliptical galaxies, by means of numerical integrations of a wide set of orbits in five self-consistent triaxial galactic models characterized by a central core and different axial ratios. These models are valid and complete in the representation of regular orbits in elliptical galaxies. Dynamical friction is definitely shown to be an efficient cause of evolution for the globular cluster systems in elliptical galaxies of any mass or axial ratio. Moreover, our statistically significant sample of computed orbits confirms that the globular cluster orbital decay times are, at least for clusters moving on box orbits, much shorter than the age of the galaxies. Consequently, the mass carried into the innermost galactic region in the form of decayed globular clusters may have contributed significantly to feeding and accreting a compact object therein.  相似文献   

6.
We present a rigorous calculation of the dynamical friction force exerted on a spherical massive perturber moving through an infinite homogenous system of field stars. By calculating the shape and mass of the polarization cloud induced by the perturber in the background system, which decelerates the motion of the perturber, we recover Chandrasekhar's drag force law with a modified Coulomb logarithm. As concrete examples, we calculate the drag force exerted on a Plummer sphere or a sphere with the density distribution of a Hernquist profile. It is shown that the shape of the perturber only affects the exact form of the Coulomb logarithm. The latter converges on small scales because encounters of the test and field stars with impact parameters less than the size of the massive perturber become inefficient. We confirm in this way the earlier results based on the impulse approximation of small angle scatterings.  相似文献   

7.
The NGC 5044 galaxy group is dominated by a luminous elliptical galaxy that is surrounded by ∼160 dwarf satellites. The projected number density profile of this dwarf population deviates within ∼1/3 of the virial radius from a projected Navarro, Frenk and White (NFW) profile, which is assumed to approximate the underlying total matter distribution. By means of a semi-analytic model, we demonstrate that the interplay between gravitation, dynamical friction and tidal mass loss and destruction can explain the observed number density profile. We use only two parameters in our models: the total to stellar mass fraction of the satellite haloes and the disruption efficiency. The disruption efficiency is expressed by a minimum radius. If the tidal radius of a galaxy (halo) falls below this radius, it is assumed to become unobservable. The preferred parameters are an initial total to stellar mass fraction of ∼20 and a disruption radius of  4 kpc  . In that model, about 20 per cent of all the satellites are totally disrupted on their orbits within the group environment. Dynamical friction is less important in shaping the inner slope of the number density profile because the reduction in mass by tidal forces lowers the impact of the friction term. The main destruction mechanism is tide. In the preferred model, the total B -band luminosity of all disrupted galaxies is about twice the observed luminosity of the central elliptical galaxy, indicating that a significant fraction of stars are scattered into the intragroup medium. Dwarf galaxy satellites closer to the centre of the NGC 5044 group may exhibit optical evidence of partial tidal disruption. If dynamical friction forces the satellite to merge with the central elliptical, the angular momentum of the satellite tends to be removed at the apocentre passage. Afterwards, the satellite drops radially towards the centre.  相似文献   

8.
Lopsidedness is common in spiral galaxies. Often, there is no obvious external cause, such as an interaction with a nearby galaxy, for such features. Alternatively, the lopsidedness may have an internal cause, such as a dynamical instability. In order to explore this idea, we have developed a computer code that searches for self-consistent perturbations in razor-thin disc galaxies and performed a thorough mode-analysis of a suite of dynamical models for disc galaxies embedded in an inert dark matter halo with varying amounts of rotation and radial anisotropy.
Models with two equal-mass counter-rotating discs and fully rotating models both show growing lopsided modes. For the counter-rotating models, this is the well-known counter-rotating instability, becoming weaker as the net rotation increases. The m = 1 mode of the maximally rotating models, on the other hand, becomes stronger with increasing net rotation. This rotating m = 1 mode is reminiscent of the eccentricity instability in near-Keplerian discs.
To unravel the physical origin of these two different m = 1 instabilities, we studied the individual stellar orbits in the perturbed potential and found that the presence of the perturbation gives rise to a very rich orbital behaviour. In the linear regime, both instabilities are supported by aligned loop orbits. In the non-linear regime, other orbit families exist that can help support the modes. In terms of density waves, the counter-rotating m = 1 mode is due to a purely growing Jeans-type instability. The rotating m = 1 mode, on the other hand, grows as a result of the swing amplifier working inside the resonance cavity that extends from the disc centre out to the radius where non-rotating waves are stabilized by the model's outwardly rising Q profile.  相似文献   

9.
We study spherical and disc clusters in a near-Keplerian potential of galactic centres or massive black holes. In such a potential orbit precession is commonly retrograde, that is, the direction of the orbit precession is opposite to the orbital motion. It is assumed that stellar systems consist of nearly-radial orbits. We show that if there is a loss-cone at low angular momentum (e.g. due to consumption of stars by a black hole), an instability similar to loss-cone instability in plasma may occur. The gravitational loss-cone instability is expected to enhance black hole feeding rates. For spherical systems, the instability is possible for the number of spherical harmonics   l ≥ 3  . If there is some amount of counter-rotating stars in flattened systems, they generally exhibit the instability independent of azimuthal number m . The results are compared with those obtained recently by Tremaine for distribution functions monotonically increasing with angular momentum.
The analysis is based on simple characteristic equations describing small perturbations in a disc or a sphere of stellar orbits highly elongated in radius. These characteristic equations are derived from the linearized Vlasov equations (combining the collisionless Boltzmann kinetic equation and the Poisson equation), using the action-angle variables. We use two techniques for analysing the characteristic equations: the first one is based on preliminary finding of neutral modes, and the second one employs a counterpart of the plasma Penrose–Nyquist criterion for disc and spherical gravitational systems.  相似文献   

10.
We discuss the problem of using stellar kinematics of early-type galaxies to constrain the orbital anisotropies and radial mass profiles of galaxies. We demonstrate that compressing the light distribution of a galaxy along the line of sight produces approximately the same signature in the line-of-sight velocity profiles as radial anisotropy. In particular, fitting spherically symmetric dynamical models to apparently round, isotropic face-on flattened galaxies leads to a spurious bias towards radial orbits in the models, especially if the galaxy has a weak face-on stellar disc. Such face-on stellar discs could plausibly be the cause of the radial anisotropy found in spherical models of intermediate luminosity ellipticals such as NGC 2434, 3379 and 6703.
In the light of this result, we use simple dynamical models to constrain the outer mass profiles of a sample of 18 round, early-type galaxies. The galaxies follow a Tully–Fisher relation parallel to that for spiral galaxies, but fainter by at least 0.8 mag ( I -band) for a given mass. The most luminous galaxies show clear evidence for the presence of a massive dark halo, but the case for dark haloes in fainter galaxies is more ambiguous. We discuss the observations that would be required to resolve this ambiguity.  相似文献   

11.
Dynamical friction arises from the interaction of a perturber and the gravitational wake it excites in the ambient medium. This interaction is usually derived assuming that the perturber has a constant velocity. In realistic situations, motion is accelerated as for instance by dynamical friction itself. Here, we study the effect of acceleration on the dynamical friction force. We characterize the density enhancement associated with a constantly accelerating perturber with rectilinear motion in an infinite homogeneous gaseous medium and show that dynamical friction is not a local force and that its amplitude may depend on the perturber's initial velocity. The force on an accelerating perturber is maximal between Mach 1 and Mach 2, where it is smaller than the corresponding uniform motion friction. In the limit where the perturber's size is much smaller than the distance needed to change the Mach number by unity through acceleration, a subsonic perturber feels a force similar to uniform motion friction only if its past history does not include supersonic episodes. Once an accelerating perturber reaches large supersonic speeds, accelerated motion friction is marginally stronger than uniform motion friction. The force on a decelerating supersonic perturber is weaker than uniform motion friction as the velocity decreases to a few times the sound speed. Dynamical friction on a decelerating subsonic perturber with an initial Mach number larger than 2 is much larger than uniform motion friction and tends to a finite value as the velocity vanishes in contrast to uniform motion friction.  相似文献   

12.
We consider disk and spherical subsystems of stars with nearly radial orbits under conditions when the well-known radial orbit instability is not possible. This requires that the precession of stellar orbits be retrograde, i.e., in the direction opposite to the orbital rotation of stars. We show that an instability that is an analogue of the loss-cone instability known in plasma physics can then develop in the presence of a “loss cone” in the angular momentum distribution of stars, which ensures a deficit or even absence of stars with low angular momenta. Examples of systems with a loss cone are the centers of galaxies or star clusters with massive black holes. The instability can produce a flux of stars onto the galactic center, i.e., it can serve as a mechanism of fueling the nuclear activity of galaxies. Mathematically, the problem is reduced to analyzing simple characteristic equations that describe small perturbations in a disk and a sphere of radially highly elongated stellar orbits. In turn, these characteristics equations are derived through a number of successive simplifications of the general linearized Vlasov equations (i.e., the system that includes the collisionless Boltzmann kinetic equation and the Poisson equation) in action—angle variables.  相似文献   

13.
We use cosmological smooth particle hydrodynamical (SPH) simulations to study the effects of mergers in the star formation history of galactic objects in hierarchical clustering scenarios. We find that during some merger events, gaseous discs can experience two starbursts: the first one during the orbital decay phase, owing to gas inflows driven as the satellite approaches, and the second one when the two baryonic clumps collide. A trend for these first induced starbursts to be more efficient at transforming the gas into stars is also found. We detect that systems that do not experience early gas inflows have well-formed stellar bulges and more concentrated potential wells, which seem to be responsible for preventing further gas inward transport triggered by tidal forces. The potential wells concentrate owing to the accumulation of baryons in the central regions and of dark matter as the result of the pulling in by baryons. The coupled evolution of the dark matter and baryons would lead to an evolutionary sequence during which systems with shallower total potential wells suffer early gas inflows during the orbital decay phase that help to feed their central mass concentration, pulling in dark matter and contributing to build up more stable systems. Within this scenario, starbursts triggered by early gas inflows are more likely to occur at early stages of evolution of the systems and to be an important contributor to the formation of stellar bulges. Our results constitute the first proof that bulges can form as the product of collapse, collisions and secular evolution in a cosmological framework, and they are consistent with a rejuvenation of the stellar population in bulges at intermediate z with, at least, 50 per cent of the stars (in SCDM) being formed at high z .  相似文献   

14.
We estimate the time-scales for orbital decay of wide binaries embedded within dark matter haloes, due to dynamical friction against the dark matter particles. We derive analytical scalings for this decay and calibrate and test them through the extensive use of N -body simulations, which accurately confirm the predicted temporal evolution. For density and velocity dispersion parameters as inferred for the dark matter haloes of local dSph galaxies, we show that the decay time-scales become shorter than the ages of the dSph stellar populations for binary stars composed of  1 M  stars, for initial separations larger than 0.1 pc. Such wide binaries are conspicuous and have been well measured in the solar neighbourhood. The prediction of the dark matter hypothesis is that they should now be absent from stellar populations embedded within low velocity dispersion, high-density dark mater haloes, as currently inferred for the local dSph galaxies, having since evolved into tighter binaries. Relevant empirical determinations of this will become technically feasible in the near future, and could provide evidence to discriminate between dark matter particle haloes or modified gravitational theories, to account for the high dispersion velocities measured for stars in local dSph galaxies.  相似文献   

15.
If a galaxy resides in a cluster, then its passage through the pervasive intracluster medium will produce a detectable signature in the X-ray emission from the cluster. Such features have now been detected in a number of systems. The simplest kinematic information that can be extracted from this signature is the galaxy's direction of motion on the plane of the sky. This paper explores the constraints on cluster dynamics that could be derived from such information. In particular, we show that it is possible to define a projected anisotropy parameter, B ( r ), which is directly analogous to the usual orbital anisotropy parameter. We describe an estimator for this quantity, ( R ), which can be derived in a robust and straightforward manner. We present a simple dynamical model for a cluster consisting of a Michie distribution function of galaxies orbiting in a truncated singular isothermal sphere potential. Using this model, we demonstrate the ambiguity between the distribution of mass and the distribution of galaxy orbits when interpreting the traditional measures of cluster kinematics (the projected density of galaxies and their line-of-sight velocity dispersion). As an example, we show how two very different dynamical models can fit the kinematic properties of the Coma cluster. We demonstrate that the measurement of using a relatively small sample of wake directions ( N wake≈50) would provide an effective mechanism for lifting this degeneracy. Thus, by combining X-ray measurements of wake directions with number counts and line-of-sight velocities derived from optical data, it will prove possible to measure both the orbit distribution and the form of the gravitational potential in clusters of galaxies. The requisite X-ray observations lie within reach of the soon-to-be-launched AXAF satellite.  相似文献   

16.
We carry out a detailed orbit analysis of gravitational potentials selected at different times from an evolving self-consistent model galaxy consisting of a two-component disc (stars+gas) and a live halo. The results are compared with a pure stellar model, subject to nearly identical initial conditions, which are chosen so as to make the models develop a large-scale stellar bar. The bars are also subject to hose-pipe (buckling) instability which modifies the vertical structure of the disc. The diverging morphological evolution of both models is explained in terms of gas radial inflow, the resulting change in the gravitational potential at smaller radii, and the subsequent modification of the main families of orbits, both in and out of the disc plane.   We find that dynamical instabilities become milder in the presence of the gas component, and that the stability of planar and 3D stellar orbits is strongly affected by the related changes in the potential — both are destabilized, with the gas accumulation at the centre. This is reflected in the overall lower amplitude of the bar mode and in the substantial weakening of the bar, which appears to be a gradual process. The vertical buckling of the bar is much less pronounced and the characteristic peanut shape of the galactic bulge almost disappears when there is a substantial gas inflow towards the centre. Milder instability results in a smaller bulge, the basic parameters of which are in agreement with observations. We also find that the overall evolution in the model with a gas component is accelerated because of the larger central mass concentration and the resulting decrease in the characteristic dynamical time.  相似文献   

17.
Based on recent findings of a formation mechanism of substructure in tidal tails by Küpper et al., we investigate a more comprehensive set of N -body models of star clusters on orbits about a Milky Way like potential. We find that the predicted epicyclic overdensities arise in any tidal tail no matter which orbit the cluster follows as long as the cluster lives long enough for the overdensities to build up.
The distance of the overdensities along the tidal tail from the cluster centre depends for circular orbits only on the mass of the cluster and the strength of the tidal field, and therefore decreases monotonically with time, while for eccentric orbits the orbital motion influences the distance, causing a periodic compression and stretching of the tails and making the distance oscillate with time. We provide an approximation for estimating the distance of the overdensities in this case.
We describe an additional type of overdensity which arises in extended tidal tails of clusters on eccentric orbits, when the acceleration of the tidal field on the stellar stream is no longer homogeneous. Moreover, we conclude that a pericentre passage or a disc shock is not the direct origin of an overdensity within a tidal tail. Escape due to such tidal perturbations does not take place immediately after the perturbation but is rather delayed and spread over the orbit of the cluster. All observable overdensities are therefore of the mentioned two types. In particular, we note that substructured tidal tails do not imply the existence of dark matter substructures in the haloes of galaxies.  相似文献   

18.
The time-scale for galaxies within merging dark matter haloes to merge with each other is an important ingredient in galaxy formation models. Accurate estimates of merging time-scales are required for predictions of astrophysical quantities such as black hole binary merger rates, the build-up of stellar mass in central galaxies and the statistical properties of satellite galaxies within dark matter haloes. In this paper, we study the merging time-scales of extended dark matter haloes using N -body simulations. We compare these results to standard estimates based on the Chandrasekhar theory of dynamical friction. We find that these standard predictions for merging time-scales, which are often used in semi-analytic galaxy formation models, are systematically shorter than those found in simulations. The discrepancy is approximately a factor of 1.7 for M sat/ M host≈ 0.1 and becomes larger for more disparate satellite-to-host mass ratios, reaching a factor of ∼3.3 for M sat/ M host≈ 0.01. Based on our simulations, we propose a new, easily implementable fitting formula that accurately predicts the time-scale for an extended satellite to sink from the virial radius of a host halo down to the halo's centre for a wide range of M sat/ M host and orbits. Including a central bulge in each galaxy changes the merging time-scale by ≲10 per cent. To highlight one concrete application of our results, we show that merging time-scales often used in the literature overestimate the growth of stellar mass by satellite accretion by ≈40 per cent, with the extra mass gained in low mass ratio mergers.  相似文献   

19.
We use the Sloan Digital Sky Survey (SDSS) to construct a sample of 625 brightest group and cluster galaxies (BCGs) together with control samples of non-BCGs matched in stellar mass, redshift and colour. We investigate how the systematic properties of BCGs depend on stellar mass and on their privileged location near the cluster centre. The groups and clusters that we study are drawn from the C4 catalogue of Miller et al. but we have developed improved algorithms for identifying the BCG and for measuring the cluster velocity dispersion. Since the SDSS photometric pipeline tends to underestimate the luminosities of large galaxies in dense environments, we have developed a correction for this effect which can be readily applied to the published catalogue data. We find that BCGs are larger and have higher velocity dispersions than non-BCGs of the same stellar mass, which implies that BCGs contain a larger fraction of dark matter. In contrast to non-BCGs, the dynamical mass-to-light ratio of BCGs does not vary as a function of galaxy luminosity. Hence BCGs lie on a different Fundamental Plane than ordinary elliptical galaxies. BCGs also follow a steeper Faber–Jackson relation than non-BCGs, as suggested by models in which BCGs assemble via dissipationless mergers along preferentially radial orbits. We find tentative evidence that this steepening is stronger in more massive clusters. BCGs have similar mean stellar ages and metallicities to non-BCGs of the same mass, but they have somewhat higher α/Fe ratios, indicating that star formation may have occurred over a shorter time-scale in the BCGs. Finally, we find that BCGs are more likely to host radio-loud active galactic nuclei than other galaxies of the same mass, but are less likely to host an optical active galactic nucleus (AGN). The differences we find are more pronounced for the less massive BCGs, i.e. they are stronger at the galaxy group level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号