首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we carried out a laboratory experiment to study changes in canopy reflectance of Tamarugo plants under controlled water stress. Tamarugo (Prosopis tamarugo Phil.) is an endemic and endangered tree species adapted to the hyper-arid conditions of the Atacama Desert, Northern Chile. Observed variation in reflectance during the day (due to leaf movements) as well as changes over the experimental period (due to water stress) were successfully modelled by using the Soil-Leaf-Canopy (SLC) radiative transfer model. Empirical canopy reflectance changes were mostly explained by the parameters leaf area index (LAI), leaf inclination distribution function (LIDF) and equivalent water thickness (EWT) as shown by the SLC simulations. Diurnal leaf movements observed in Tamarugo plants (as adaptation to decrease direct solar irradiation at the hottest time of the day) had an important effect on canopy reflectance and were explained by the LIDF parameter. The results suggest that remote sensing based assessment of this desert tree should consider LAI and canopy water content (CWC) as water stress indicators. Consequently, we tested fifteen different vegetation indices and spectral absorption features proposed in literature for detecting changes of LAI and CWC, considering the effect of LIDF variations. A sensitivity analysis was carried out using SLC simulations with a broad range of LAI, LIDF and EWT values. The Water Index was the most sensitive remote sensing feature for estimating CWC for values less than 0.036 g/cm2, while the area under the curve for the spectral range 910–1070 nm was most sensitive for values higher than 0.036 g/cm2. The red-edge chlorophyll index (CIred-edge) performed the best for estimating LAI. Diurnal leaf movements had an effect on all remote sensing features tested, particularly on those for detecting changes in CWC.  相似文献   

2.
Fine scale maps of vegetation biophysical variables are useful status indicators for monitoring and managing national parks and endangered habitats. Here, we assess in a comparative way four different retrieval methods for estimating leaf area index (LAI) in grassland: two radiative transfer model (RTM) inversion methods (one based on look-up-tables (LUT) and one based on predictive equations) and two statistical modelling methods (one partly, the other entirely based on in situ data). For prediction, spectral data were used that had been acquired over Majella National Park in Italy by the airborne hyperspectral HyMap instrument. To assess the performance of the four investigated models, the normalized root mean squared error (nRMSE) and coefficient of determination (R2) between estimates and in situ LAI measurements are reported (n = 41). Using a jackknife approach, we also quantified the accuracy and robustness of empirical models as a function of the size of the available calibration data set. The results of the study demonstrate that the LUT-based RTM inversion yields higher accuracies for LAI estimation (R2 = 0.91, nRMSE = 0.18) as compared to RTM inversions based on predictive equations (R2 = 0.79, nRMSE = 0.38). The two statistical methods yield accuracies similar to the LUT method. However, as expected, the accuracy and robustness of the statistical models decrease when the size of the calibration database is reduced to fewer samples. The results of this study are of interest for the remote sensing community developing improved inversion schemes for spaceborne hyperspectral sensors applicable to different vegetation types. The examples provided in this paper may also serve as illustrations for the drawbacks and advantages of physical and empirical models.  相似文献   

3.
The red edge position (REP) in the vegetation spectral reflectance is a surrogate measure of vegetation chlorophyll content, and hence can be used to monitor the health and function of vegetation. The Multi-Spectral Instrument (MSI) aboard the future ESA Sentinel-2 (S-2) satellite will provide the opportunity for estimation of the REP at much higher spatial resolution (20 m) than has been previously possible with spaceborne sensors such as Medium Resolution Imaging Spectrometer (MERIS) aboard ENVISAT. This study aims to evaluate the potential of S-2 MSI sensor for estimation of canopy chlorophyll content, leaf area index (LAI) and leaf chlorophyll concentration (LCC) using data from multiple field campaigns. Included in the assessed field campaigns are results from SEN3Exp in Barrax, Spain composed of 35 elementary sampling units (ESUs) of LCC and LAI which have been assessed for correlation with simulated MSI data using a CASI airborne imaging spectrometer. Analysis also presents results from SicilyS2EVAL, a campaign consisting of 25 ESUs in Sicily, Italy supported by a simultaneous Specim Aisa-Eagle data acquisition. In addition, these results were compared to outputs from the PROSAIL model for similar values of biophysical variables in the ESUs. The paper in turn assessed the scope of S-2 for retrieval of biophysical variables using these combined datasets through investigating the performance of the relevant Vegetation Indices (VIs) as well as presenting the novel Inverted Red-Edge Chlorophyll Index (IRECI) and Sentinel-2 Red-Edge Position (S2REP). Results indicated significant relationships between both canopy chlorophyll content and LAI for simulated MSI data using IRECI or the Normalised Difference Vegetation Index (NDVI) while S2REP and the MERIS Terrestrial Chlorophyll Index (MTCI) were found to have the strongest correlation for retrieval of LCC.  相似文献   

4.
Leaf and canopy nitrogen (N) status relates strongly to leaf and canopy chlorophyll (Chl) content. Remote sensing is a tool that has the potential to assess N content at leaf, plant, field, regional and global scales. In this study, remote sensing techniques were applied to estimate N and Chl contents of irrigated maize (Zea mays L.) fertilized at five N rates. Leaf N and Chl contents were determined using the red-edge chlorophyll index with R2 of 0.74 and 0.94, respectively. Results showed that at the canopy level, Chl and N contents can be accurately retrieved using green and red-edge Chl indices using near infrared (780–800 nm) and either green (540–560 nm) or red-edge (730–750 nm) spectral bands. Spectral bands that were found optimal for Chl and N estimations coincide well with the red-edge band of the MSI sensor onboard the near future Sentinel-2 satellite. The coefficient of determination for the relationships between the red-edge chlorophyll index, simulated in Sentinel-2 bands, and Chl and N content was 0.90 and 0.87, respectively.  相似文献   

5.
Sentinel-2 is planned for launch in 2014 by the European Space Agency and it is equipped with the Multi Spectral Instrument (MSI), which will provide images with high spatial, spectral and temporal resolution. It covers the VNIR/SWIR spectral region in 13 bands and incorporates two new spectral bands in the red-edge region, which can be used to derive vegetation indices using red-edge bands in their formulation. These are particularly suitable for estimating canopy chlorophyll and nitrogen (N) content. This band setting is important for vegetation studies and is very similar to the ones of the Ocean and Land Colour Instrument (OLCI) on the planned Sentinel-3 satellite and the Medium Resolution Imaging Spectrometer (MERIS) on Envisat, which operated from 2002 to early 2012. This paper focuses on the potential of Sentinel-2 and Sentinel-3 in estimating total crop and grass chlorophyll and N content by studying in situ crop variables and spectroradiometer measurements obtained for four different test sites. In particular, the red-edge chlorophyll index (CIred-edge), the green chlorophyll index (CIgreen) and the MERIS terrestrial chlorophyll index (MTCI) were found to be accurate and linear estimators of canopy chlorophyll and N content and the Sentinel-2 and -3 bands are well positioned for deriving these indices. Results confirm the importance of the red-edge bands on particularly Sentinel-2 for agricultural applications, because of the combination with its high spatial resolution of 20 m.  相似文献   

6.
In this paper, we focused on the retrieval of the LAI in an alpine wetland located in western part of China in late August and early July 2011. A two-layer canopy reflectance model (ACRM) was used to establish the relationships between the LAI and the reflectance of near-infrared (NIR) and red (RED) wavebands. The reflectance data were derived from Landsat TM L1T product and the Terra and Aqua MODIS 16-day and 8-day composite reflectance products (MOD/MYD09) at 250 m resolution. Due to the lack of the information about some major input parameters for ACRM, which are sensitive to model outputs in the reflectance of NIR and RED wavebands, the inverse problem was ill-posed. To overcome this problem, a method of increasing the sensitivity of the LAI while reducing the influence of other model free parameters based on the study of free parameters’ sensitivity to the ACRM outputs and the region’s features was studied. The area of interest was divided into two parts using the approximately statistic normalized difference vegetation index (NDVI) value around 0.5. One part was sparse vegetation (0.1 < NDVI < 0.5), which is more sensitive to soil background effects and less sensitive to the canopy biophysical and biochemical variables. The other part was dense vegetation (0.5  NDVI < 1.0), which is less sensitive to soil background effects and more sensitive to plant canopies and leaf parameters. Then, the relationships of ρnir–LAI and ρred–LAI were established using a look-up table algorithm for the two parts. Furthermore, a regularization technique for fast pixel-wise retrieval was introduced to reduce the elements of LUT sets while maintaining a relatively high accuracy. The results were very promising compared to the field measured LAI values that the correlation (R2) of the measured LAI values and retrieved LAI values reached 0.95, and the root-mean-square deviation (RMSD) was 0.33 for late August, 2011, while the R2 reached 0.82 and RMSD was 0.25 for early July 2011.  相似文献   

7.
This paper assesses the capability of hyperspectral remote sensing to detect hydrocarbon leakages in pipelines using vegetation status as an indicator of contamination. A field experiment in real scale and in tropical weather was conducted in which Brachiaria brizantha H.S. pasture plants were grown over soils contaminated with small volumes of liquid hydrocarbons (HCs). The contaminations involved volumes of hydrocarbons that ranged between 2 L and 12.7 L of gasoline and diesel per m3 of soil, which were applied to the crop parcels over the course of 30 days. The leaf and canopy reflectance spectra of contaminated and control plants were acquired within 350–2500 nm wavelengths. The leaf and canopy reflectance spectra were mathematically transformed by means of first derivative (FD) and continuum removal (CR) techniques. Using principal component analysis (PCA), the spectral measurements could be grouped into either two or three contamination groups. Wavelengths in the red edge were found to contain the largest spectral differences between plants at distinct, evolving contamination stages. Wavelengths centred on water absorption bands were also important to differentiating contaminated from healthy plants. The red edge position of contaminated plants, calculated on the basis of FD spectra, shifted substantially to shorter wavelengths with increasing contamination, whereas non-contaminated plants displayed a red shift (in leaf spectra) or small blue shift (in canopy spectra). At leaf scale, contaminated plants were differentiated from healthy plants between 550–750 nm, 1380–1550 nm, 1850–2000 nm and 2006–2196 nm. At canopy scale, differences were substantial between 470–518 nm, 550–750 nm, 910–1081 nm, 1116–1284 nm, 1736–1786 nm, 2006–2196 nm and 2222–2378 nm. The results of this study suggests that remote sensing of B. brizantha H.S. at both leaf and canopy scales can be used as an indicator of gasoline and diesel contaminations for the detection of small leakages in pipelines.  相似文献   

8.
Satellite remote sensing provides an alternative to time-consuming and labor intensive in situ measurements of biophysical variables in agricultural crops required for precision agriculture applications. In orchards, however, the spatial resolution causes mixtures of canopies and background (i.e. soil, grass and shadow), hampering the estimation of these biophysical variables. Furthermore, variable background mixtures obstruct meaningful comparisons between different orchard blocks, rows or within each row. Current correction methodologies use spectral differences between canopies and background, but struggle with a vegetated orchard floor. This background influence and the lack of a generic solution are addressed in this study.Firstly, the problem was demonstrated in a controlled environment for vegetation indices sensitive to chlorophyll content, water content and leaf area index. Afterwards, traditional background correction methods (i.e. soil-adjusted vegetation indices and signal unmixing) were compared to the proposed vegetation index correction. This correction was based on the mixing degree of each pixel (i.e. tree cover fraction) to rescale the vegetation indices accordingly and was applied to synthetic and WorldView-2 satellite imagery. Through the correction, the effect of background admixture for vegetation indices was reduced, and the estimation of biophysical variables was improved (ΔR2 = 0.2–0.31).  相似文献   

9.
Modeling crop gross primary production (GPP) is critical to understanding the carbon dynamics of agro-ecosystems. Satellite-based studies have widely used production efficiency models (PEM) to estimate cropland GPP, wherein light use efficiency (LUE) is a key model parameter. One factor that has not been well considered in many PEMs is that canopy LUE could vary with illumination conditions. This study investigates how the partitioning of diffuse and direct solar radiation influences cropland GPP using both flux tower and satellite data. The field-measured hourly LUE under cloudy conditions was 1.50 and 1.70 times higher than that under near clear-sky conditions for irrigated corn and soybean, respectively. We applied a two-leaf model to simulate the canopy radiative transfer process, where modeled photosynthetically active radiation (PAR) absorbed by canopy agreed with tower measurements (R2 = 0.959 and 0.914 for corn and soybean, respectively). Derived canopy LUE became similar after accounting for the impact of light saturation on leaf photosynthetic capacity under varied illumination conditions. The impacts of solar radiation partitioning on satellite-based modeling of crop GPP was examined using vegetation indices (VI) derived from MODIS data. Consistent with the field modeling results, the relationship between daily GPP and PAR × VI under varied illumination conditions showed different patterns in terms of regression slope and intercept. We proposed a function to correct the influences of direct and diffuse radiation partitioning and the explained variance of flux tower GPP increased in all experiments. Our results suggest that the non-linear response of leaf photosynthesis to light absorption contributes to higher canopy LUE on cloudy days than on clear days. We conclude that accounting for the impacts of solar radiation partitioning is necessary for modeling crop GPP on a daily or shorter basis.  相似文献   

10.
Advanced site-specific knowledge of grain protein content of winter wheat from remote sensing data would provide opportunities to manage grain harvest differently, and to maximize output by adjusting input in fields. In this study, remote sensing data were utilized to predict grain protein content. Firstly, the leaf nitrogen content at winter wheat anthesis stage was proved to be significantly correlated with grain protein content (R2 = 0.36), and spectral indices significantly correlated to leaf nitrogen content at anthesis stage were potential indicators for grain protein content. The vegetation index, VIgreen, derived from the canopy spectral reflectance at green and red bands, was significantly correlated to the leaf nitrogen content at anthesis stage, and also highly significantly correlated to the final grain protein content (R2 = 0.46). Secondly, the external conditions, such as irrigation, fertilization and temperature, had important influence on grain quality. Water stress at grain filling stage can increase grain protein content, and leaf water content is closely related to irrigation levels, therefore, the spectral indices correlated to leaf water content can be potential indicators for grain protein content. The spectral reflectance of TM channel 5 derived from canopy spectra or image data at grain filling stage was all significantly correlated to grain protein content (R2 = 0.31 and 0.37, respectively). Finally, not only this study proved the feasibility of using remote sensing data to predict grain protein content, but it also provided a tentative prediction of the grain protein content in Beijing area using the reflectance image of TM channel 5.  相似文献   

11.
Leaf carotenoids content (LCar) is an important indicator of plant physiological status. Accurate estimation of LCar provides valuable insight into early detection of stress in vegetation. With spectroscopy techniques, a semi-empirical approach based on spectral indices was extensively used for carotenoids content estimation. However, established spectral indices for carotenoids that generally rely on limited measured data, might lack predictive accuracy for carotenoids estimation in various species and at different growth stages. In this study, we propose a new carotenoid index (CARI) for LCar assessment based on a large synthetic dataset simulated from the leaf radiative transfer model PROSPECT-5, and evaluate its capability with both simulated data from PROSPECT-5 and 4SAIL and extensive experimental datasets: the ANGERS dataset and experimental data acquired in field experiments in China in 2004. Results show that CARI was the index most linearly correlated with carotenoids content at the leaf level using a synthetic dataset (R2 = 0.943, RMSE = 1.196 μg/cm2), compared with published spectral indices. Cross-validation results with CARI using ANGERS data achieved quite an accurate estimation (R2 = 0.545, RMSE = 3.413 μg/cm2), though the RBRI performed as the best index (R2 = 0.727, RMSE = 2.640 μg/cm2). CARI also showed good accuracy (R2 = 0.639, RMSE = 1.520 μg/cm2) for LCar assessment with leaf level field survey data, though PRI performed better (R2 = 0.710, RMSE = 1.369 μg/cm2). Whereas RBRI, PRI and other assessed spectral indices showed a good performance for a given dataset, overall their estimation accuracy was not consistent across all datasets used in this study. Conversely CARI was more robust showing good results in all datasets. Further assessment of LCar with simulated and measured canopy reflectance data indicated that CARI might not be very sensitive to LCar changes at low leaf area index (LAI) value, and in these conditions soil moisture influenced the LCar retrieval accuracy.  相似文献   

12.
This paper presents a novel method to derive grassland aboveground biomass (AGB) based on the PROSAILH (PROSPECT + SAILH) radiative transfer model (RTM). Two variables, leaf area index (LAI, m2m−2, defined as a one-side leaf area per unit of horizontal ground area) and dry matter content (DMC, gcm−2, defined as the dry matter per leaf area), were retrieved using PROSAILH and reflectance data from Landsat 8 OLI product. The result of LAI × DMC was regarded as the estimated grassland AGB according to their definitions. The well-known ill-posed inversion problem when inverting PROSAILH was alleviated using ecological criteria to constrain the simulation scenario and therefore the number of simulated spectra. A case study of the presented method was applied to a plateau grassland in China to estimate its AGB. The results were compared to those obtained using an exponential regression, a partial least squares regression (PLSR) and an artificial neural networks (ANN). The RTM-based method offered higher accuracy (R2 = 0.64 and RMSE = 42.67 gm−2) than the exponential regression (R2 = 0.48 and RMSE = 41.65 gm−2) and the ANN (R2 = 0.43 and RMSE = 46.26 gm−2). However, the proposed method offered similar performance than PLSR as presented better determination coefficient than PLSR (R2 = 0.55) but higher RMSE (RMSE = 37.79 gm−2). Although it is still necessary to test these methodologies in other areas, the RTM-based method offers greater robustness and reproducibility to estimate grassland AGB at large scale without the need to collect field measurements and therefore is considered the most promising methodology.  相似文献   

13.
Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic CH bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the spectral influences of plant phenolics and terpenes relative to dominant leaf biochemistry (water, chlorophyll, protein/nitrogen, cellulose, and lignin).  相似文献   

14.
A statistical relationship between canopy mass-based foliar nitrogen concentration (%N) and canopy bidirectional reflectance factor (BRF) has been repeatedly demonstrated. However, the interaction between leaf properties and canopy structure confounds the estimation of foliar nitrogen. The canopy scattering coefficient (the ratio of BRF and the directional area scattering factor, DASF) has recently been suggested for estimating %N as it suppresses the canopy structural effects on BRF. However, estimation of %N using the scattering coefficient has not yet been investigated for longer spectral wavelengths (>855 nm). We retrieved the canopy scattering coefficient for wavelengths between 400 and 2500 nm from airborne hyperspectral imagery, and then applied a continuous wavelet analysis (CWA) to the scattering coefficient in order to estimate %N. Predictions of %N were also made using partial least squares regression (PLSR). We found that %N can be accurately retrieved using CWA (R2 = 0.65, RMSE = 0.33) when four wavelet features are combined, with CWA yielding a more accurate estimation than PLSR (R2 = 0.47, RMSE = 0.41). We also found that the wavelet features most sensitive to %N variation in the visible region relate to chlorophyll absorption, while wavelet features in the shortwave infrared regions relate to protein and dry matter absorption. Our results confirm that %N can be retrieved using the scattering coefficient after correcting for canopy structural effect. With the aid of high-fidelity airborne or upcoming space-borne hyperspectral imagery, large-scale foliar nitrogen maps can be generated to improve the modeling of ecosystem processes as well as ecosystem-climate feedbacks.  相似文献   

15.
Leaf chlorophyll content is an important variable for agricultural remote sensing because of its close relationship to leaf nitrogen content. The triangular greenness index (TGI) was developed based on the area of a triangle surrounding the spectral features of chlorophyll with points at (670 nm, R670), (550 nm, R550), and (480 nm, R480), where Rλ is the spectral reflectance at wavelengths of 670, 550 and 480, respectively. The equation is TGI = −0.5[(670  480)(R670  R550)  (670  550)(R670  R480)]. In 1999, investigators funded by NASA's Earth Observations Commercialization and Applications Program collaborated on a nitrogen fertilization experiment with irrigated maize in Nebraska. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and Landsat 5 Thematic Mapper (TM) data were acquired along with leaf chlorophyll meter and other data on three dates in July during late vegetative growth and early reproductive growth. TGI was consistently correlated with plot-averaged chlorophyll-meter values at the spectral resolutions of AVIRIS, Landsat TM, and digital cameras. Simulations using the Scattering by Arbitrarily Inclined Leaves (SAIL) canopy model indicate an interaction among TGI, leaf area index (LAI) and soil type at low crop LAI, whereas at high LAI and canopy closure, TGI was only affected by leaf chlorophyll content. Therefore, TGI may be the best spectral index to detect crop nitrogen requirements with low-cost digital cameras mounted on low-altitude airborne platforms.  相似文献   

16.
Accurate representation of leaf area index (LAI) from high resolution satellite observations is obligatory for various modelling exercises and predicting the precise farm productivity. Present study compared the two retrieval approach based on canopy radiative transfer (CRT) method and empirical method using four vegetation indices (VI) (e.g. NDVI, NDWI, RVI and GNDVI) to estimate the wheat LAI. Reflectance observations available at very high (56 m) spatial resolution from Advanced Wide-Field Sensor (AWiFS) sensor onboard Indian Remote Sensing (IRS) P6, Resourcesat-1 satellite was used in this study. This study was performed over two different wheat growing regions, situated in different agro-climatic settings/environments: Trans-Gangetic Plain Region (TGPR) and Central Plateau and Hill Region (CPHR). Forward simulation of canopy reflectances in four AWiFS bands viz. green (0.52–0.59 μm), red (0.62–0.68 μm), NIR (0.77–0.86 μm) and SWIR (1.55–1.70 μm) were carried out to generate the look up table (LUT) using CRT model PROSAIL from all combinations of canopy intrinsic variables. An inversion technique based on minimization of cost function was used to retrieve LAI from LUT and observed AWiFS surface reflectances. Two consecutive wheat growing seasons (November 2005–March 2006 and November 2006–March 2007) datasets were used in this study. The empirical models were developed from first season data and second growing season data used for validation. Among all the models, LAI-NDVI empirical model showed the least RMSE (root mean square error) of 0.54 and 0.51 in both agro-climatic regions respectively. The comparison of PROSAIL retrieved LAI with in situ measurements of 2006–2007 over the two agro-climatic regions produced substantially less RMSE of 0.34 and 0.41 having more R2 of 0.91 and 0.95 for TGPR and CPHR respectively in comparison to empirical models. Moreover, CRT retrieved LAI had less value of errors in all the LAI classes contrary to empirical estimates. The PROSAIL based retrieval has potential for operational implementation to determine the regional crop LAI and can be extendible to other regions after rigorous validation exercise.  相似文献   

17.
冠层反射光谱对植被理化参数的全局敏感性分析   总被引:1,自引:0,他引:1  
植被理化参数与许多有关植物物质能量交换的生态过程密切相关,定量分析植被反射光谱对理化参数的敏感性是遥感反演理化参数含量的前提。本文采用EFAST(Extended Fourier Amplitude Sensitivity Test)全局敏感性分析方法,利用PROSAIL辐射传输模型分析了冠层疏密程度对叶片生化组分含量、冠层结构以及土壤背景等多种参数敏感性的影响,并对植被理化参数反演所需先验知识的精度问题进行了初步探讨。研究表明:(1)对于较为稠密的冠层,可见光波段的冠层反射率主要受叶绿素含量的影响,近红外和中红外波段的冠层反射率主要受干物质量和含水量的影响;(2)对于稀疏的冠层,LAI是影响400—2500 nm波段范围内冠层反射率的最重要参数,土壤湿度次之,叶片生化参数对冠层反射率的敏感性较低;(3)在已知稀疏冠层LAI的情况下进一步确定土壤的干湿状态,可显著提高冠层反射率对叶绿素含量的敏感度,有助于稀疏冠层叶绿素含量的反演。  相似文献   

18.
Soil erodibility, which is difficult to estimate and upscaling, was determined in this study using multiple spectral models of soil properties (soil organic matter (SOM), water-stable aggregates (WSA) > 0.25 mm, the geometric mean radius (Dg)). Herein, the soil erodibility indicators were calculated, and soil properties were quantitatively analyzed based on laboratory simulation experiments involving two selected contrasting soils. In addition, continuous wavelet transformation was applied to the reflectance spectra (350–2500 nm) of 65 soil samples from the study area. To build the relationship, the soil properties that control erodibility were identified prior to the spectral analysis. In this study, the SOM, Dg and WSA >0.25 mm were selected to represent the most significant soil properties controlling erodibility and describe the erodibility indicator based on a logarithmic regression model as a function of SOM or WSA > 0.25 mm. Five, six and three wavelet features were observed to calibrate the estimated soil properties model, and the best performance was obtained with a combination feature regression model for SOM (R2 = 0.86, p < 0.01), Dg (R2 = 0.79, p < 0.01) and WSA >0.25 mm (R2 = 0.61, p < 0.01), respectively. One part of the wavelet features captured amplitude variations in the broad shape of the reflectance spectra, and another part captured variations in the shape and depth of the soil dry substances. The wavelet features for the validated dataset used to predict the SOM, WSA >0.25 mm and Dg were not significantly different compared with the calibrated dataset. The synthesized spectral models of soil properties, and the formation of a new equation for soil erodibility transformed from the spectral models of soil properties are presented in this study. These results show that a spectral analytical approach can be applied to complex datasets and provide new insights into emerging dynamic variation with erodibility estimation.  相似文献   

19.
The direct estimation of nitrogen (N) in fresh vegetation is challenging due to its weak influence on leaf reflectance and the overlaps with absorption features of other compounds. Different empirical models relate in this work leaf nitrogen concentration ([N]Leaf) on Holm oak to leaf reflectance as well as derived spectral indices such as normalized difference indices (NDIs), the three bands indices (TBIs) and indices previously used to predict leaf N and chlorophyll. The models were calibrated and assessed their accuracy, robustness and the strength of relationship when other biochemicals were considered. Red edge was the spectral region most strongly correlated with [N]Leaf, whereas most of the published spectral indexes did not provide accurate estimations. NDIs and TBIs based models could achieve robust and acceptable accuracies (TBI1310,1720,730: R2 = 0.76, [0.64,0.86]; RMSE (%) = 9.36, [7.04,12.83]). These models sometimes included indices with bands close to absorption features of N bonds or nitrogenous compounds, but also of other biochemicals. Models were independently and inter-annually validated using the bootstrap method, which allowed discarding those models non-robust across different years. Partial correlation analysis revealed that spectral estimators did not strongly respond to [N]Leaf but to other leaf variables such as chlorophyll and water, even if bands close to absorption features of N bonds or compounds were present in the models.  相似文献   

20.
The current development of satellite technology particularly in the sensors like POLDER and MISR, has emphasized more on directional reflectance measurements (i.e. spectral reflectance of the target measured from different view zenith and azimuth angles) of the earth surface features mainly the vegetation for retrieval of biophysical parameters at regional scale using radiative transfer models. This approach being physical process based and uses directional reflectance measurement has been found to better and more reliable compared to the conventional statistical approach used till date and takes care of anisotropic nature (i.e. reflectance from the target is different if measured from different view angles) of the target. Keeping this in view a field experiment was conducted in mustard crop to evaluate the radiative transfer model for biophysical parameter retrieval through its inversion with the objectives set as (i) to relate canopy biophysical parameters and geometry to its bidirectional reflectance, (ii) to evaluate a canopy reflectance model to best represent the radiative transfer within the canopy for its inversion and (iii) to retrieve crop biophysical parameters through inversion of the model. Two varieties of the mustard crop (Brassica juncea L) were grown with two nitrogen treatments. The bidirectional reflectance data obtained at 5 nm interval for a range of 400–1100 nm were integrated to IRS LISS–II sensor’s four band values using Newton Cotes Integration technique. Biophysical parameters like leaf area index, leaf chlorophyll content, leaf length, plant height and average leaf inclination angle, biomass etc were estimated synchronizing with the bi-directional reflectance measurements. Radiative transfer model PROSAIL model was validated and its inversion was done to retrieve LAI and ALA. Look Up Table (LUT) of Bidirectional reflectance distribution function (BRDF) was prepared simulating through PROSAIL model varying only LAI (0.2 interval from 1.2 to 5.4 ) and ALA (5° interval from 40° to 55°) parameters and inversion was done using a merit function and numerical optimization technique given by Press et al. (1986). The derived LAI and ALA values from inversion were well matched with observed one with RMSE 0.521 and 5.57, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号