首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
On July 11, 1995, an Mw 6.8 earthquake struck eastern Myanmar near the Chinese border; hereafter referred to as the 1995 Myanmar–China earthquake. Coseismic surface displacements associated with this event are identified from JERS-1 (Japanese Earth Resources Satellite-1) SAR (Synthetic Aperture Radar) images. The largest relative displacement reached 60 cm in the line-of-sight direction. We speculate that a previously unrecognized dextral strike-slip subvertical fault striking NW–SE was responsible for this event. The coseismic slip distribution on the fault planes is inverted based on the InSAR-derived deformation. The results indicate that the fault slip was confined to two lobes. The maximum slip reached approximately 2.5 m at a depth of 5 km in the northwestern part of the focal region. The inverted geodetic moment was approximately Mw = 6.69, which is consistent with seismological results. The 1995 Myanmar–China earthquake is one of the largest recorded earthquakes that has occurred around the “bookshelf faulting” system between the Sagaing fault in Myanmar and the Red River fault in southwestern China.  相似文献   

2.
对四川地区GNSS观测数据进行处理,获得如下结果:①汶川Ms8.0级地震之前龙门山断裂带及其以北近150km的范围内几乎不存在可分辨的右旋走滑活动和压性形变,四川盆地以西-鲜水河安宁河断裂带以东约100km的范围内几乎也不存在可辨的形变;②汶川Ms8.0级地震之后芦山Ms7.0级地震之前,龙门山断裂带中、北段存在约5mm/a右旋走滑活动,芦山震源及附近地区的三维形变一直处在闭锁状态,鲜水河安宁河断裂带及其以东的左旋形变有所增强;③芦山地震可变的同震形变场基本分布于以震源为中心的数十km范围内,大致以震中为界东侧呈右旋形变,西侧呈左旋形变;④距震中较近约12km的LS05震时"永久性"垂向位移量约7cm,水平向逆冲量约4cm,走滑量约5cm。  相似文献   

3.
The liquefaction phenomenon that occurred in the coseismic phase of the May 20, 2012 Emilia (Italy) earthquake (ML 5.9) is investigated. It was induced by the water pressure increase in the buried and confined sand layers. The level-ground liquefaction was the result of a chaotic ground oscillation caused by the earthquake shaking and the observed failures were due to the upward water flow caused by the excess of pore pressures. We exploited the capability of the differential synthetic aperture radar interferometry (DInSAR) technique to detect soil liquefactions and estimate their surface displacements, as well as the high sensitivity to surface changes of complex coherence, SAR backscattering and intensity correlation. To this aim, a set of four COSMO-SkyMed X-band SAR images, covering the period April 1–June 6, 2012, was used. Geological–geotechnical analysis was also performed in order to ascertain if the detected SAR-based surface effects could be due to the compaction induced by liquefaction of deep sandy layers. In this regards, the results obtained from 13 electrical cone penetrometer tests show the presence of a fine to medium sandy layer at depths, ranging between 9 and 13 m, which probably liquefied during the earthquake, inducing vertical displacements between 3 and 16 cm. The quantitative results from geological–geotechnical analysis and the surface punctual effects measured by DInSAR are in good agreement, even if some differences are present, probably ascribable to the local thickness and depth variability of the sandy layer, or to lack of deformation detection due to DInSAR decorrelation. The adopted approach permitted us to define the extent of the areas that underwent liquefaction and to quantify the local subsidence related to these phenomena. The latter achievement provides useful information that must be considered in engineering practices, in terms of expected vertical deformations.  相似文献   

4.
Knowledge on the interaction of active structures is essential to understand mechanics of continental deformation and estimate the earthquake potential in complex tectonic settings. Here we use Sentinel-1A radar imagery to investigate coseismic deformation associated with the 2016 Menyuan (Qinghai) earthquake, which occurred in the vicinity of the left-lateral Haiyuan fault. The ascending and descending interferograms indicate thrust-dominated slip, with the maximum line-of-sight displacements of 58 and 68 mm, respectively. The InSAR observations fit well with the uniform-slip dislocation models except for a larger slip-to-width ratio than that predicted by the empirical scaling law. We suggest that geometric complexities near the Leng Long Ling restraining bend confine rupture propagation, resulting in high slip occurred within a small area and much higher stress drop than global estimates. Although InSAR observations cannot distinguish the primary plane, we prefer the west-dipping solution considering aftershocks distribution and the general tectonic context. Both InSAR modelling and aftershock locations indicate that the rupture plane linked to the Haiyuan fault at 10 km depth, a typical seismogenic depth in Tibet. We suggest that the earthquake more likely occurred on a secondary branch at a restraining bend of the Haiyuan fault, even though we cannot completely rule out the possibility of it being on a splay of the North Qilian Shan thrusts.  相似文献   

5.
Differential Interferometric Synthetic Aperture Radar (DInSAR) can be considered as an efficient and cost effective technique for monitoring land subsidence due to its large spatial coverage and high accuracy provided. The recent commissioning of the first Sentinel-1 satellite offers improved support to operational surveys using DInSAR due to regular observations from a wide-area product. In this paper we show the results of an intermittent small-baseline subset (ISBAS) time-series analysis of 18 Interferometric Wide swath (IW) products of a 39,000 km2 area of Mexico acquired between 3 October 2014 and 7 May 2015 using the Terrain Observation with Progressive Scans in azimuth (TOPS) imaging mode. The ISBAS processing was based upon the analysis of 143 small-baseline differential interferograms. After the debursting, merging and deramping steps necessary to process Sentinel-1 IW products, the method followed a standard approach to the DInSAR analysis. The Sentinel-1 ISBAS results confirm the magnitude and extent of the deformation that was observed in Mexico City, Chalco, Ciudad Nezahualcóyotl and Iztapalapa by other C-band and L-band DInSAR studies during the 1990s and 2000s. Subsidence velocities from the Sentinel-1 analysis are, in places, in excess of −24 cm/year along the satellite line-of-sight, equivalent to over ∼40 cm/year vertical rates. This paper demonstrates the potential of Sentinel-1 IW TOPS imagery to support wide-area DInSAR surveys over what is a very large and diverse area in terms of land cover and topography.  相似文献   

6.
为获取芦山地震前后川滇地区地壳的形变特征,利用陆态网2009—2013年和2014—2016年两期全球卫星导航系统(GNSS)水平速度场资料分别计算并对比分析了地震发生前后主应变率场、最大剪应变率场、面膨胀率场及基线长度的变化情况。结果显示芦山地震之前龙门山断裂带主要以压缩应变为主,面压缩应变和最大剪应变均处于高值区,震后能量部分释放,压缩形变程度减弱,但其西南方向的安宁河断裂带和鲜水河断裂带南段出现明显的压缩应变高值区,同时南汀河断裂带附近也呈现较明显的压缩应变。岷江断裂带附近区域的压缩应变虽然减弱,但仍然没有改变它的应变状态,这可能促使了2017年九寨沟Ms7.0地震的发生。  相似文献   

7.
Seagrass habitats in subtidal coastal waters provide a variety of ecosystem functions and services and there is an increasing need to acquire information on spatial and temporal dynamics of this resource. Here, we explored the capability of IKONOS (IKO) data of high resolution (4 m) for mapping seagrass cover [submerged aquatic vegetation (%SAV) cover] along the mid-western coast of Florida, USA. We also compared seagrass maps produced with IKO data with that obtained using the Landsat TM sensor with lower resolution (30 m). Both IKO and TM data, collected in October 2009, were preprocessed to calculate water depth invariant bands to normalize the effect of varying depth on bottom spectra recorded by the two satellite sensors and further the textural information was extracted from IKO data. Our results demonstrate that the high resolution IKO sensor produced a higher accuracy than the TM sensor in a three-class % SAV cover classification. Of note is that the OA of %SAV cover mapping at our study area created with IKO data was 5–20% higher than that from other studies published. We also examined the spatial distribution of seagrass over a spatial range of 4–240 m using the Ripley’s K function [L(d)] and IKO data that represented four different grain sizes [4 m (one IKO pixel), 8 m (2 × 2 IKO pixels), 12 m (3 × 3 IKO pixels), and 16 m (4 × 4 IKO pixels)] from moderate-dense seagrass cover along a set of six transects. The Ripley’s K metric repeatedly indicated that seagrass cover representing 4 m × 4 m pixels displayed a dispersed (or slightly dispersed) pattern over distances of <4–8 m, and a random or slightly clustered pattern of cover over 9–240 m. The spatial pattern of seagrass cover created with the three additional grain sizes (i.e., 2 × 24 m IKO pixels, 3 × 34 m IKO pixels, and 4 × 4 m IKO pixels) show a dispersed (or slightly dispersed) pattern across 4–32 m and a random or slightly clustered pattern across 33–240 m. Given the first report on using satellite observations to quantify seagrass spatial patterns at a spatial scale from 4 m to 240 m, our novel analyses of moderate-dense SAV cover utilizing Ripley’s K function illustrate how data obtained from the IKO sensor revealed seagrass spatial information that would be undetected by the TM sensor with a 30 m pixel size. Use of the seagrass classification scheme here, along with data from the IKO sensor with enhanced resolution, offers an opportunity to synoptically record seagrass cover dynamics at both small and large spatial scales.  相似文献   

8.
Image composites are often used for earth surface phenomena studies at regional or national level. The compromise between residual clouds and the length of compositing period is a necessary corollary to the choice of satellite optical data for monitoring earth surface phenomena dynamics. This paper introduced a methodology for estimating availability of cloud-free image composites for optical sensors with various revisiting intervals, using MODIS MOD06 L2 cloud fraction product in the period of 2000–2008. The methodology starts with downscaling of the cloud fraction product to 1 km × 1 km cloud cover binary images. The binary images are then used for the exploration of spatial and temporal characteristics of cloud dynamics, and subsequently for the simulation of cloud-free composite availability with various revisiting intervals of optical sensors. Using Canada's southern provinces as an application case, the study explored several factors important for the design of environmental monitoring system using optical sensors of earth observation, in particular, cloud dynamics and its inter-annual variability, sensors’ revisiting intervals, and cloud-free threshold for targeting composites. While the cloud images used in the analysis are at 1 km × 1 km resolution, our analysis suggests that the simulated availabilities of cloud-free image composites may also provide reasonable estimates for optical sensors with higher than 1 km × 1 km resolution, though the closer to 1 km × 1 km resolution the optical sensor, the more pertinent the application. Also, the methodology can be parameterised to different temporal period and different spatial region, depending on applications.  相似文献   

9.
InSAR (interferometric synthetic aperture radar) techniques are applied to investigate last two decades of surface deformation of the Cerro Blanco/Robledo Caldera (CBRC). The objective is the identification of deforming patterns that alter the shape of these complex structures when they show low or null activity. The joint analysis between results by using different methods over a long time span, represents a unique opportunity to improve knowledge of volcanic structures located in remote area and, for this, poorly or not monitored.In this work we identify displacement patterns over the volcanic area, by using both classical differential InSAR analysis, and A-InSAR (advanced InSAR) analysis based on SAR data acquired by ERS-1/2 and ENVISAT sensors during the 1996–2010 time interval. The satellite-derived information allows us to characterize the deformation pattern that affected the CBRC and shows that the actively deforming CBRC is subsiding in the observed period. In order to figure out the deformation history of CBRC, we analyzed the four sub-periods 1992–1996, 1996–2000, and 2005–2010 by using standard differential InSAR technique, and the interval 2003–2007 by adopting an A-InSAR technique.Subsidence velocities of the CBRC caldera are about 2.6 cm/yr in the time interval 1992–1996 (measured with ERS descending data), 1.8 cm/yr in 1996–2000 (ERS descending data), 1.2 cm/yr in 2003–2007 (ENVISAT descending data), and finally, 0.87 cm/yr in 2005–2010 (ENVISAT ascending data). Moreover, outside the caldera and in particular in the NW area, we observe the presence of positive velocity values. Results show that: (a) a decreasing subsidence rate might be related to the reduction of volcanic activity in correspondence of the CBRC; (b) positive velocity signal, decreasing with time, might be interpreted as follows: – evidence of volcano structure lateral spreading, according to the velocity pattern distribution in this area and to the relative local flanks topographic convexity of the volcano structure; – uplift signal of this sector of mountain chain; – combination of the two mechanisms above.  相似文献   

10.
Land subsidence in the Bandung basin, West Java, Indonesia, is characterized based on differential interferometric synthetic aperture radar (DInSAR) and interferometric point target analysis (IPTA). We generated interferograms from 21 ascending SAR images over the period 1 January 2007 to 3 March 2011. The estimated subsidence history shows that subsidence continuously increased reaching a cumulative 45 cm during this period, and the linear subsidence rate reached ∼12 cm/yr. This significant subsidence occurred in the industrial and densely populated residential regions of the Bandung basin where large amounts of groundwater are consumed. However, in several areas the subsidence patterns do not correlate with the distribution of groundwater production wells and mapped aquifer degradation. We conclude that groundwater production controls subsidence, but lithology is a counteracting factor for subsidence in the Bandung basin. Moreover, seasonal trends of nonlinear surface deformations are highly related with the variation of rainfall. They indicate that there is elastic expansion (rebound) of aquifer system response to seasonal-natural recharge during rainy season.  相似文献   

11.
Soil respiration (Rs) data from 45 plots were used to estimate the spatial patterns of Rs during the peak growing seasons of winter wheat and summer maize in Julu County, North China, by combining satellite remote sensing data, field-measured data, and a support vector regression (SVR) model. The observed Rs values were well reproduced by the model at the plot scale, with a root-mean-square error (RMSE) of 0.31 μmol CO2 m−2 s−1 and a coefficient of determination (R2) of 0.73. No significant difference was detected between the prediction accuracy of the SVR model for winter wheat and summer maize. With forcing from satellite remote sensing data and gridded soil property data, we used the SVR model to predict the spatial distributions of Rs during the peak growing seasons of winter wheat and summer maize rotation croplands in Julu County. The SVR model captured the spatial variations of Rs at the county scale. The satellite-derived enhanced vegetation index was found to be the most important input used to predict Rs. Removal of this variable caused an RMSE increase from 0.31 μmol CO2 m−2 s−1 to 0.42 μmol CO2 m−2 s−1. Soil properties such as soil organic carbon (SOC) content and soil bulk density (SBD) were the second most important factors. Their removal led to an RMSE increase from 0.31 μmol CO2 m−2 s−1 to 0.37 μmol CO2 m−2 s−1. The SVR model performed better than multiple regression in predicting spatial variations of Rs in winter wheat and summer maize rotation croplands, as shown by the comparison of the R2 and RMSE values of the two algorithms. The spatial patterns of Rs are better captured using the SVR model than performing multiple regression, particularly for the relatively high and relatively low Rs values at the center and northeast study areas. Therefore, SVR shows promise for predicting spatial variations of Rs values on the basis of remotely sensed data and gridded soil property data at the county scale.  相似文献   

12.
Timber production is the purpose for managing plantation forests, and its spatial and quantitative information is critical for advising management strategies. Previous studies have focused on growing stock volume (GSV), which represents the current potential of timber production, yet few studies have investigated historical process-harvested timber. This resulted in a gap in a synthetical ecosystem service assessment of timber production. In this paper, we established a Management Process–based Timber production (MPT) framework to integrate the current GSV and the harvested timber derived from historical logging regimes, trying to synthetically assess timber production for a historical period. In the MPT framework, age-class and current GSV determine the times of historical thinning and the corresponding harvested timber, by using a “space-for-time” substitution. The total timber production can be estimated by the historical harvested timber in each thinning and the current GSV. To test this MPT framework, an empirical study on a larch plantation (LP) with area of 43,946 ha was conducted in North China for a period from 1962 to 2010. Field-based inventory data was integrated with ALOS PALSAR (Advanced Land-Observing Satellite Phased Array L-band Synthetic Aperture Radar) and Landsat-8 OLI (Operational Land Imager) data for estimating the age-class and current GSV of LP. The random forest model with PALSAR backscatter intensity channels and OLI bands as input predictive variables yielded an accuracy of 67.9% with a Kappa coefficient of 0.59 for age-class classification. The regression model using PALSAR data produced a root mean square error (RMSE) of 36.5 m3 ha−1. The total timber production of LP was estimated to be 7.27 × 106 m3, with 4.87 × 106 m3 in current GSV and 2.40 × 106 m3 in harvested timber through historical thinning. The historical process-harvested timber accounts to 33.0% of the total timber production, which component has been neglected in the assessments for current status of plantation forests. Synthetically considering the RMSE for predictive GSV and misclassification of age-class, the error in timber production were supposed to range from −55.2 to 56.3 m3 ha−1. The MPT framework can be used to assess timber production of other tree species at a larger spatial scale, providing crucial information for a better understanding of forest ecosystem service.  相似文献   

13.
Heavy metals contaminated soils and water will become a major environmental issue in the mining areas. This paper intends to use field hyper-spectra to estimate the heavy metals in the soil and water in Wan-sheng mining area in Chongqing. With analyzing the spectra of soil and water, the spectral features deriving from the spectral of the soils and water can be found to build the models between these features and the contents of Al, Cu and Cr in the soil and water by using the Stepwise Multiple Linear Regression (SMLR). The spectral features of Al are: 480 nm, 500 nm, 565 nm, 610 nm, 680 nm, 750 nm, 1000 nm, 1430 nm, 1755 nm, 1887 nm, 1920 nm, 1950 nm, 2210 nm, 2260 nm; The spectral features of Cu are: 480 nm, 500 nm, 610 nm, 750 nm, 860 nm, 1300 nm, 1430 nm, 1920 nm, 2150 nm, 2260 nm; And the spectral features of Cr are: 480 nm, 500 nm, 610 nm, 715 nm, 750 nm, 860 nm, 1300 nm, 1430 nm, 1755 nm, 1920 nm, 1950 nm. With these features, the best models to estimate the heavy metals in the study area were built according to the maximal R2. The R2 of the models of estimating Al, Cu and Cr in the soil and water are 0.813, 0.638, 0.604 and 0.742, 0.584, 0.513 respectively. And the gradient maps of these three types of heavy metals’ concentrations can be created by using the Inverse distance weighted (IDW).The gradient maps indicate that the heavy metals in the soil have similar patterns, but in the North-west of the streams in the study area, the contents are of great differences. These results show that it is feasible to predict contaminated heavy metals in the soils and streams due to mining activities by using the rapid and cost-effective field spectroscopy.  相似文献   

14.
Mapping forest aboveground biomass (AGB) has become an important task, particularly for the reporting of carbon stocks and changes. AGB can be mapped using synthetic aperture radar data (SAR) or passive optical data. However, these data are insensitive to high AGB levels (>150 Mg/ha, and >300 Mg/ha for P-band), which are commonly found in tropical forests. Studies have mapped the rough variations in AGB by combining optical and environmental data at regional and global scales. Nevertheless, these maps cannot represent local variations in AGB in tropical forests. In this paper, we hypothesize that the problem of misrepresenting local variations in AGB and AGB estimation with good precision occurs because of both methodological limits (signal saturation or dilution bias) and a lack of adequate calibration data in this range of AGB values. We test this hypothesis by developing a calibrated regression model to predict variations in high AGB values (mean >300 Mg/ha) in French Guiana by a methodological approach for spatial extrapolation with data from the optical geoscience laser altimeter system (GLAS), forest inventories, radar, optics, and environmental variables for spatial inter- and extrapolation. Given their higher point count, GLAS data allow a wider coverage of AGB values. We find that the metrics from GLAS footprints are correlated with field AGB estimations (R2 = 0.54, RMSE = 48.3 Mg/ha) with no bias for high values. First, predictive models, including remote-sensing, environmental variables and spatial correlation functions, allow us to obtain “wall-to-wall” AGB maps over French Guiana with an RMSE for the in situ AGB estimates of ∼50 Mg/ha and R2 = 0.66 at a 1-km grid size. We conclude that a calibrated regression model based on GLAS with dependent environmental data can produce good AGB predictions even for high AGB values if the calibration data fit the AGB range. We also demonstrate that small temporal and spatial mismatches between field data and GLAS footprints are not a problem for regional and global calibrated regression models because field data aim to predict large and deep tendencies in AGB variations from environmental gradients and do not aim to represent high but stochastic and temporally limited variations from forest dynamics. Thus, we advocate including a greater variety of data, even if less precise and shifted, to better represent high AGB values in global models and to improve the fitting of these models for high values.  相似文献   

15.
This study focuses on the calibration of the effective vegetation scattering albedo (ω) and surface soil roughness parameters (HR, and NRp, p = H,V) in the Soil Moisture (SM) retrieval from L-band passive microwave observations using the L-band Microwave Emission of the Biosphere (L-MEB) model. In the current Soil Moisture and Ocean Salinity (SMOS) Level 2 (L2), v620, and Level 3 (L3), v300, SM retrieval algorithms, low vegetated areas are parameterized by ω = 0 and HR = 0.1, whereas values of ω = 0.06 − 0.08 and HR = 0.3 are used for forests. Several parameterizations of the vegetation and soil roughness parameters (ω, HR and NRp, p = H,V) were tested in this study, treating SMOS SM retrievals as homogeneous over each pixel instead of retrieving SM over a representative fraction of the pixel, as implemented in the operational SMOS L2 and L3 algorithms. Globally-constant values of ω = 0.10, HR = 0.4 and NRp = −1 (p = H,V) were found to yield SM retrievals that compared best with in situ SM data measured at many sites worldwide from the International Soil Moisture Network (ISMN). The calibration was repeated for collections of in situ sites classified in different land cover categories based on the International Geosphere-Biosphere Programme (IGBP) scheme. Depending on the IGBP land cover class, values of ω and HR varied, respectively, in the range 0.08–0.12 and 0.1–0.5. A validation exercise based on in situ measurements confirmed that using either a global or an IGBP-based calibration, there was an improvement in the accuracy of the SM retrievals compared to the SMOS L3 SM product considering all statistical metrics (R = 0.61, bias = −0.019 m3 m−3, ubRMSE = 0.062 m3 m−3 for the IGBP-based calibration; against R = 0.54, bias = −0.034 m3 m−3 and ubRMSE = 0.070 m3 m−3 for the SMOS L3 SM product). This result is a key step in the calibration of the roughness and vegetation parameters in the operational SMOS retrieval algorithm. The approach presented here is the core of a new forthcoming SMOS optimized SM product.  相似文献   

16.
We developed a method to produce a 3-D voxel-based solid model of a tree based on portable scanning lidar data for accurate estimation of the volume of the woody material. First, we obtained lidar measurements with a high laser pulse density from several measurement positions around the target, a Japanese zelkova tree. Next, we converted lidar-derived point-cloud data for the target into voxels. The voxel size was 0.5 cm × 0.5 cm × 0.5 cm. Then, we used differences in the spatial distribution of voxels to separate the stem and large branches (diameter > 1 cm) from small branches (diameter  1 cm). We classified the voxels into sets corresponding to the stem and to each large branch and then interpolated voxels to fill out their surfaces and their interiors. We then merged the stem and large branches with the small branches. The resultant solid model of the entire tree was composed of consecutive voxels that filled the outer surface and the interior of the stem and large branches, and a cloud of voxels equivalent to small branches that were discretely scattered in mainly the upper part of the target. Using this model, we estimated the woody material volume by counting the number of voxels in each part and multiplying the number of voxels by the unit voxel volume (0.13 cm3). The percentage error of the volume of the stem and part of a large branch was 0.5%. The estimation error of a certain part of the small branches was 34.0%.  相似文献   

17.
Image classification using multispectral sensors has shown good performance in detecting macrophytes at the species level. However, species level classification often does not utilize the texture information provided by high resolution images. This study investigated whether image texture provides useful vector(s) for the discrimination of monospecific stands of three floating macrophyte species in Quickbird imagery of the South Nation River. Semivariograms indicated that window sizes of 5 × 5 and 13 × 13 pixels were the most appropriate spatial scales for calculation of the grey level co-occurrence matrix and subsequent texture attributes from the multispectral and panchromatic bands. Of the 214 investigated vectors (13 Haralick texture attributes * 15 bands + 9 spectral bands + 10 transformations/indices), feature selection determined which combination of spectral and textural vectors had the greatest class separability based on the Mann–Whitney U-test and Jefferies–Matusita distance. While multispectral red and near infrared (NIR) performed satisfactorily, the addition of panchromatic-dissimilarity slightly improved class separability and the accuracy of a decision tree classifier (Kappa: red/NIR/panchromatic-dissimilarity – 93.2% versus red/NIR – 90.4%). Class separability improved by incorporating a second texture attribute, but resulted in a decrease in classification accuracy. The results suggest that incorporating image texture may be beneficial for separating stands with high spatial heterogeneity. However, the benefits may be limited and must be weighed against the increased complexity of the classifier.  相似文献   

18.
Inventories of mixed broad-leaved forests of Iran mainly rely on terrestrial measurements. Due to rapid changes and disturbances and great complexity of the silvicultural systems of these multilayer forests, frequent repetition of conventional ground-based plot surveys is often cost prohibitive. Airborne laser scanning (ALS) and multispectral data offer an alternative or supplement to conventional inventories in the Hyrcanian forests of Iran. In this study, the capability of a combination of ALS and UltraCam-D data to model stand volume, tree density, and basal area using random forest (RF) algorithm was evaluated. Systematic sampling was applied to collect field plot data on a 150 m × 200 m sampling grid within a 1100 ha study area located at 36°38′- 36°42′N and 54°24′–54°25′E. A total of 308 circular plots (0.1 ha) were measured for calculation of stand volume, tree density, and basal area per hectare. For each plot, a set of variables was extracted from both ALS and multispectral data. The RF algorithm was used for modeling of the biophysical properties using ALS and UltraCam-D data separately and combined. The results showed that combining the ALS data and UltraCam-D images provided a slight increase in prediction accuracy compared to separate modeling. The RMSE as percentage of the mean, the mean difference between observed and predicted values, and standard deviation of the differences using a combination of ALS data and UltraCam-D images in an independent validation at 0.1-ha plot level were 31.7%, 1.1%, and 84 m3 ha−1 for stand volume; 27.2%, 0.86%, and 6.5 m2 ha−1 for basal area, and 35.8%, −4.6%, and 77.9 n ha−1 for tree density, respectively. Based on the results, we conclude that fusion of ALS and UltraCam-D data may be useful for modeling of stand volume, basal area, and tree density and thus gain insights into structural characteristics in the complex Hyrcanian forests.  相似文献   

19.
Forest cover disturbances due to processes such as logging and forest fires are a widespread issue especially in the tropics, and have heavily affected forest biomass and functioning in the Brazilian Amazon in the past decades. Satellite remote sensing has played a key role for assessing logging activities in this region; however, there are still remaining challenges regarding the quantification and monitoring of these processes affecting forested lands. In this study, we propose a new method for monitoring areas affected by selective logging in one of the hotspots of Mato Grosso state in the Brazilian Amazon, based on a combination of object-based and pixel-based classification approaches applied on remote sensing data. Logging intensity and changes over time are assessed within grid cells of 300 m × 300 m spatial resolution. Our method encompassed three main steps: (1) mapping forest/non-forest areas through an object-based classification approach applied to a temporal series of Landsat images during the period 2000–2015, (2) mapping yearly logging activities from soil fraction images on the same Landsat data series, and (3) integrating information from previous steps within a regular grid-cell of 300 m × 300 m in order to monitor disturbance intensities over this 15-years period. The overall accuracy of the baseline forest/non-forest mask (year 2000) and of the undisturbed vs disturbed forest (for selected years) were 93% and 84% respectively. Our results indicate that annual forest disturbance rates, mainly due to logging activities, were higher than annual deforestation rates during the whole period of study. The deforested areas correspond to circa 25% of the areas affected by forest disturbances. Deforestation rates were highest from 2001 to 2005 and then decreased considerably after 2006. In contrast, the annual forest disturbance rates show high temporal variability with a slow decrease over the 15-year period, resulting in a significant increase of the ratio between disturbed and deforested areas. Although the majority of the areas, which have been affected by selective logging during the period 2000–2014, were not deforested by 2015, more than 70% of the deforested areas in 2015 had been at least once identified as disturbed forest during that period.  相似文献   

20.
This paper presents an extended model for describing topological relations between two sets (objects) in geographic information systems (GIS). First, based on the definition of the topological relations between two objects, we uncover a sequence of topological relations between two convex sets.Second, an extended model for topological relations between two sets is proposed based on the new definition. The topological relations between two convex sets are expressed as a sequence of 4 × 4 matrices, which are the topological properties of Ao  Bo, Ao\B, Bo\A, ∂A  ∂B. The model is also extended for handling the properties of the topological relations between two non-convex sets, where the factor of first fundamental group is added to A  B to handle these complex relations.The results show that the number of topological relations between the two sets is not as simple as finite but infinite and can be approximated by a sequence of matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号