首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Previous studies have shown that use of cross walls in deep excavations can reduce the wall deflection to a very small amount. However, design of cross walls is costly because the deflection behavior of the diaphragm wall with cross walls is in nature three dimensional. The objective of this study was to establish a simplified approach used as a first approximation to design cross walls such that the lateral wall deflection can satisfy a design criterion. A series of parametric studies using a three-dimensional numerical method was performed to obtain the influence factors on wall deflections, including excavation geometry, wall system stiffness, axial stiffness of strut, axial stiffness of the cross wall, normalized undrained shear strength of clay and the cross wall depth. Then, a simplified formula for predicting the wall deflection for excavations without and with cross walls was established using multivariate regression analysis, respectively. The formulas were validated through 36 excavation cases without cross walls and 12 cases with cross walls. The simplified formulas can be used to develop a spreadsheet that estimates the cross wall sizes and intervals based on the entered excavation geometry, material properties of retaining-strut system, in situ undrained shear strength and tolerable wall deflection. The estimated cross wall sizes and intervals should be verified by an appropriate full numerical analysis.  相似文献   

2.
Several case studies have revealed that the installation of cross walls in excavations can effectively reduce the amount of wall deflection and ground settlement. However, the behaviour of the diaphragm wall due to the installation of the cross walls is still unclear. This study performed a series of 3D numerical studies of wall deflections for deep excavations with cross walls and studied the effects on the wall deflection of several parameters, including the number of cross walls, the distance to the cross wall, the cross wall interval, the cross wall height and the cross wall embedment. The results presented in this study can be used as a first approximation for cases in which cross walls are designed to reduce the wall deflection induced by deep excavation.  相似文献   

3.
Installation of buttress walls against diaphragm walls has been used as an alternative measure for the protection of adjacent buildings during excavation, but their mechanism in reducing movements has not yet been fully understood. This study performs three-dimensional finite element analyses of two excavation case histories, one in clay with T-shape buttress walls and another in dominant sand with rectangular buttress walls, to establish analysis model. Then, a series of parametric study were performed by varying soil types, types and length of buttress walls based on the above-mentioned excavations. Results show that the mechanism of buttress walls in reducing wall deflections mainly came from the frictional resistance between the side surface of buttress wall and adjacent soil rather than from the combined bending stiffness from diaphragm and buttress walls. The buttress wall with a length <2.0 m had a poor effect in reducing the wall deflection because the soil adjacent to the buttress wall had almost the same amount of movement as the buttress wall, causing the frictional resistance little mobilized. Since the frictional resistance of buttress walls in a deep excavation has fully been mobilized prior to the final excavation depth, the efficiency of buttress walls in reducing the wall deflection in a deep excavation was much less than that in a shallow excavation. Rectangular shape of buttress walls was of a better effect than T-shape in the shallow excavation because frictional resistance between buttress walls and adjacent soil played a major role in reducing the wall deflection rather than bearing resistance of the flange. When the excavation went deeper, the difference in reducing the wall deflection between the R-shape and T-shape became small.  相似文献   

4.
A series of three-dimensional finite element analyses of deep excavations with the integrated system between buttress walls and diaphragm walls was conducted to investigate the effect of the buttress wall intervals, treatments, locations, height, and thickness on limiting deformations induced by deep excavation. The integrated retaining system was formed by maintaining buttress walls when soil was excavated. The wall deflection control mechanism of the integrated retaining system mainly came from the combined stiffness between the buttress wall and the diaphragm wall. In addition, the ground settlement control mechanism came from the combined stiffness between the buttress wall and the diaphragm wall, and the frictional resistance between the buttress wall and the surrounding soil. For achieving 50% reduction in the wall deflection and the ground surface settlement, the length and intervals of buttress walls that were applied to the integrated retaining system were at least 4 and 8 m, respectively. When the deflection at the diaphragm wall head was well restrained, for example, by the floor slab, the position of the buttress wall head could be located at a depth the diaphragm wall starts to bulge out. In such a case, the performance between the full height and limited height of buttress walls was quite close. Furthermore, a new well-documented excavation project was analyzed to verify the performance of the integrated retaining system. Results showed that the integrated retaining system worked excellently if the joints between buttress walls and diaphragm walls were constructed properly.  相似文献   

5.
基坑开挖时邻近桩基性状的数值分析   总被引:9,自引:1,他引:8  
陈福全  汪金卫  刘毓氚 《岩土力学》2008,29(7):1971-1976
基坑开挖时尤为关注的问题是土体侧向移动对邻近桩基的不利影响,土体的侧向移动使邻近桩基产生侧向位移和附加应力及弯矩,甚至可能使上部建筑物功能失效。采用土工有限元软件Plaxis 8.2对内支撑排桩支护基坑开挖过程进行数值模拟,分析了基坑开挖时对邻近桩基的各种影响因素,包括单排桩、双排桩在不同开挖深度、支护桩的刚度、桩基刚度、桩基距基坑开挖面距离、桩身的约束和桩长条件下桩身水平位移和弯矩的变化特性。  相似文献   

6.
Finite-element modeling of a complex deep excavation in Shanghai   总被引:2,自引:0,他引:2  
The excavation of the north square underground shopping center of Shanghai South Railway Station is a complex deep excavation using the top-down construction method. The excavation has a considerable size and is close to the operating Metro Lines. In order to predict the performance of the excavation more accurately, 3D finite-element analyses are conducted to simulate the construction of this complex excavation. The effects of the anisotropic soil stiffness, the adjacent excavation, and zone excavation on the wall deformation are investigated. It is shown that the numerical simulation with anisotropic soil stiffness yields a more reasonable prediction of the wall deflection than the case with isotropic soil stiffness. The deformation of the shared diaphragm wall between two excavations is influenced by the construction sequence of the two excavations. The zoned excavation can greatly reduce the diaphragm wall deformation. However, only the zoned excavation at the first excavation stage affects the deformation of the walls significantly. When the depth of the excavation increases, the zoned excavation has minor effect on the deformation of diaphragm walls.  相似文献   

7.
Three-dimension finite element analyses of deep excavations with buttress walls were performed to evaluate the effect of buttress wall shapes on limiting movements induced by deep excavation. Results showed that a combination of the rectangular and the capital L-letter shapes (RL-shape) yielded the greatest performance in reducing wall deflections and ground surface settlements. The main deformation-control mechanism mainly came from the horizontal and vertical frictional resistances of buttress walls against adjacent soils which were pushed by wall deflections and the soil heave at the excavation bottom, respectively. Besides, the RL-shape buttress walls were successfully verified through a well-documented case history.  相似文献   

8.
Numerous studies have been devoted to the performance of excavations and adjacent facilities. In contrast, few studies have focused on retaining wall deflections induced by pre-excavation dewatering. However, considerable inward cantilever deflections were observed for a diaphragm wall in a pre-excavation dewatering test based on a long and narrow metro excavation, and the maximum deflection reached 10 mm (37.6% of the allowable wall deflection for the project). Based on the test results, a three-dimensional soil–fluid coupled finite element model was established and used to study the mechanism of the dewatering-induced diaphragm wall deflections. Numerical results indicated that the diaphragm wall deflection results from three factors: (1) the seepage force around the dewatering well and the soil–wall interaction caused the inward horizontal displacement of the soil inside the excavation; (2) the reduced total earth pressure on the excavated side of the diaphragm wall above approximately 1/2 of the maximum dewatering depth disequilibrated the original earth pressure on both sides of the diaphragm wall; and (3) the different negative friction on the excavated and retained sides of the diaphragm wall led to the rotation of the diaphragm wall into the excavation.  相似文献   

9.
To utilize space more effectively for constructing apartments, roads, infrastructure, etc., excavation work is typically found in slope areas. An anchored retention wall has been installed because of the presence of soil slopes behind the walls and unsymmetrical excavation sections. An instrumentation system is normally applied on the anchored retention walls of slopes to observe and estimate lateral earth pressure acting on anchored walls. The earth pressure acting on the wall is decreased with increasing the deformation of the wall during the progress of excavation work. An earth pressure diagram acting on the anchored walls can be presented approximately as a trapezoid. The earth pressure at the ground surface is larger than zero. Also, the earth pressure is increased linearly from the ground surface to 15% of total excavation depth and then keeps constant. The earth pressure acting on the anchored retention walls installed on the cut slope is higher than that of the horizontal ground surface behind the wall, owing to the surcharge load of the slope soils.  相似文献   

10.
以广州地铁9号线在岩溶地区施工深基坑为例,研究岩溶地层基坑施工对周围环境的影响。该车站基坑长259.7 m,宽18.7 m,深15.8 m。基坑深度范围内包括溶洞和砂层,溶洞地层富水、稳定性差、物理力学性质差,砂层厚0~15 m,有较大的渗透性,基坑施工过程中对地下连续墙的侧向位移和地面沉降进行了监测。监测结果表明,基坑开挖结束时地下连续墙的最大侧向位移为12 mm,地面沉降的最大值为10.1 mm,基坑开挖过程中对周围环境的影响很小。研究成果可为今后类似工程施工提供经验借鉴。  相似文献   

11.
The scopes of this work are to study the mechanisms of load transfer and the deformations of the ground during slurry trenching and concreting in dry sand and to evaluate their effects on service structural loads, wall deflections and ground displacements behind the wall caused by subsequent excavation. A series of three-dimensional finite element analyses was carried out modelling the installation of diaphragm walls consisting of panels of different length. The soil was modelled as either linearly elastic-perfectly plastic or incrementally non-linear (hypoplastic) with elastic strain range. Plane strain analyses of diaphragm walls of identical cross section were also carried out in which wall installation was either modelled or the wall was wished in place (WIP). The analyses predict ground movements consistent with the experimental observations both in magnitude and trend. The results also show that the maximum horizontal wall deflections and structural loads reduce with increasing panel aspect ratio towards a minimum which is about twice the value computed for WIP analyses. Panel aspect ratios should be larger than about three to take advantage of the three-dimensional effects. The pattern and magnitude of surface vertical displacements obtained from linearly elastic-perfectly plastic analyses, no matter whether three- or two-dimensional, are unrealistic.  相似文献   

12.
Lim  Aswin  Ou  Chang-Yu  Hsieh  Pio-Go 《Acta Geotechnica》2020,15(6):1557-1576

This paper presents a novel strut-free earth retaining wall system for excavation in soft clay, referred to as the rigid and fixed diaphragm (RFD) wall retaining system. The RFD system is comprised of four main structures—diaphragm walls, rib-walls, cross walls, and buttress walls—and a complementary structure—the cap-slab. The characteristics of the RFD system are: (1) the formation of a continuous earth retaining wall by constructing diaphragm walls along the circumference of the excavated zone; (2) the formation of a rigid and fixed retaining wall system by a series of rib-walls and cross walls; and (3) the formation of a rigid retaining wall by buttress walls and the cap-slab. Furthermore, the performance and mechanisms of the RFD system were investigated carefully through three-dimensional finite element analyses. The results demonstrated that the system stiffness of the RFD system was a major factor controlling deformations induced by excavation. Moreover, the excavation geometry determined the dimension of each component of the RFD system.

  相似文献   

13.
临近既有地铁车站的基坑变形性状研究   总被引:1,自引:0,他引:1  
朱炎兵  周小华  魏仕锋  谭勇 《岩土力学》2013,34(10):2997-3002
通过36组二维有限元数值模拟,研究了不同参数(基坑与地铁车站距离D,基坑开挖深度 )组合下临近既有地铁车站的基坑变形性状,并与邻近无车站时的基坑变形性状进行对比分析。研究结果表明:(1)当邻近存在地铁车站时,靠近车站一侧的地下连续墙最大侧移量减小,另一侧的地下连续墙最大侧移量增加;(2)当基坑开挖深度接近或超过地铁车站底板埋深时,车站对远离车站侧的基坑墙后地表沉降的影响显著,但不明显改变地表沉降影响范围和最大沉降值位置;(3)D较小时,随着 的增大,地铁车站的“遮拦效应”越来越显著。而当D逐渐增大时, 对地铁车站“遮拦效应”的影响逐渐减弱。(4)地铁车站的存在与否对基坑远离车站侧最大地表沉降和最大地下连续墙侧移的比值(δevm / δehm)几乎没有影响,并且,该值受D与 的影响较小。  相似文献   

14.
张建新  刘双菊  周嘉宾 《岩土力学》2010,31(Z2):218-223
以天津站交通枢纽深基坑工程为背景,基于开挖实测资料和数值模拟计算结果对比,对超深逆作基坑开挖卸荷引起的立柱桩隆沉、地下连续墙变形和层板变形进行了分析。结果表明,随着基坑的开挖,立柱桩与地连墙在竖直方向有一定隆起,中间柱的隆起量总体偏大;立柱桩间、立柱桩与地连墙间的差异变形随开挖的加深而持续增加,后者超过了设计控制预警值。地连墙水平位移沿深度呈近似的“弓形”曲线,坑口处有向坑外的侧移;水平位移最大值较顺作开挖小,出现的位置约为基坑开挖面以上1/2~1/3坑深处,与顺作法发生在基底开挖面附近有显著不同。水平层板竖向变形以隆起为主,最大竖向隆起出现在顶板中间区域的支撑柱附近。与此同时,文中还讨论了桩柱变形设计控制标准问题。  相似文献   

15.
Deep excavations particularly in deep deposits of soft clay can cause excessive ground movements and result in damage to adjacent buildings. Extensive plane strain finite element analyses considering the small strain effect have been carried out to examine the wall deflections for excavations in soft clay deposits supported by retaining walls and bracing. The excavation geometry, soil strength and stiffness properties, and the wall stiffness were varied to study the wall deflection behavior. Based on these results, a simple Polynomial Regression (PR) model was developed for estimating the maximum wall deflection. Wall deflections computed by this method compare favorably with a number of field and published records.  相似文献   

16.
南京德基广场二期工程位于南京市中心区域,主楼区普遍开挖深度21.50m,附楼区普遍开挖深度19.70m,基坑开挖深度较深,基坑面积巨大.本文通过分析该工程的建筑结构方案、场地的工程地质条件和水文地质条件、周边环境等因素,提出了基坑周边全部采用两墙合一的地下连续墙作为基坑围护结构,并且附楼逆作法施工,结合主楼顺作法施工的设计方案.在此基础上,本文提出了相应的地铁隧道保护措施.另外本文采用通用有限元分析软件,取邻近地铁侧的典型剖面计算基坑开挖对地铁隧道的影响,计算结果显示该工程采用逆作法施工对周围环境影响较小,能满足地铁运营对隧道变形提出的要求.本文对采用逆作法施工的工程具有一定的指导意义.  相似文献   

17.
何军涛  张洁  黄宏伟  张应刚 《岩土力学》2012,33(12):3810-3817
基坑变形的反分析涉及数值模型与优化方法的耦合,常具有计算量大、使用不方便的特点。为此,提出1种可用于基坑变形反分析的多重响应面法,该方法在基坑地下连续墙不同深度处分别采用二次多项式表示地下连续墙水平位移与土层弹性模量之间的隐式关系,在此基础上利用位移观测对基坑土层弹性模量进行反分析。该方法可以解开数值模型和优化算法的耦合,从而具有较高的计算效率。工程应用实例表明,多重响应面法对基坑土层弹性模量进行反分析具有使用方便、计算效率高、计算结果准确的优点,非常适合求解基坑工程的位移反演问题。  相似文献   

18.
由于成因及地域性的差异,宁波软土具有鲜明的特点,深基坑变形特性也有别于其它软土地区。在国内外研究基础上,本文结合宁波轨道交通1号线基坑工程,对13个车站地下连续墙深基坑监测数据进行统计分析。从基坑围护结构水平位移和墙后地表沉降两个方面对基坑变形特性进行了研究,结果表明:宁波地区地下连续墙的最大侧移介于0.18%H和0.80%H之间,平均值为0.39%H,较其它地区大,最大侧移位于开挖面附近,且随软土层厚度的增大而增大;宁波地区Fs取值1.7为宜;地表沉降主要分布于0≤d/H≤2.0范围内,最大值δvm=1.2%H,最小值δvm=0.15%H,平均值δvm=0.69%H,地表沉降较大;围护结构侧移与地表沉降关系为δvm=1.0δhm~1.8δhm。最后,结合分析结果,提出了宁波地区深基坑工程变形控制标准,可以为宁波地区及软土地区深基坑工程提供指导和借鉴作用。  相似文献   

19.

This paper presents the observed and simulated effectiveness of deep cement mixing walls created using top-down (DCM-TD) construction techniques for a deep excavation in soft Bangkok clay. The wall system consisted of four rows of 0.7-m-diameter DCM columns, and the bracing system consisted of two 0.25-m-thick basement slabs and seven temporary struts. The effectiveness of the wall system compared to that of other wall systems was evaluated using the measured results of previous case studies. A 3D numerical analysis was performed to calculate forces in the basement slabs and bending moments in the DCM wall. Finally, series of parametric analyses of both DCM-TD and deep cement mixing walls created using bottom-up (DCM-BU) construction techniques were carried out, and their results were compared to highlight the effectiveness of DCM-TD and its applicability to excavations at greater depths. The field and numerical results show that DCM-TD is more effective than DCM-BU in terms of the limitations of lateral wall movement, the bending moment in a DCM wall and the thickness of a DCM wall for various depths because of a larger system stiffness. Therefore, DCM-TD is very effective and suitable for use in potential future deep excavations in urban areas.

  相似文献   

20.
刘念武  龚晓南  俞峰  房凯 《岩土力学》2014,35(8):2293-2298
具有内支撑结构的围护系统在基坑边角处具有更大的系统刚度,使得基坑边角附近处土体的位移小于距离边角较远处土体的位移,即基坑的变形问题表现出空间特性。为了更好地研究L/He(L为沿基坑纵向方向上的距离;He为开挖深度)、开挖深度等因素对空间效应的影响,量测了两个狭长形地铁车站深基坑不同位置处土体的侧向位移、土体沉降等。通过对现场监测资料的分析发现,边角效应能够减小侧向位移的平面应变比,灌注桩围护结构、SMW工法桩围护结构和地下连续墙在边角附近处的平面应变比(PSR)分别为0.50、0.61和0.72。当平面应变比(PSR)接近于1.00时,对应的L/He值分别为2.50、6.00和4.00。随着L/He值的增大,土体的纵向最大沉降呈先增大后保持稳定的趋势。随开挖深度的增加,边角效应的影响范围呈增大的趋势。在基坑纵向沉降的空间效应中,灌注桩围护结构、SMW工法桩围护结构的土体最大沉降值达到稳定时对应的L/He值分别为2.50和5.20。土体沉降和侧向位移的空间效应有一定的相关性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号