首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
NOAA active region 6659, during its June 1991 transit across the solar disk, showed highly sheared vector magnetic field structures and produced numerous powerful flares, including five white-light flares. Photospheric vector magnetograms of this active region were obtained at the Huairou Solar Observing Station of the Beijing Astronomical Observatory. After the resolution of the 180° ambiguity of the transverse magnetic field and transformation of off-center vector magnetograms to the heliographic plane, we have determined the photospheric vertical current density and discussed the relationship with powerful flares. The following results were obtained: (a) The powerful 3B/X12 flare on June 9, 1991 was triggered by the interaction between the large-scale electric current system and magnetic flux of opposite polarity. (b) The kernels of the powerful Hβ flare (sites of the white-light flare) were close to the peaks of the vertical electric current density. (c) Some small-scale structures of the vertical current relative to the magnetic islands of opposite polarity have not been found. This probably implies that the electric current is not always parallel to the magnetic field in solar active regions.  相似文献   

2.
Zhang  H.  Labonte  B.  Li  J.  Sakurai  T. 《Solar physics》2003,213(1):87-102
We analyze the vector magnetograms in several well-developed active regions obtained at Huairou Solar Observing Station, National Astronomical Observatories of China, at Mees Solar Observatory, University of Hawaii, and at National Astronomical Observatory of Japan. It is found that there is a basic agreement on the transversal fields among these magnetographs. The observational error (mutual difference) for the transversal magnetic fields is estimated. In addition to comparison of transversal fields among different instruments, we used the morphological configurations of sunspot penumbrae in white-light and EUV 171 Å images obtained by the TRACE satellite as a reference of the orientation of transversal magnetic fields.  相似文献   

3.
During 23–28 August 1988, at the Huairou Solar Observation Station of Beijing Observatory, the full development process of the region HR 88059 was observed. It emerged near the center of the solar disk and formed a medium active region. A complete series of vector magnetograms and photospheric and chromospheric Dopplergrams was obtained. From an analysis of these data, combined with some numerical simulations, the following conclusions can be drawn. (1) The emergence of new magnetic flux from enhanced networks followed by sunspot formation is an interesting physical process which can be simply described by MHD numerical simulation. The phenomena accompanying it occur according to a definite law summarized by Zwaan (1985). The condition for gas cooling and sunspot formation seems to be transverse field strength > 50 G together with longitudinal field strength > 700 G. For a period of 4 to 5 hours, the orientation of the transverse field shows little change. The configuration of field lines may be derived from vector magnetograms. The arch filament system can be recognized as an MHD shock. (2) New opposite bipolar features emerge within the former bipolar field with an identical strength which will develop a sunspot group complex. Also, arch filament systems appear there located in the position of flux emergence. The neutral line is often pushed aside and curved, leading to faculae heating and the formation of a current sheet. In spite of complicated Dopplergrams, the same phenomena occur at the site of flux emergence as usual: upward flow appears at the location of the emerging and rapidly varying flux near the magnetic neutral line, and downdraft occurs over large parts of the legs of the emerging flux tubes. The age of magnetic emerging flux (or a sunspot) can be estimated in terms of transverse field strengths: when 50 G < transverse field < 200 G, the longitudinal magnetogram and Dopplergram change rapidly, which indicates a rigourously emerging magnetic flux. When the transverse field is between 200 and 400 G, the area concerned is in middle age, and some of the new flux is still emerging there. When the transverse field > 400 G, the variation of the longitudinal magnetogram slows down and the emerging arch becomes relatively stable and a photospheric Evershed flow forms at the penumbra of the sunspot.  相似文献   

4.
Time sequences of vector magnetograms and H filtergrams of NOAA 7469 were obtained during 4–12 April 1993 at Huairou Solar Observing Station of Beijing Astronomical Observatory. The region was characterized by the emergence of several new bipoles and the formation of active magnetic interfaces between newly emerging and pre-existing magnetic flux. Based on the 3-D magnetic lines of force, computed with the boundary element method (BEM), it has been found that the topology of magnetic lines of force changes when longitudinal magnetic fields evolve during the observing period. Two active magnetic interfaces were identified from 6 to 8 April in this region. By comparing H filtergrams with vector magnetograms of the photosphere and 3-D magnetic lines of force, it is found that many flares initiated at the active magnetic interfaces.  相似文献   

5.
The Solar Magnetism and Activity Telescope (SMAT) has been operational at Huairou Solar Observing Station since the end of 2005. Its scientific projects are the observational study of full-disc vector magnetic field and Hα chromospheric activities. In this paper, the Fourier low-frequency passing filter and the large-scale polynomials fit methods have been employed to analyse and remove the non-uniform pattern (NUP) in the full-disc Stokes V image. These methods are useful to effectively improve the quality of SMAT's data. The following main results have been obtained. (1) An intrinsic large-scale spatial distribution of NUP appears in SMAT's full-disc Stokes V image and its average amplitude accounts for 2 per cent of sunspots' field of kG. (2) NUP is testified as instrumental polarization through data reduction and observational explanation (passband shift). There are pseudo-passband shift in the wide field of view of SMAT due to NUP, and the maximum shifting value from the solar disc centre to the solar disc limb is 0.12 Å. (3) As an example, after removing SMAT's NUP in the Stokes V image, the correlation coefficients of the magnetograms become 78 per cent between SMAT and MDI (Michelson Doppler Imager project) on the SOHO ( Solar and Heliospheric Observatory ) satellite, and 92 per cent between SMAT and the SMFT (Solar Magnetic Field Telescope) at Huairou.  相似文献   

6.
Reliable information on the distribution of magnetic fields across the whole surface of the Sun is urgently needed to predict conditions in the solar corona, in the interplanetary medium, and in the near-Earth space (space weather). Several space- and ground-based solar instruments currently provide full-disk magnetograms. However, these measurements sometimes differ very significantly, which makes a cross-calibration of different datasets and searching for the reasons for such differences a very crucial task. Here, we analyze the Huairou Solar Observing Station (HSOS) Solar Magnetism and Activity Telescope (SMAT) full-disk line-of-sight magnetograms in comparison with magnetograms taken at the Solar Dynamic Observatory/Helioseismic and Magnetic Imager (SDO/HMI) and Solar Telescope for Operative Predictions (STOP) instruments. We show systematic differences between original SMAT magnetograms and those of other telescopes. The differences are caused by some SMAT instrumental problems, which we investigate. We suggest methods for compensating for these effects that have improved the quality of SMAT magnetograms. These methods will enable us to use SMAT measurements to solve many solar physics problems that are related to studying global solar magnetism and space weather.  相似文献   

7.
Zhang  Hongqi 《Solar physics》1997,174(1-2):219-227
In this paper we present the observational results of chromospheric and photospheric magnetograms in active regions obtained at the Huairou Solar Observing Station of the Beijing Astronomical Observatory. Simultaneous observations of the chromospheric and photospheric magnetic fields enable us to construct a possible configuration of the magnetic field in the solar atmosphere. The chromospheric magnetic field shows more diffusion than the photospheric magnetic field and consists of fibril-like features. We also discuss the possible configuration of the magnetic shear in highly sheared active regions.  相似文献   

8.
Radio observations of some active regions (ARs) obtained with the Nobeyama radioheliograph at λ=1.76cm are used for estimating the magnetic field strength in the upper chromosphere, based on thermal bremsstrahlung. The results are compared with the magnetic field strength in the photosphere from observations with the Solar Magnetic Field Telescope (SMFT) at Huairou Solar Observing Station of Beijing Astronomical Observatory. The difference in the magnetic field strength between the two layers seems reasonable. The solar radio maps of active regions obtained with the Nobeyama radioheliograph, both in total intensity (I-map) and in circular polarizations (V-map), are compared with the optical magnetograms obtained with the SMFT. The comparison between the radio map in circular polarization and the longitudinal photospheric magnetogram of a plage region suggest that the radio map in circular polarization is a kind of magnetogram of the upper chromosphere. The comparison of the radio map in total intensity with the photospheric vector magnetogram of an AR shows that the radio map in total intensity gives indications of magnetic loops in the corona, thus we have a method of defining the coronal magnetic structure from the radio I-maps at λ=1.76 cm. Analysing the I-maps, we identified three components: (a) a compact bright source; (b) a narrow elongated structure connecting two main magnetic islands of opposite polarities (observed in both the optical and radio magnetograms); (c) a wide, diffuse, weak component that corresponds to a wide structure in the solar active region which shows in most cases an S or a reversed S contour, which is probably due to the differential rotation of the Sun. The last two components suggest coronal loops on different spatial scales above the neutral line of the longitudinal photospheric magnetic field.  相似文献   

9.
Liu  Yang  Wang  Jingxiu  Yan  Yihua  Ai  Guoxiang 《Solar physics》1996,169(1):79-89
The gradients of line-of-sight magnetic fields in active region NOAA 6659 on 1991 June 8 have been calculated based on the photospheric and chromospheric magnetograms taken at Huairou Solar Observing Station. We found that high gradients coincided with high strengths of the transverse magnetic fields, implying a complicated configuration of the magnetic field in the lower atmosphere.For this extraordinarily flare-prolific region, a possible relationship between the gradients and the flares was inferred.  相似文献   

10.
Hongqi Zhang 《Solar physics》1994,154(2):207-214
A set of H chromospheric magnetograms at various wavelengths near the line center, chromospheric Dopplergrams, and photospheric vector magnetograms of a unipolar sunspot region near the solar limb were obtained with the vector video magnetograph at the Huairou Solar Observing Station. The superpenumbral chromospheric magnetic field is almost parallel to the surface at the outside of the sunspot penumbra, where the magnetic lines of force are mainly concentrated in the superpenumbral filaments. In the gaps between the filaments the chromospheric horizontal field is weak.  相似文献   

11.
利用1998年10月3日北京天文台怀柔太阳观测站的高质量磁图,对给定的太阳宁静区两种不同极性的磁场进行了功率谱分析.结果表明,空间功率谱在超米粒和中米粒尺度具有明显的尖峰结构,这对应于空间周期性分布的网络和内网络磁结构.结果也显示出,超米粒边缘所包含的两种极性场中,其中的一种极性占优势.通过瞬态功率谱的分析,得出网络和内网络场寿命之间的比例关系,这一结果和其他学者得出的超米粒和中米粒对流寿命之间的关系相符.  相似文献   

12.
Schmidt  Joachim M. 《Solar physics》2000,197(1):135-148
Three sympathetic flares were observed with the Solar Magnetic Field Telescope (SMFT) at the Huairou Solar Observing Station of Beijing Astronomical Observatory on 29 August, and 1 September 1990. Each set of sympathetic flares had three ribbons. Two ribbons appeared in active region NOAA 6233 and one ribbon occurred in NOAA 6240 embedded in a single polarity area. Photospheric vector magnetograms were simultaneously obtained from both regions as well. We use a new numerical technique to reconstruct the chromospheric and coronal magnetic fields by making use of the observed vector magnetic fields in the photosphere as boundary conditions. Magnetic field loops linking both regions were identified from the reconstructed 3-D fields. The analysis of chromospheric filtergrams and reconstructed 3-D magnetic fields indicates that interaction between a sheared lower loop in the active region NOAA 6233 and a higher loop linking the two regions resulted in sympathetic flares. The analysis of the time delay between flare ribbons in NOAA 6233 and 6240 indicates that heat conduction along the higher loop from the primary energy release site is responsible for the sympathetic flaring in NOAA 6240. The events reported in this paper represent only one alternative as the cause of sympathetic flaring in which energy transport along coronal interconnecting loops plays the major role, and no in-situ energy release is required.  相似文献   

13.
Zhang  Jun  Wang  Jingxiu  Lee  Chik-Yin  Wang  Haimin 《Solar physics》2000,194(1):59-72
High-resolution H filtergrams and deep magnetograms were obtained from the Big Bear Solar Observatory (BBSO) and Huairou Solar Observation Station (HSOS) during 17–24 October 1997. The three days (17, 18, and 19) with the best image quality were selected for this initial research. We have found that macrospicules are triggered by interaction either between intranetwork and network elements or among several network magnetic elements. We present a model to explain the spatial relationship between macrospicules and magnetic fields.  相似文献   

14.
We study the magnetic structure of five well-known active regions that produced great flares (X5 or larger). The six flares under investigation are the X12 flare on 1991 June 9 in AR 6659, the X5.7 flare on 2000 July 14 in AR 9077, the X5.6 flare on 2001 April 6 in AR 9415, the X5.3 flare on 2001 August 25 in AR 9591, the X17 flare on 2003 October 28 and the X10 flare on 2003 October 29, both in AR 10486. The last five events had corresponding LASCO observations and were all associated with Halo CMEs. We analyzed vector magne-tograms from Big Bear Solar Observatory, Huairou Solar Observing Station, Marshall Space Right Center and Mees Solar Observatory. In particular, we studied the magnetic gradient derived from line-of-sight magnetograms and magnetic shear derived from vector magne-tograms, and found an apparent correlation between these two parameters at a level of about 90%. We found that the magnetic gradient could be a better proxy than the shear for predicting where a major flare might occur: all six flares occurred in neutral lines with maximum gradient. The mean gradient of the flaring neutral lines ranges from 0.14 to 0.50 G km-1, 2.3 to 8 times the average value for all the neutral lines in the active regions. If we use magnetic shear as the proxy, the flaring neutral line in at least one, possibly two, of the six events would be mis-identified.  相似文献   

15.
On June 24, 1983 cooperative magnetographic measurements were made with the vectormagnetographs of the Sayan Observatory (Irkutsk) and the Potsdam Solar Observatory “Einsteinturm” and with the longitudinal magnetograph of the Ondrejov Observatory. Additionally, the maximum field strengths in the sunspot were measured with the photographic method. Using the photographically measured field strengths as reference values we provide a method to eliminate the influences of stray light in a time series of vectormagnetograms. A comparison of nearly simultaneous magnetograms shows a good correspondence in general. The deviations of the zero points as well as the scales are comparable with the results of other authors. Regarding the magnetic field distribution the magnetograms reflect a substantial nonsymmetric structure in the spot under study. The magnetic field lines tend to concentrate into several flux tube clusters. In one region of the penumbra we find a magnetic field with nearly longitudinal character in close neighbourhood of a strong, nearly horizontal flux tube bundle. This indicates a strong nonradial horizontal field gradient in the penumbra.  相似文献   

16.
1 INTRODUCTION Magnetic field plays an important role in solar activity. The stressing and subsequent partialrelaxation of magnetic fields in the active regions are generally accepted to be the energy sourceof solar flares. To quantitatively study the extent of stressed magnetic field as distinct from itspotential field, Hagyard et al. (1984) defined a magnetic shear angle膖he azimuth differencebetween the observed transverse magnetic field vector and the computed potential field vectorth…  相似文献   

17.
Zhang  Jun  Wang  Jingxiu  Deng  Yuanyong  Wang  Haimin 《Solar physics》1999,188(1):47-58
We have studied the relative polarity distribution of intranetwork (IN) and network (NW) fields for the first time, using very deep magnetograms obtained at Big Bear Solar Observatory (BBSO) and Huairou Solar Observation Station (HSOS). We found 80 network cells and measured the polarities of intranetwork and network magnetic flux within each cell. The analysis reveals that, in enhanced networks, the signed sum of the IN flux in a cell and the signed sum of the network flux on the boundary of the cell is opposite with 90% probability; in mixed-polarity network, the corresponding signed fluxes are opposite with a probability of 75%. We suggest that:(1) Some of the excess flux within a cell may connect to a weak field component of the IN field that is below the detection limit.(2) Some IN flux, preferentially close to the cell boundary, may be topologically connected to the network field.(3) Some observational effects might produce this anti-correlation.  相似文献   

18.
Zhang  Mei  Zhang  Hongqi 《Solar physics》2000,194(1):19-28
Photospheric (Fei 5324.19 Å line) and chromospheric (H line) magnetic fields in quiet-Sun regions have been observed in the solar disk center by using the vector video magnetograph at Huairou Solar Observing Station of Beijing Astronomical Observatory. Observational results show that the quiet-Sun magnetic elements in the solar photosphere and chromosphere present similar magnetic structures. Photospheric and chromospheric magnetograms show corresponding time variations. This suggests that the magnetic fields in quiet-Sun regions present different 3-D magnetic configurations compared to those in solar active regions.  相似文献   

19.
We observed the line-of-sight magnetic field in the chromosphereand photosphere of a large quiescent filament on the solar disk on September 6, 2001 using the Solar Magnetic Field Telescope in Huairou Solar Observing Station. The chromospheric and photospheric magnetograms together with Hβ filtergrams of the filament were examined. The filament was located on the neutral line of the large scale longitudinal magnetic field in the photosphere and the chromosphere. The lateral feet of the filament were found to be related to magnetic structures with opposite polarities. Two small lateral feet are linked to weak parasitic polarity. There is a negative magnetic structure in the photosphere under a break of the filament. At the location corresponding to the filament in the chromospheric magnetograms, the magnetic strength is found to be about 40-70 Gauss (measuring error about 39 Gauss). The magnetic signal indicates the amplitude and orientation of the internal magnetic field in the filament. We discuss several possible causes which may produce such a measured signal. A twisted magnetic configuration inside the filament is suggested .  相似文献   

20.
太阳磁场的极性反转线(Polarity Inversion Line, PIL)是研究太阳活动、分析太阳磁场结构演变和预测太阳耀斑最重要的日面特征之一.磁场极性反转的位置是太阳耀斑和暗条可能出现的位置."先进天基太阳天文台(ASO-S)"是中国首颗空间太阳专用观测卫星,其搭载的"全日面矢量磁像仪(Full-Disk Vector Magnetograph, FMG)"主要任务是探测高空间、高时间分辨率的全日面矢量磁场.为了提高观测数据使用效率、快速监测太阳活动水平、提高太阳耀斑与日冕物质抛射的预报水平以及更好地服务于FMG数据处理与分析系统,采用了图像自动识别与处理技术,更加精确有效地检测极性反转线.从支持向量机(Support Vector Machine, SVM)的模型出发,将极性反转线位置的探测问题转化为一个模式识别中的二分类问题,提出了一种基于支持向量机的极性反转线检测算法,自动探测与识别太阳动力学天文台(Solar Dynamics Observatory, SDO)日震和磁成像仪(Helioseismic and Magnetic Imager, HMI)磁图的极性反转线位置.与现有算法的对比结果表明,此算法可以精确直观地检测太阳活动区的极性反转线.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号