首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Two synoptic-statistical methods for forecasting daily maximum surface ozone concentrations are proposed based on the relations between surface ozone and meteorological variables in the Moscow region. The methods use current ozone measurements and forecasts of meteorological variables and of synoptic situation. Statistically, the methods provide better forecast results than climatic and persistence methods. Compared with the persistence forecast, the above methods reduce the variance of the forecast error from 1.5 to 2 times. The most significant predictors for forecasting daily maximum surface ozone concentration with lead times of one to three days for Moscow are the forecast time (Julian day of the year), prognostic temperature, relative humidity, indices of the meteorological pollution potential of the atmosphere (MPP), and surface ozone concentration observed on the previous day. The forecast efficiency is demonstrated using the 2006 observational data from the stations of the Institute of Atmospheric Physics of the Russian Academy of Sciences-Moscow State University and Mosecomonitoring State Nature Protection Organization.  相似文献   

2.
The integrated assessment of the influence of air mass transport directions on the average long-term seasonal variations of concentrations of minor gas components (MGC: ozone, CO, NO2) of the atmosphere is carried out according to the data of a number of European stations. Distributions of nitrogen dioxide and carbon monoxide concentrations according to transport directions are similar to each other and differ considerably from the distribution of ozone concentrations. It is demonstrated that the relationships of levels of spring and summer ozone concentrations maxima differ considerably at all examined stations in different regions of Europe depending on different transport directions: the summer maximum is stronger pronounced according to the data for the southern and eastern directions than according to the data for the northern and western directions. The change of air transport directions may account for from 10% (Moscow region) to 30–40% (the northwest of continental Europe and Ireland) variations of MGC concentration. The obtained results point out the perspective of their use in statistical models of the forecast of MGC concentrations.  相似文献   

3.
利用2015-2019年中国东部20个省份222个城市的地面O3观测数据和全球再分析风场数据,研究了中国东部地区O3的时空分布特征,以及在亚洲夏季风背景下污染上风方O3光化学输送对下风方O3质量浓度季节变化的影响.结果表明:中国东部地区O3质量浓度夏季高、冬季低,O3质量浓度按照东南、华东、东北、华北的顺序依次升高,位...  相似文献   

4.
大尺度山地上空的臭氧低值及地面加热   总被引:11,自引:0,他引:11  
首次利用Nimbus-7卫星上搭载的臭氧观测光谱仪(TOMS)资料,分析研究了大尺度山地(青藏高原、洛基山脉和安第斯山脉)上空臭氧总量的分布和季节变化规律,指出了大尺度山地对大气臭氧的减少作用。从全球大气臭氧总量分布和纬向偏差分布可以看出:在上述3个大尺度山地上空均存在着明显的臭氧低值扰动,该扰动区夏季强于冬季。在这3个区域中,青藏高原上空的臭氧低值扰动为最强。分析同时指出:上述大尺度山地上空臭氧季节变化的极小值在秋季,极大值在春季。但上述地区臭氧总量与同纬度其它地区臭氧总量的偏差在春季或初夏达到极小值。为分析这种大尺度山地对臭氧减少作用的原因,本文分析了青藏高原地面热源与臭氧总量的关系,指出:大尺度山地表面对大气的加热与该地区臭氧减少之间存在着良好的反相关;在地面对大气的感热加热、潜热加热和有效长波辐射加热中,以感热加热与臭氧减少的关系为最好。  相似文献   

5.
Characteristics of periodic variability of surface ozone concentration at 98 western and central European stations participating in the EMEP program for at least 7 (up to 14) years are determined. Daily and hourly model concentrations of surface ozone for each station are given in an analytical form that presents a sum of a constant constituent and basic harmonics that determine ozone concentration variability throughout a year and a day. A 12-month harmonic, whose maximum is observed in the spring period (in Northern Europe it is observed 1 to 2 months earlier than in Southern Europe) dominates in the energy spectrum of seasonal variability of daily mean ozone concentration at most stations. The energy part of higher (6-and 4-month) harmonics is the largest at the stations close to the sea and ocean coasts. Higher harmonics largely influence the time of the ozone extremum formation, shifting it towards the summer, or even forming a second (summer) maximum, whose magnitude at a number of stations (in Italy, Hungary, in the south of Germany, and in some others) exceeds the spring maximum. A 24-hour harmonic dominates in the energy spectrum of daily ozone variability. The maps of a “normal” distribution of surface ozone fields and their standard deviations for different seasons and time of the day have been compiled based on the model characteristics. The “norms” derived can be used to detect anomalies in the temporal trend of the surface ozone and to validate its climate changes.  相似文献   

6.
杭州市区大气臭氧浓度变化及气象要素影响   总被引:14,自引:1,他引:13       下载免费PDF全文
利用2005-2007年杭州市区大气O3连续监测资料, 分析了O3浓度变化特征, 在此基础上结合气象观测资料, 分析了大气O3与天气系统间的关系, 建立了O3与气象要素间的多元回归方程。结果表明: 2007年O3平均浓度和最大小时浓度分别为44 μg.m-3和348 μg.m-3, 比上一年增加20%左右, 超标现象也越来越严重; O3浓度有明显的季节变化, 夏季高、冬季低; 大气O3浓度超标主要出现在高压后部和高压控制等天气类型。在紫外线强度较强时O3浓度也高, 二者呈显著正相关; 对O3与各种气象因子进行多元回归分析表明: O3主要受到温度、相对湿度、日照等因素影响。  相似文献   

7.
利用广东省中山市2015—2019年的地面臭氧浓度及气象观测数据,分析了中山市近年来臭氧超标与气象条件的关系。结果表明,中山市2015—2019年臭氧超标天数从22天增加至66天,臭氧年评价值增长36%,中度污染以上天数占超标天数比例从9.1%增长至36.4%。臭氧超标主要集中在8—11月,其中9月超标天数最多。夏秋季节臭氧超标主要发生在气温高、湿度低、太阳辐射强、日间10—14时无明显降水、吹北风的气象条件下,臭氧的污染潜在源区主要位于中山西部到北部的城市。风向和气温是臭氧超标最重要的指标,夏、秋季日间吹北风且日最高气温在33℃或以上时超标率分别达到89.1%和78.6%。2017年和2019年在相同的最高温、相对湿度、太阳辐射强度、降水和风速条件下的臭氧超标率均远高于2015年。当臭氧起始浓度在10μg/m3以下、11~30μg/m3及30μg/m3以上时,夏(秋)季从起始浓度达到超标分别用时7.1(6.9)h、6.2(6.2)h和5.8(5.9)h,相应气温上升7.2(7.1)℃、5.8(5.8)℃和4.7(5.1)℃,起始浓度增大时,...  相似文献   

8.
气象因子对近地面臭氧污染影响的研究   总被引:15,自引:0,他引:15  
徐家骝  朱毓秀 《大气科学》1994,18(6):751-757
本文通过对1993年春季和春夏之交的O3浓度逐日变化、日变化和气象因子关系的分析,提出了影响O3浓度的主导气象因子和不同情况下形成高浓度O3的主要因子,提出了大风速对逐日变化中O3浓度特高及浓度日变化峰值的重要作用,并指出高温、低湿、小风并不是在所有情况都是促成高浓度O3的因子。另外,雾也可以成为近地面O3浓度增值的因素,主要原因是雾内湍流发展将高浓度O3大量输向下方。  相似文献   

9.
利用2013年1月至2014年12月和2017年1月至2019年6月秦皇岛市近地面臭氧(O3)浓度数据和气象资料,采用广义相加模型(GAM),运用回归分析方法和基于R语言的统计分析软件,控制气压、相对湿度、日照时数、总云量等要素的混杂效应及时间变化趋势,分析春季、夏季、秋季、冬季气温与O3浓度的关系。结果表明:秦皇岛市O3浓度夏季最高、春季次之,冬季最低,与气温变化趋势基本一致,呈现明显的季节变化。各季气温与O3浓度呈非线性相关关系,拟合曲线存在拐点,拐点两侧相关效应存在明显差异,主要表现为春季日平均气温高于15.0℃时,气温每升高1℃,O3浓度增加7.6 μg·m-3,增长速率是气温低于15.0℃时的4.0倍;夏季日平均气温高于27.2℃时,气温每升高1℃,O3浓度增加13.9 μg·m-3,增长速率是气温低于27.2℃时的11.6倍;秋季日平均气温高于21.4℃时,气温每升高1℃,O3浓度增加47.5 μg·m-3,增长速率是气温低于21.4℃时的19.1倍;冬季O3浓度偏低且变化较为平稳,气温对O3浓度的变化影响不大。由于春夏两季O3浓度基础值偏高,因此,夏季和春季气温偏高时O3浓度快速增加现象应引起高度重视。  相似文献   

10.
Through one and half year continuous in-situ measurements,the distributions and variations of surface ozone and its precursors at a typical mixed agricultural and metropolitan area-Changshu,Yangtze Delta region,were studied.The preliminary analysis on the concentration levels and variations of surface ozone indicated the obvious seasonal and diurnal cycles during the experiment.The hourly averaged concentrations of surface ozone were high,in about 17% of total valid hours the surface ozone concentration exceeded 50 ppb,and in 22 days the hourly averaged ozone concentration was greater than 100 ppb.There were about 40% of the days in that the daily maximum 8-hour ozone concentration was greater than 50 ppb.The days with daily maximum 8-hour ozone concentration greater than 80 ppb were about 33 days that accounted for about 8% of the observational days.The variations of 5-day moving averaged ozone concentrations depended both on the weather conditions and on the changes of ozone in background atmosphere.Photochemical process had the significant impacts on ozone productions.  相似文献   

11.
Ozone Concentrations in Rural Regions of the Yangtze Delta in China   总被引:4,自引:0,他引:4  
Elevated concentrations of ozone have been observed at six non-urban, surface monitoring sites in the Yangtze Delta of China during a 16-month field experiment carried out in 1999 and 2000 as part of the joint Chinese-American China-MAP Project (the Yangtze Delta of china as an Evolving Metro-Agro-Plex). The average daytime (0900–1600 h) ozone levels for the monitoring period at sites ranged from 35 to 47 ppbv (parts per billion by volume) and the mean ozone levels from 26 to 35 ppbv. Observed data show seasonal variation obviously, with highest mixing ratios of ozone in May. Average daytime ozone levels in May at sites were between 60 and 79 ppbv. High ozone concentrations were most prevalent during the late spring. Frequency counts of hourly mean ozone concentration over 60 ppbv and 40 ppbv appeared peak values of 22–39% and 42–74% in May at sites. Even higher daytime ozone levels were observed during two regional episodes, in which average daytime (0900–1600 h) ozone concentrations during 10 May and 23 May 2000 were 68 to 81 ppbv, during Oct. 18 and Oct. 28, 1999 were 59 to 67 ppbv at sites. Peak value of ozone mixing ratio appearing in late spring, instead of in summer, was attributed to summer monsoon. Backward trajectories showed that ozone episodes associated with meteorological conditions. Also many high ozone levels associated with high CO levels and high CO to NO x ratios, which suggests a contribution from sources of emission involving incomplete combustion.  相似文献   

12.
This paper presents the main experimental results of surface ozone concentrations measured at a rural area in Northern Spain from February 2000 to December 2005. Daily and seasonal variation of ozone has been analysed. The peak concentration levels are obtained in the afternoon, mean value around 88 μg m−3, with extreme average values of 59 μg m−3 in January and 113 μg m−3 in July. Small differences are found in the mean and median of the ozone levels from April to August, when spring and summer maxima are observed. Despite the great inter-annual ozone variability obtained, most air quality indicators showed a positive trend. Further analysis of the monthly mean ozone concentrations of the main percentiles have also been performed using a harmonic model. The upward trend was 6.2 ± 1.7 μg m−3 for the 98th percentile. To interpret the main features of the annual cycle and describe the ozone peaks, the influence of meteorological factors is studied. In summer, ozone production is governed by local processes, air temperature being the major controlling factor. However, the origin of the spring maximum is not so well identified.  相似文献   

13.
Connection between ozone concentration and atmosphere circulation is investigated based on measurements at BEO station, peak Moussala (2,925 m a.s.l.), for the period 09 August 2006 to 29 January 2008. Ozone concentration data are collected with UV-analyzer “Environnement O3 42” and meteo data with weather station “Vaisala”. There are measurements of 7Be. Data from NOAA HYSPLIT model for particle trajectories are also used. Eight wind directions and three ranges of wind velocities are employed in the analysis. A comparison of ozone concentrations in upward and downward air transport according to HYSPLIT model is made. The number of cases with ozone concentration above 63 ppb has been counted. Mann–Whitney nonparametric test is employed as a basic statistical method. Correlation between atmosphere pressure and tropospheric ozone content is made. The same is done for 7Be and ozone. The main conclusion is that there is not any local or regional pollution effect detectable at peak Moussala, but most of the ozone measured is due to emissions of hydrocarbons and NO x over a larger region. There could be some regional sources of ozone building substances in southwest direction from peak Moussala. Air transported from the north quarter has higher ozone concentrations compared to the south quarter. In vertical direction, upward transport of air masses shows higher values of ozone concentration. Higher wind velocity is associated with low ozone concentrations at peak Moussala. The annual course of ozone concentration has summer maximum and winter minimum. There is right connection between air pressure and ozone concentration. The same is valid for the correlation between 7Be and ozone. Diurnal ozone course shows daytime maximum in winter and nighttime maximum in summer.  相似文献   

14.
Several years of measurements of ozone, hydrocarbons, sulphate and meteorological parameters from Spitsbergen in the Norwegian Arctic are presented. Most of the measurements were taken on the Zeppelin Mountain at an altitude of 474 m a.s.l. The focus is the episodes of ozone depletion in the lower troposphere in spring, which are studied in a climatological way. Episodes of very low ozone concentrations are a common feature on the Zeppelin Mountain in spring. The low ozone episodes were observed from late March to the beginning of June. When the effect of transport direction was subtracted, the frequenty of the low ozone episodes was found to peak in the beginning of May, possibly reflecting the seasonal cycle in the actual depletion process. Analyses based on trajectory calculations show that most of the episodes occurred when the air masses were transported from W-N. Ozone soundings show that the ozone depletion may extend from the surface and up to 3–4 km altitude. The episodes were associated with a cold boundary layer beneath a thermally stable layer, suppressing mixing with the free troposphere. The concentration of several individual hydrocarbons was much lower during episodes of low ozone than for the average conditions. The change in concentration ratio between the hydrocarbons was in qualitative agreement with oxidation of hydrocarbons by Br and Cl atoms rather than by OH radicals.  相似文献   

15.
利用东亚清洁背景站近地面臭氧观测资料,结合风场和降水资料,分析东亚各地区臭氧的多年季节变化特征,并探讨东亚太平洋地区臭氧的季节和年际变化与季风的关系以及影响近地层臭氧的主要因子。结果表明:东亚大部分地区与北半球背景站观测一致,近地层臭氧季节变化表现为春季最高、夏季最低的特征;但在东亚中纬度33~43°N,臭氧表现为夏季最高,而在东亚20°N以南地区臭氧则表现为冬末、春初最高。东亚太平洋沿岸近地面臭氧的季节变化主要受东亚冬、夏季风环流的季节变化控制。该地区不同纬度上春季峰值出现时间的差异与亚洲大陆春季不同时期污染物输送路径的差异有关。对东亚太平洋沿岸对流层顶附近位势涡度、高空急流和垂直环流季节变化的分析表明,冬春季可能是平流层向对流层输送的最强期,对近地面臭氧贡献最大。初夏至秋季(5-11月),平流层向对流层输送较弱,对近地面臭氧贡献较小。东亚太平洋地区夏季风爆发的时间和强度以及季风环流型的年际差异是导致该地区春、夏季臭氧年际变化的主要原因;而季风降水和云带位置以及平流层一对流层交换是造成臭氧年际变化的其他原因。  相似文献   

16.
利用南极大陆沿岸中山站2008-2013年的地面臭氧连续观测数据和相关资料,对地面臭氧损耗事件(ODE)进行研究。结果显示,春季南极中山站常发生臭氧损耗事件。在该事件发生期间,气象要素有明显的突变过程,包括气温明显下降,风向由偏东风转变为偏北风,风速随之下降。来自海冰区的偏北风增多,风速很小,使臭氧浓度维持在较低水平。地面臭氧损耗事件主要与南极沿岸海冰区的活性溴(BrO)浓度有关。春季南极大陆沿岸海冰冻融过程中形成的冰间水道和冰间湖,在低温的作用下会再次冻结,形成薄冰和霜花。卫星资料能够观测到薄冰区释放的活化海盐溴高浓度区,活性溴与臭氧发生化学反应形成地面臭氧损耗事件。臭氧损耗现象是在未受到人为影响的自然状态下发生的,与中高纬度地区光化学反应导致臭氧消耗有所不同。   相似文献   

17.
Presented are the results of surface ozone monitoring in the atmosphere over Ulan-Ude during the period from 2000 to 2012. Revealed are seasonal and diurnal variations of surface ozone. The analysis of the seasonal variability of surface ozone concentration indicates the presence of the clearly pronounced maximum in spring-summer period. A statistical model of forecasting single concentrations of the surface ozone is considered using the multiple regression analysis. Temperature, relative humidity, wind direction, wind speed, turbulence factor, temperature gradient, velocity of vertical flow, and concentrations of minor gas admixtures such as nitrogen oxides are used as predictors. Analyzed are statistical relationships, where observed ozone values are presented in the form of the regression function of the most significant predictors.  相似文献   

18.
The effect of different planetary boundary-layer (PBL) parameterization schemes on the spatial distribution of atmospheric pollution over the complex topography of the greater Athens area is investigated. Four PBL schemes originally implemented in a numerical meteorological model and a fifth one simulating the urban effect are examined. Two different atmospheric conditions are analyzed; a typical summer and a typical winter pollution episode. The relative importance of chemical and physical processes of the pollution predictions is discussed using process analysis. It is revealed that, for primary pollutants, a local scheme seems more adequate to represent the maximum observed concentrations while, completely different in structure, a non-local scheme reproduces the mean observed values in the basin. Concerning secondary pollutants, peak concentration differences, due to the different PBL schemes, are smoothed out. Nevertheless, the PBL scheme selection shapes the horizontal and the vertical extension of maximum values. The non-local and semi non-local schemes are superior to the others, favouring strong vertical mixing and transport towards the surface. The stronger turbulence accommodated effectively by the semi non-local urban scheme enhances ozone production along the sea-breeze axis and preserves the high ozone concentrations during the nighttime hours in the urban core.  相似文献   

19.
近地面臭氧研究进展   总被引:11,自引:0,他引:11  
近地面臭氧是空气中氮氧化物和挥发性有机物发生光化学反应的产物,其浓度与气象条件密切相关。晴天少云、紫外辐射较强、温度较高、相对湿度较低以及风速较小的天气,均有利于臭氧的生成,其中紫外辐射是产生臭氧最关键的因素。臭氧前体物(氮氧化物和挥发性有机物)的浓度及其比值是影响近地面臭氧浓度的另外三个重要因素。我国大多数城市的O3处于VOC控制区,即NOx浓度的增加会引起O3浓度的降低,而VOCs浓度的增加则会使其浓度升高。因而VOC源解析问题成为近年来O3研究的一个热点问题。同时,由于气溶胶可以直接吸收、散射太阳紫外辐射、短波辐射以及大气长波辐射,因此气溶胶的存在会影响大气中光化学反应的进程,从而影响臭氧的光化学生成,气溶胶对近地面臭氧的影响已成为目前大气环境的前沿课题。  相似文献   

20.
通过对济南2013年12月—2018年2月PM2.5质量浓度数据分析得出,PM2.5质量浓度平均和最大值均为冬季最高,春秋季次之,夏季最低;PM2.5质量浓度值1月和12月最高,8月最低;其质量浓度呈明显的逐年递减趋势。在不同风向上PM2.5质量浓度存在显著差异性,在N风向和ESE(盛行)风向上均出现了质量浓度较大值,一方面与污染物的异地输送有关,另一方面与济南的特殊地形有关。研究表明,无论污染源在山脉的背风侧还是迎风侧,都很容易导致高浓度污染;尤其在冬季,山脉地形还会加重逆温影响,使污染程度加重。通过相关性研究发现,冬季、春季和秋季,PM2.5质量浓度与相对湿度和平均总云量均呈正相关,与日照时数及其距平呈负相关;冬季,PM2.5质量浓度与平均气温及其距平以及最高、最低气温均呈正相关,与平均、最高、最低气压均呈负相关;春季和秋季,PM2.5质量浓度与气温距平值呈正相关;夏季和秋季,PM2.5质量浓度与日降水量呈负相关,而且随着雨强的增大,对PM2.5的洗消作用越显著。上述变量间相关性均通过了P≤0.01显著性检验。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号