首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The standard enthalpy of formation of thorite and huttonite and the enthalpy of the phase transition between these polymorphs were determined using high-temperature oxide melt solution calorimetry and transposed temperature drop calorimetry. Standard enthalpies of formation of thorite and huttonite are reported for the first time and are −2117.6 ± 4.2 kJ/mol and −2110.9 ± 4.7 kJ/mol, respectively. Based on our measurements, thorite and huttonite are metastable relative to SiO2 (quartz) and ThO2 (thorianite) at standard conditions, but are presumably stabilized at high temperature by the entropy contribution. Based on the measured enthalpy of the thorite-huttonite phase transition of 6.7 ± 2.5 kJ/mol, a dP/dT slope for the transformation was calculated as −1.21 ± 0.45 MPa/K.  相似文献   

2.
Monazite [(Ce,LREE,Th,U,Ca)(P,Si)O4], with complex zoning in Th and other elements, is commonly observed in metamorphic and igneous rocks. The hypothesis that this alteration is a product of fluid-mediated element mass transfer has been tested in the piston-cylinder press (CaF2 assembly, cylindrical graphite oven) at 1,000 MPa and 900°C and in cold seal autoclaves on a hydrothermal line at 500 MPa and 600°C. Experiments included a relatively homogeneous monazite-(Ce) (7–8 wt% ThO2) from a heavy mineral sand plus a series of alkali-bearing fluids including 2N NaOH, 2N KOH, and Na2Si2O5 + H2O. Experiments were conducted using BSE imaging, EMP analysis, and both TEM and HRTEM. A subset of monazite grains from each experiment show evidence of partial alteration in the form of areas enriched in Th + Si with sharp curvilinear compositional boundaries extending from the grain rim into the monazite interior. These ThSiO4-enriched textures are similar to those commonly seen in natural examples of metasomatised monazite in both magmatic and metamorphic rocks. In the Na2Si2O5 + H2O experiments, scarce inclusions of britholite formed in the altered monazite. The altered monazite is also characterised by strong depletion in Pb, Ca, and Y. Thorium and Si mobility, coupled with the formation of britholite inclusions, during partial alteration in the monazite grain is considered to be the product of fluid-aided coupled dissolution–reprecipitation as opposed to solid-state diffusion. Since other fluids, including NaCl and KCl brines, do not result in the formation of these textures, the experimental replication of ThSiO4-enriched areas in the monazite strongly suggests that similar textures in monazite observed in nature are fluid induced, specifically by alkali-bearing fluids. If true, complex metasomatically induced textures in monazite could yield information concerning the nature of the fluid responsible for their formation as well as allow for the dating of the metasomatic event, presuming that all the original radiogenic Pb has been removed.  相似文献   

3.
Rare metal mineralization of oceanic carbonatites was studied for the first time by the example of calcite carbonatite from Fogo Island in the Cape Verde Archipelago. The following evolutionary sequence of rare metal minerals was established: zirconolite-Th-calciobetafite-betafite + Th-pyrochlore-thorite + Ti-Zr-Nb silicates + zircon.Schematic reactions were proposed for zirconolite transformation to secondary phases: (Ca,Th,U)Zr(Ti,Nb)2O7 (zirconolite) + SiO2 + Ca(F,OH)2 → ZrSiO4 (zircon) + (Ca,Th,U)2(Ti,Nb)2O6(OH,F) (Th-calciobetafite) and (Ca,Th,U)2(Ti,Nb)2O6(OH,F) + Na2Si2O5 → ThSiO4 (thorite) + (Ca,Na,Th)2(Nb,Ti)2O6(OH,F) (Th-pyrochlore), where SiO2, Ca(F,OH)2, and Na2Si2O5 are the components of melt-solution coexisting with the carbonatite.It was shown that the distribution and behavior of rare and radioactive elements in oceanic carbonatites show the same tendencies as in continental carbonatites. The contents and distribution of Ti, Ta, and Th in zirconolites and pyrochlores from oceanic and continental carbonatites are different: the minerals of oceanic carbonatites are enriched in Ti and Th and strongly depleted in Ta.  相似文献   

4.
This study examines the electron localization function (ELF) isosurfaces of the Al2SiO5 polymorphs kyanite, sillimanite, and andalusite to see how differences in coordination and geometry of the cations and anions affect the ELF isosurfaces. Examination of the ELF isosurfaces indicates that their shapes are dependent on the coordination and geometry of the oxygen atoms and are not sensitive to coordination of the surrounding cations. Of the 18 crystallographically distinct oxygen atoms in the Al2SiO5 polymorphs, 13 are bonded to two aluminum atoms and one silicon atom (Al2–O–Si) and are associated with two different ELF isosurface shapes. The shape of the ELF isosurface is dependent on the distance at which the oxygen atom lies from a plane defined by the three surrounding cations: at a distance greater than 0.2 Å the ELF can be defined as horseshoe-shaped and at a distance less then 0.2 Å it can be described as concave hemispherical. This feature is also seen in the ELF isosurfaces for the oxygens bonded to three aluminum atoms (Al3–O) where the isosurfaces can be defined as trigonally toroidal and uniaxially trigonally toroidal. The changes in the ELF isosurfaces for the three coordinated oxygens are also indicative of changes in hybridization. The ELF isosurface for the two-fold coordinated oxygen (Al–O–Si) has a large mushroom-shaped isosurface along the Al–O bond and a concave hemispherical isosurface along the Si–O. The four-fold coordinated oxygen (Al4–O) contains two concave hemispherical isosurfaces along the shorter Al–O bonds and a banana-shaped isosurface, which encompasses the longer Al–O bonds. In addition, this study shows the homeomorphic relationship between the ELF isosurfaces and electron density difference maps with respect to number and arrangement of domains.  相似文献   

5.
The Um Ara area, in the south Eastern Desert of Egypt contains a number of uranium occurrences related to granitic rocks. U-rich thorite, thorite and zircon are the main primary uranium- and thorium-bearing minerals found in mineralized zones of the Um Ara alkali-feldspar granites; uranophane is the most common secondary uranium mineral. U-rich thorite contains blebs of galena, has rims of uranophane and contains inclusions of Zr-rich thorite. Electron probe microanalysis (EPMA) provides an indication of a range of solid solution between thorite and zircon, in which intermediate phases, such as Th-rich zircon and Zr-rich thorite, were formed. These phases have higher sum of all cations per formula (2.05 to 2.06 apfu, for 4 oxygen atoms) than that of ideal thorite and zircon. This is attributed to the presence of substantial amount of interstitial cations such as Ca, U and Al in these phases. Some zircon grains are stoichiometric in composition, other altered grains display lower SiO2 and ZrO2 contents. Enrichment of Th and U in altered zircon preferentially involves coupled substitution (Ca2+ + (Th,U)4+ ↔ 2Zr4+ + 2Si4+), implying that significant U and Th may enter the Zr and Si position in zircon. Negative correlation of Zr vs. Hf and Al may indicate that Hf and Al have been introduced to the zircon during later fluid alteration rather than during the primary magmatic event. A two-stage metallogenetic model is proposed for the alteration processes and origin of U- and Th-bearing minerals in the Um Ara alkali-feldspar granite: 1) the first stage was dominated by hydrothermal alteration and accompanied by albitization, k-feldspathization, desilicification, chloritization, hematitization, silicification, argillization, fluoritization and corrosion of primary U-bearing minerals. Solid-solution between thorite and zircon occurred during this stage. The second stage occurred at the near-surface profile where circulating meteoric water played an important role in mobilizing the early formed primary U-bearing minerals. Uranium was likely transported as a calcium uranyl carbonate complexes. When these complexes lost their stabilities by precipitation of calcite, they decomposed in the presence of silica to form uranophane.  相似文献   

6.
A two-body interatomic potential model for GeO2 polymorphs has been determined to simulate the structure change of them by semi-empirical procedure, total lattice energy minimization of GeO2 polymorphs. Based on this potential, two polymorphs of GeO2; α-quartz-type and rutile-type, have been reproduced using the molecular dynamics (MD) simulation techniques. Crystal structures, bulk moduli, volume thermal expansion coefficients and enthalpies of these polymorphs of GeO2 were simulated. In spite of the simple form of the potential, these simulated structural values, bulk moduli and thermal expansivities are in excellent agreement with the reliable experimental data in respect to both polymorphs. Using this potential, MD simulation was further used to study the structural changes of GeO2 under high pressure. We have investigated the pressure-induced amorphization. As reported in previous experimental studies, quartz-type GeO2 undergoes pressure-induced crystalline-to-amorphous transformation at room temperature, the same as other quartz compounds; SiO2, AlPO4. Under hydrostatic compression, in this study, α-quartz-type GeO2 transformed to a denser amorphous state at 7.4 GPa with change of the packing of oxygen ions and increase of germanium coordination. At higher pressure still, rutile-type GeO2 transformed to a new phase of CaCl2-type structure as a post-rutile candidate. Received: 29 July 1996 / Revised, accepted: 30 April 1997  相似文献   

7.
Diamond crystallization has been studied in the SiO2–H2O–С, Mg2SiO4–H2O–С and H2O–С subsystems at 7.5 GPa and 1,600°C. We found that dissolution of initial graphite is followed by spontaneous nucleation of diamond and growth of diamond on seed crystals. In 15-h runs, the degree of graphite to diamond transformation [α = MDm/(MDm + MGr)100, where MDm is mass of obtained diamond and MGr mass of residual graphite] reached 100% in H2O-rich fluids but was only 35–50% in water-saturated silicate melts. In 40-h runs, an abrupt decrease of α has been established at the weight ratio H2O/(H2O + SiO2) ≤ 0.16 or H2O/(H2O + Mg2SiO4) ≤ 0.15. Our results indicate that α is a function of the concentration of water, which controls both the kinetics of diamond nucleation and the intensity of carbon mass transfer in the systems. The most favorable conditions for diamond crystallization in the mantle silicate environment at reliable PT-parameters occur in the fluid phase with low concentration of silicates solute. In H2O-poor silicate melts diamond formation is questionable.  相似文献   

8.
Zircon has been synthesized from a large number of mineral salts and also from one organic compound of zirconium. Its crystallization requires an acid reactive environment.The obtained crystals have been studied morphologically and the crystallographic forms obtained are linked to the presence of specific ions.The study of substitutions in the zircon network shows that hydro-zircon αZr(SiO4)1?x(OH)4x will form only when fluorine is present. Other varieties of the α and β phases ZrSiO4 have been obtained, substituting Hf, U, for Zr, and Ge for Si and an immiscible α phase ThSiO4.Germanium enters the zircon network only at low temperature. Uranium and Hf, but not Th, can substitute for Zr in zircon.  相似文献   

9.
We report the crystal structures determined under ambient condition for two Zn2SiO4 polymorphs synthesized at 6.5 GPa and 1,273 K (phase III) and 8 GPa and 1,273 K (phase IV) and also compare their 29Si MAS NMR spectroscopic characteristics with those of other Zn2SiO4 polymorphs (phases I, II and V). Electron microprobe analysis revealed that both of phases III and IV are stoichiometric like the lower-pressure polymorphs (phases I and II), contrary to previous report. The crystal structures were solved using an ab initio structure determination technique from synchrotron powder X-ray diffraction data utilizing local structural information from 29Si MAS NMR as constraints and were further refined with the Rietveld technique. Phase III is orthorhombic (Pnma) with a = 10.2897(5), b = 6.6711(3), c = 5.0691(2) Å. It is isostructural with the high-temperature (Zn1.1Li0.6Si0.3)SiO4 phase and may be regarded as a ‘tetrahedral olivine’ type that resembles the ‘octahedral olivine’ structure in the (approximately hexagonally close packed) oxygen arrangement and tetrahedral Si positions, but has Zn in tetrahedral, rather than octahedral coordination. Phase IV is orthorhombic (Pbca) with a = 10.9179(4), b = 9.6728(4), c = 6.1184(2) Å. It also consists of tetrahedrally coordinated Zn and Si and features unique edge-shared Zn2O6 dimers. The volumes per formula under ambient condition for phases III and IV are both somewhat larger than that of the lower-pressure polymorph, phase II, suggesting that the two phases may have undergone structural changes during temperature quench and/or pressure release.  相似文献   

10.
 The densification and structural changes in SiO2 glass compressed up to 43.4 GPa by shock experiments are investigated quantitatively by the X-ray diffraction technique. Direct structural data (average Si–O and Si–Si distances and Si–O–Si angles, coordination number of the Si atom) of these shock-densified SiO2 glasses have been obtained by analyzing the radial distribution function curves, RDF(r), calculated with X-ray diffraction data. The coordination number of all densified glasses is about 4 and shows almost no pressure variation. The SiO2 glass has shown density increase of 11% at a shock compression of 26.3 GPa. This density evolution could not be explained by the coordination change. The reduction of the average Si–O–Si angle (144° at 0 GPa to 136° at 26.3 GPa) obtained from RDF(r) data may account for this density increase. This Si–O–Si angle change may be caused by shrinkage of the network structure and the increase of small rings of SiO4 tetrahedra. For higher shock pressure, a decrease in the Si–O–Si angle to 140° was observed. This is consistent with the decrease in density at 32.0 and 43.2 GPa. This decrease in the Si–O–Si angle and density could be attributed to an annealing effect due to high after-shock residual temperature. This pressure dependence of average Si–O–Si angles in shock-densified SiO2 glass agrees with the results of our previous Raman spectroscopic study. On the other hand, the pressure variation for the first sharp diffraction peak (FSDP) was analyzed to estimate the evolution of intermediate range structures. It is suggested that the mean d value (d m ) obtained from the position of FSDP strongly depends on the shock and residual temperature, as well as shock pressure. Received: 29 June 2001 / Accepted: 14 November 2001  相似文献   

11.
《Chemical Geology》2006,225(3-4):373-387
Rock-forming zeolites often exhibit complex solid solutions reflecting isomorphous substitutions between Si and Al in tetrahedral framework sites, between charge-balancing extraframework cations, and between water molecules and vacancies. Although the number of moles of charge on extraframework cations in a zeolite must equal the moles of Al in order to maintain charge balance, the relationships between Si–Al and extraframework substitutions vary considerably across this mineral group. Review of available compositional data suggests that there are three main modes of Si–Al substitution in zeolites: 1) coupled CaAl–NaSi substitution; 2) coupled substitution of a single extraframework cation plus Al for Si; and 3) completely uncoupled substitution among extraframework cations and Si and Al on tetrahedral sites. Among zeolites that exhibit the latter two modes of solid solution, Si–Al substitution can be described by an SiO2 H2O) compositional exchange vector from a hypothetical, pure-silica endmember composition. Recent calorimetric, structural, and theoretical investigations suggest that Si–Al substitution follows a non-ideal, athermal solution model characterized by no excess enthalpies of mixing and negative excess entropies of mixing. Because Si–Al exchange in these minerals can be explicitly or implicitly described by exchange of an SiO2 component, the Si/Al ratio in their framework can be predicted solely as a function of temperature, pressure, and the chemical potential of SiO2. Application of this model leads to calculated Si/Al ratios in stilbite (coexisting with albite), analcime, and chabazite consistent with observed mineral compositions and parageneses in very low-grade metamorphic environments. Coexistence of silica polymorphs with zeolites containing SiO2·nH2O exchange vectors potentially provides a means of performing thermobarometric calculations in very low-grade metamorphic and diagenetic environments.  相似文献   

12.
In volcanic tuffs, dredged during Cruise 23 of the R/V Akademik Nikolaj Strakhov, accessory zircon was found; except for the mineral-forming components, there were ∼2% of ThO2 and 0.75% of Ce2O3 in zircon. During rapid uplift of magmatic masses to the ocean bottom surface, admixture elements isolated into specific minerals. As a result, destruction structures were formed in the rim parts of primary zircon crystals, and the new-formed association of zircon + thorite + cerite + thoriante + baddeleyite appeared.  相似文献   

13.
Silicon shows no variation in its chemical valence in nature and exists mainly in the form of silicon-oxygen tetrahedra, so very small silicon isotope thermodynamic fractionation occurs and the resultant silicon isotope variation is limited. Dynamic fractionation of Si isotopes during precipitation of SiO2 from a solution is a main factor leading to substantial variations in silicon isotopes in nature. In this experimental study, we determined the dynamic fractionation factorα for silicon isotopes during precipitation of SiO2 from the solution. And in combination of α, a theoretical explanation is presented of the considerably low δ30Si values of black smokers on modern seafloor, Archean banded magnetite-quartzite and clay minerals of weathering origin, and of clearly high δ30Si values of siliceous rocks in shallow-sea carbonate platforms. This paper won the Paper of Excellence in the Second National Young Scientist Symposium on Geochemistry of Minerals and Rocks.  相似文献   

14.
 The solubility of hydroxyl in the α, β and γ phases of (Mg,Fe)2SiO4 was investigated by hydrothermally annealing single crystals of San Carlos olivine. Experiments were performed at a temperature of 1000° or 1100 °C under a confining pressure of 2.5 to 19.5 GPa in a multianvil apparatus with the oxygen fugacity buffered by the Ni:NiO solid-state reaction. Hydroxyl solubilities were determined from infrared spectra obtained of polished thin sections in crack-free regions ≤100 μm in diameter. In the α-stability field, hydroxyl solubility increases systematically with increasing confining pressure, reaching a value of ∼20,000 H/106Si (1200 wt ppm H2O) at the α-β phase boundary near 13 GPa and 1100 °C. In the β field, the hydroxyl content is ∼400,000 H/106Si (24,000 wt ppm H2O) at 14–15 GPa and 1100 °C. In the γ field, the solubility is ∼450,000 H/106Si (27,000 wt ppm H2O) at 19.5 GPa and 1100 °C. The observed dependence of hydroxyl solubility with increasing confining pressure in the α phase reflects an increase in water fugacity with increasing pressure moderated by a molar volume term associated with the incorporation of hydroxyl ions into the olivine structure. Combined with published results on the dependence of hydroxyl solubility on water fugacity, the present results for the α phase can be summarized by the relation C OH = A(T)fnH2Oexp(−PΔV/RT), where A(T) = 1.1 H/106Si/MPa at 1100 °C, n = 1, and ΔV = 10.6×10–6 m3/mol. These data demonstrate that the entire present-day water content of the upper mantle could be incorporated in the mineral olivine alone; therefore, a free hydrous fluid phase cannot be stable in those regions of the upper mantle with a normal concentration of hydrogen. Free hydrous fluids are restricted to special tectonic environments, such as the mantle wedge above a subduction zone. Received: 10 February 1995 / Accepted: 23 October 1995  相似文献   

15.
 The charge density and bond character of the rutile-type structure of SiO2 (stishovite) under compression to 30 GPa were investigated by X-ray diffraction study using synchrotron radiation and AgKα rotating anode X-ray generator through a newly devised diamond-anvil cell. The valence electron density was determined by least-squares refinement including the κ parameter and the electron population in the X-ray atomic scattering parameters. The oxygen κ-parameter of SiO2 is 0.94 under ambient conditions and 1.11 at 29.1 GPa and the silicon valence changes from +2.12(8) at ambient pressure to +2.26(15) at 29.1 GPa. These values indicate that the electron distributions are more localized with increasing pressure. The difference Fourier map shows the deformation of the valence electron distribution and the bonding electron population in residual electron densities. The bonding electron observed from the X-ray diffraction study is interpreted by molecular orbital calculations. The deformation of SiO6octahedra and the bonding electron density of stishovite structures are elucidated from the overlapping electron orbits. The O–O distances of shared and unshared edge of SiO6 octahedra change with the cation ionicity. The repulsive force between the two cations in the adjacent octahedron makes its shared edge shorter. The pressure changes of the apical and equatorial Si–O interatomic distances are explained by the electron density of state (DOS) of Si and electron configuration. Received: 7 January 2002 / Accepted: 6 May 2002  相似文献   

16.
Si K-, L- and O K-edge ELNES spectra of natural α-quartz and synthetic coesite on one side and synthetic stishovite on the other show characteristic differences that can be related, by comparison with multiple-scattering (MS) calculations, to the fourfold vs. sixfold coordination of Si in these polymorphs of SiO2. It is shown by MS calculations on large clusters that the outer shells contribute relatively little to the overall topologies of the spectra. Therefore, distinction between fourfold- and sixfold-coordinated Si is possible even on a nm scale and probably also in amorphous substances.  相似文献   

17.
Oxygen isotope exchange between H2O and H4SiO4 was modeled with ab initio calculations on H4SiO4 + 7H2O. Constrained optimizations were performed with the B3LYP/6-31+G(d,p) method to determine reactants, transition states, and intermediates. Long-range solvation was accounted for using self-consistent reaction field calculations. The mechanism for exchange involves two steps, a concerted proton transfer from H4SiO4 forming a 5-coordinated Si followed by a concerted proton transfer from the 5-coordinated Si forming another H4SiO4. The 5-coordinated Si intermediate is C2 symmetric. At 298K and with implicit solvation included, the Gibbs free energy of activation from transition state theory is 66 kJ/mol and the predicted rate constant is 16 s−1. Equilibrium calculations between 298K and 673K yield αH4SiO4-H2O that are uniformly less than, but similar to, αqtz-H2O, and therefore αqtz-H4SiO4 is expected to be relatively small in this temperature range.  相似文献   

18.
 The relative stabilities of orthozoisite, Ca2Al3[O|OH|Si2O7|SiO4], space group Pnma, and the monoclinic polymorph, clinozoisite, space group P21/m, have been investigated using calculations based on density functional theory. It is found that orthozoisite is more stable than clinozoisite by about 1 kJ mol−1 at zero pressure in the athermal limit. The bulk moduli of the two polymorphs have been calculated to be Bortho=117.5(1.7) GPa and Bclino=136(4) GPa. Received: 20 March 2000 / Accepted: 26 February 2001  相似文献   

19.
The phase relations in the Fe2SiO4–Fe3O4 binary system have been determined between 900 and 1200 °C and from 2.0 to 9.0 GPa. At low to moderate pressures magnetite can accommodate significant Si, reaching XFe2SiO4=0.1 and 0.2 at 3.0 and 5.0 GPa respectively, with temperature having only a secondary influence. At pressures below 3.5 GPa at 900 °C and 2.6 GPa at 1100 °C magnetite-rich spinel coexists with pure fayalite. This assemblage becomes unstable at higher pressures with respect to three intermediate phases that are spinelloid polytypes isostructural to spinelloids II, III and V in the Ni-aluminosilicate system. The phase relations between the spinelloid phases are complex. At pressures above ≈8.0 GPa at 1100 °C, the spinelloid phases give way to a complete spinel solid solution between Fe3O4 and Fe2SiO4. The presence of small amounts of Fe3+ stabilises the spinel structure to lower pressures compared to the Fe2SiO4 end member. This means that the fayalite–γ-spinel transition is generally unsuitable as a pressure calibration point for experimental apparatuses. The molar volumes of the spinel solid solutions vary nearly linearly with composition, having a small negative deviation from ideal behaviour described by Wv=−0.15(6) cm3. Extrapolation yields V°(298) = 41.981(14) cm3 for the Fe2SiO4-spinel end member. The cell parameters and molar volumes of the three spinelloid polytypes vary systematically with composition. Cation disorder is an important factor in stabilising the spinelloid polytypes. Each polytype exhibits a particular solid solution range that is directly influenced by the interplay between its structure and the cation distributions that are energetically favourable. In the FeO–FeO1.5–SiO2 ternary system Fe7SiO10 (“iscorite”) coexists with the spinelloid phases at intermediate pressures on the SiO2-poor, or Fe3+-poor side of the Fe2SiO4–Fe3O4 join. On the SiO2 and Fe3+-rich side of the join, orthopyroxene or high-P clinopyroxene coexists with the spinelloids and spinel solid solutions. The assemblage pyroxene+spinel+SiO2 is stable over a wide range of bulk composition. The stability of spinelloid III is of particular petrologic interest since this phase has the same structure as (Mg,Fe)2SiO4–wadsleyite, indicating that Fe3+ can be easily incorporated in this important phase in the Earth's transition zone, in addition to silicate spinel. This has important implications for the redox state of the Earth's transition zone and for the depth at which the olivine to spinel transition occurs in the mantle, potentially leading to a shift in the “410 km” seismic discontinuity to shallower depths depending on the prevailing redox state. In addition, a coupled tetrahedral substitution of Fe3++OH for Si+O could provide a further mechanism for the incorporation of H2O in wadsleyite. Received: 10 January 2000 / Accepted: 12 May 2000  相似文献   

20.
From considerations of relativeG-T surfaces inferred from publishedP-T data and the occurrence of replacement textures of Al2SiO5 polymorphs in rocks, the relative positions of curves representing the following equation in K+T — pH ispace on substituting Al2SiO5 different polymorphs are derived.3 Al2SiO5 + 3 SiO2 (quartz) + 2 K+ + 3 H2O 2 KAl2[AlSi3O10](OH)2 (muscovite)+ 2 H+. The curves are different because of the differentG-T values for the polymorphs which, in the field, is borne out by the observation that in a rock containing two or three Al2SiO5 polymorphs, in nearly all instances only one polymorph is replaced by white mica. Instances of textural relations showing the interpreted selective replacement of one Al2SiO5 polymorph by a white mica in the presence of one (or two) other Al2SiO5 polymorph(s) are cited both from the literature and various field examples. The selective replacement of kyanite if sillimanite and/or andalusite is/are present, and of andalusite if only sillimanite is present are interpreted to show that generally during the muscovitization reaction, the field of sillimanite in the above reaction (left hand side) at a particular pH (H+ concentration) and is larger in K+T space than that of andalusite which in turn is larger than that of kyanite. Theoretically it is shown that variations to this can exist but the field evidence suggests these only occur under rare geological conditions. Although this is not totally conclusive, the selectiveness of the replacement is interpreted to show that the fluid was buffered with respect to K+ and H+ on or near the curve of the polymorph showing the lowest stability field until that polymorph is totally consumed, after which the fluid composition moves to the next lowest curve for the remaining polymorph(s) present in the rock. The alteration of more than one polymorph by an apparently simultaneous process of alteration is rare and usually occurs at a low grade of metamorphism. This is interpreted to show that the buffering reaction could not keep pace with the influx of fluid and change the composition of this fluid (in most cases).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号