首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A benthic index of biotic integrity was developed for use in estuaries of the mid-Atlantic region of the United States (Delaware Bay estuary through Albemarle-Pamlico Sound). The index was developed for the Mid-Atlantic Integrated Assessment Program (MAIA) of the U.S. Environmental Protection Agency using procedures similar to those applied previously in Chesapeake Bay and southeastern estuaries, and was based on sampling in July through early October. Data from seven federal and state sampling programs were used to categorize sites as degraded or non-degraded based on dissolved oxygen, sediment contaminant, and sediment toxicity criteria. Various metrics of benthic community structure and function that distinguished between degraded and reference (non-degraded) sites were selected for each of five major habitat types defined by classification analysis of assemblages. Each metric was scored according to thresholds established on the distribution of values at reference sites, so that sites with low scoring metrics would be expected to show signs of degradation. For each habitat, metrics that correctly classified at least 50% of the degraded sites in the calibration data set were selected whenever possible to derive the index. The final index integrated the average score of the combination of metrics that performed best according to several criteria. Selected metrics included measures of productivity (abundance), diversity (number of taxa, Shannon-Wiener diversity, percent dominance), species composition and life history (percent abundance of pollution-indicative taxa, percent abundance of pollution-sensitive taxa, percent abundance of Bivalvia, Tanypodinae-Chironomidae abundance ratio), and trophic composition (percent abundance of deep-deposit feeders). The index correctly classified 82% of all sites in an independent data set. Classification efficiencies of sites were higher in the mesohaline and polyhaline habitats (81–92%) than in the oligohaline (71%) and the tidal freshwater (61%). Although application of the index to low salinity habitats should be done with caution, the MAIA index appeared to be quite reliable with a high likelihood of correctly identifying both degraded and non-degraded conditions. The index is expected to be of great utility in regional assessments as a tool for evaluating the integrity of benthic assemblages and tracking their condition over time.  相似文献   

2.
Development and validation of an estuarine biotic integrity index   总被引:1,自引:0,他引:1  
We tested hypotheses about how estuarine fish assemblages respond to habitat degradation and then integrated these responses into an overall index, the Estuarine Biotic Integrity Index (EBI), which summarized observed changes. Fish assemblages (based on trawl catches) and habitat quality were measured monthly or biweekly at nine sites in two estuaries from March 1988 to June 1990. Submerged aquatic vegetation habitats were classified as low or medium quality based on year-round measurements of chemical and physical characteristics (phytoplankton blooms; macroalgae; dissolved oxygen; nutrients; dredged channels). We tested 15 metrics and selected 8 for inclusion in the EBI: total number of species, dominance, fish abundance (number or biomass), number of nursery species, number of estuarine spawning species, number of resident species, proportion of benthic-associated fishes, and proportion abnormal or diseased. Fish assemblages in low-quality sites had lower number of species, density, biomass, and dominance compared with medium-quality sites. Fish abundance peaked in July and August, and was lowest in January to March. The seasonal cycle in low-quality sites was damped compared with medium-quality sites. Abundances of fishes using estuaries as a spawning and nursery area and of benthic species were lower in low-quality sites compared to medium-quality sites. The individual metrics and the overall index correlated with habitat degradation. The EBI based on biomass did not do better than the EBI based on number, indicating that the extra effort to obtain biomass may not be warranted. We suggest the EBI is a useful indicator of estuarine ecosystem status because it reflects the relationship between anthropogenic alterations in estuarine ecosystems and the status of higher trophic levels.  相似文献   

3.
Fringing marshes are important but often overlooked components of estuarine systems. Due to their relatively small size and large edge to area ratio, they are particularly vulnerable to impacts from adjacent upland development. Because current shoreland zoning policies aim to limit activities in upland buffer zones directly next to coastal habitats, we tested for relationships between the extent of development in a 100-m buffer adjacent to fringing salt marshes and the structure of marsh plants, benthic invertebrates, and nekton communities. We also wanted to determine useful metrics for monitoring fringing marshes that are exposed to shoreline development. We sampled 18 fringing salt marshes in two estuaries along the coast of southern Maine. The percent of shoreline developed in 100-m buffers around each site ranged from 0 to 91 %. Several variables correlated with the percent of shoreline developed, including one plant diversity metric (Evenness), two nekton metrics (Fundulus heteroclitus %biomass and Carcinus maenas %biomass), and several benthic invertebrate metrics (nematode and insect/dipteran larvae densities in the high marsh zone) (p?<?0.05). Carcinus maenas, a recent invader to the area, comprised 30–97 % of the nekton biomass collected at the 18 sites and was inversely correlated with Fundulus %biomass. None of these biotic metrics correlated with the other abiotic marsh attributes we measured, including porewater salinity, marsh site width, and distance of the site to the mouth of the river. In all, between 25 and 48 % of the variance in the individual metrics we identified was accounted for by the extent of development in the 100-m buffer zone. Results from this study add to our understanding of fringing salt marshes and the impacts of shoreline development to these habitats and point to metrics that may be useful in monitoring these impacts.  相似文献   

4.
An objective of the Mid-Atlantic Integrated Assessment Program (MAIA) of the U.S. Environmental Protection Agency is to develop an index for assessing benthic community condition in estuaries of the mid-Atlantic region of the United States (Delaware Bay through Pamlico Sound). To develop such an index, natural unimpaired communities must first be identified and variability related to natural factors accounted for. This study focused on these two objectives; Lnansó et al. (2002) describe the index. Using existing data sets from multiple years, classification analyses of species abundance and discriminant analysis were employed to identify major habitat types in the MAIA region and evaluate the physical characteristics that structure benthic infaunal assemblages. Sampling was restricted to soft bottoms and to the index development period, July through early October. The analyses revealed salinity and sediment composition as major factors structuring infaunal assemblages in mid-Atlantic estuaries. Geographical location was a secondary factor. Nine habitat classes were distinguished as a combination of 6 salinity classes, 2 sediment types, and the separation of North Carolina and Delaware-Chesapeake Bay polyhaline sites. The effect of sediment types on faunal assemblages was restricted to polyhaline sites, which were separated into two sediment groups above and below 90% sand content. Assemblages corresponding to each of these 9 habitats were identified in the context of widely recognized patterns of dominant taxa. Differences between North Carolina and Delaware-Chesapeake Bay polyhaline assemblages were attributed to the relative contributions of species and not to differences in species composition. No zoogeographic discontinuities could be identified. Our results reinforce the findings of recent studies which suggest that, with respect to estuarine benthic assemblages, the boundary between the Virginian and the Carolinian Provinces be moved to a new location south of Pamlico Sound.  相似文献   

5.
A benthic index of environmental condition of Gulf of Mexico estuaries   总被引:1,自引:0,他引:1  
An index was developed for estuarine macrobenthos in the Gulf of Mexico that discriminated between areas with degraded environmental conditions and areas with undegraded or reference conditions. Test sites were identified as degraded or reference based on criteria for dissolved oxygen levels, sediment toxicity tests, and sediment contamination. Discriminant analysis was used to identify a suite of measures of benthic community composition and diversity that would most successfully distinguish degraded from undegraded sites. The resultant benthic index was composed of a linear combination of three factors: the Shannon-Wiener diversity index, the proportion of total benthic abundance as tubificid oligochaetes, and the proportion of total benthic abundance as bivalve molluscs. This index was used to evaluate the spatial patterns of degraded benthic resources in the Gulf of Mexico.  相似文献   

6.
To use bioassessments to help diagnose or identify the specific environmental stressors affecting estuaries, we need a better understanding of the relationships among sediment chemistry guidelines, ambient toxicity tests, and community metrics. However, this relationship is not simple because metrics generally assess the responses at the community level of biological organization whereas sediment guidelines and ambient toxicity tests generally assess or are based on the responses at the organism level. The relationship may be further complicated by the influence of other chemical and physical variables that affect the bioavailability and toxicity of chemical contaminants in the environment. Between 1990 and 1993, the U.S. Environmental Protection Agency (USEPA) conducted an Environmental Monitoring and Assessment Program (EMAP) survey of estuarine sites in the Virginian Province of the eastern United States. The surveys collected data on benthic assemblages, physical and chemical habitat characteristics, and sediment chemistry and toxicity. We characterized these estuarine sites as affected by sediment contamination based on the exceedence of sediment guidelines or on ambient sediment toxicity tests (i.e., 10-day Ampelisca abdita survival). Then, benthic invertebrate metrics were compared among affected and unaffected sites to identify metrics sensitive to the contamination. A number of benthic invertebrate metrics differed between groups of sites segregated using the organism-level measures whereas other metrics did not. The difference among metrics appears to depend on the sensitivity of the individual metrics to the stressor gradient represented by metals or persistent organic toxics in sediments because the insensitive metrics do not effectively quantify the changes in the benthic invertebrate assemblage associated with these stressors. The significant relationships suggest that a relationship exists between the organism-level effects assessed by chemistry or ambient toxicity tests and the community-level effects assessed by community metrics and that the organism-level effects are predictive, to some extent, of community-level effects.  相似文献   

7.
The fauna of seagrass-covered mud banks in Florida Bay, documented in the mid 1980s prior to recent seagrass die-off, phytoplankton blooms, and other ecosystem changes, was reexamined in the mid 1990s for faunal changes that might be associated with environmental perturbations. During both decades, decapod crustaceans and fishes were collected with 1-m2 throw traps from seagrass beds at six sites that differ in the amount of freshwater and/or marine influence and in seagrass community metrics. The most common faunal changes were declines in seagrass-canopydwelling forms and increases in benthic forms. At three sites with relatively lush seagrass meadows, above-ground seagrass standing crop declined and abundance of the benthic predatory fishOpsanus beta increased. The degree of faunal change among these sites appeared to be related either to salinity variability or to the degree of exposure to the ecosystem changes that have taken place in Florida Bay. At two sites with poorly developed seagrass meadows, seagrass standing crop and canopy height did not change significantly between decades, but there was an increase in shoot density and total leaf area. The animal communities at these sites were characterized by significant increases in the abundance of benthic crustaceans. At the site on the edge of Rankin Lake, the basin where seagrass die-off was first observed in Florida Bay during 1987, seagrass standing crop, canopy height, shoot density, and leaf area declined significantly between decades, but species richness of both crustaceans and fishes increased. The abundance of canopy-dwelling crustaceans and fishes declined markedly at this site, whereas the abundance of benthic forms less dependent on seagrass cover generally increased. In retrospect, we believe the fauma at this site during the 1980s, characterized by high productivity but few species, was already showing signs of the stresses that led to the seagrass die-off that began in 1987.  相似文献   

8.
We applied an index of estuarine biotic integrity (EBI) to 36 sites in 16 estuaries on Cape Cod and in Buzzards Bay, Massachusetts, U.S. Two estuaries were sampled in 6 years, from 1988–1999 (Waquoit and Buttermilk Bays), and a total of 14 others in Buzzards Bay were sampled in 1993, 1996, and 1998. Habitats at each site were classified as either low or medium quality by density and biomass of submerged rooted vegetation (eelgrass). The EBI and its metrics (fish abundance, biomass, total species, species dominance, life history, and proportion by life zone) were successful in classifying habitat quality. Greatest success and least bias of the EBI and its metrics in classifying habitat quality occurred when eelgrass habitats were least degraded. The EBI tracked habitat degradation over time in Waquoit and Buttermilk Bays. Average EBI values in medium-quality habitats of Buzzards Bay estuaries during 1996 and 1998 were less than expected based on earlier EBI values from Waquoit and Buttermilk Bays, suggesting that many of these sites are in transition from medium to low quality. Our results indicate that the EBI is sensitive to habitat quality change, and further suggest that low-quality habitats may approach a stable fish community structure that is well reflected by the EBI. The relationship of the EBI to an independent measure of water quality demonstrated inherent time lags between the degradation and improvement of water quality, fish habitat, and response of the fish community.  相似文献   

9.
Macrobenthic communities from estuaries throughout the northern Gulf of Mexico were studied to assess the influence of sediment contaminants and natural environmental factors on macrobenthic community trophic structure. Community trophic data were also used to evaluate whether results from laboratory sediment toxicity tests were effective indicators of site-specific differences in benthic trophic structure. A multiple regression model consisting of five composite factors (principal components) was used to distinguish the effects of sediment contaminants and environmental variables on benthic community trophic structure. This model explained 33.5% of the variation in macrobenthic trophic diversity (p<0.001), a variable derived from the distribution of taxas among nine original trophic categories. A significant negative relatinship was found between principal components reflecting concentrations of sediment contaminants and macrobenthic trophic diversity. Detritivores including surface deposit-feeders (SDF), subsurface deposit-feeders (SSDF), and filter feeders (FF) were numerically dominant at 201 random sites, each group accounting for 25–30% of total macrobenthic abundance. The relative abundance of SDFs was considerably lower (12.1±2.9% to 17.1±4.4%) at sites where sediment contaminant concentrations exceeded minimum biological effects thresholds (ER-L values from Long and Morgan 1990 than at sites sampled at random (29.3±5.7%). SSDFs were proportionally more abundant at contaminated sites (42.0±7.7% to 63.6±10.3%) versus random sites (27.5±5.7%), and the relative abundance of SSDFs was positively correlated with concentrations of particular contaminants. Benthic trophic structure was also found to be a function of salinity, where the proportion of SSDFs was negatively correlated with salinity (p=0.035, r=−0.223, n=326). Silt-clay content loaded fairly strongly on the first principal component, but trophic structure parameters were not significantly correlated with sediment grain size or dissolved oxygen (perhaps due, in part, to covariation). Results from laboratory sediment toxicity tests with mysids were predictive of differences in macrobenthic trophic structure in situ (i.e., mysid survival was negatively correlated with %SSDF; p<0.001, r=−0.292, n=326). Results from laboratory sediment toxicity tests with ampeliscid amphipods were not indicative of site-specific differences in benthic trophic structure.  相似文献   

10.
Nonnative species cause economic and ecological impacts in habitats they invade, but there is little information on how they spread and become abundant. This is especially true for nonnative species in native Zostera marina eelgrass beds in coastal British Columbia, Canada, which play a vital role in estuarine ecosystems. We tested how nonnative species richness and abundance were related to both arrival vectors and environmental factors in northeast Pacific eelgrass. Using correlation tests and generalized linear models, we examined how nonnative macroinvertebrates (benthic, epifaunal, and large mobile) and some algae species were related to arrival vectors (shipping and aquaculture) and environmental factors (climate variables, human population density, and native richness and abundance). We found 12 nonnative species, 50 % with known negative impacts within eelgrass habitats. For benthic organisms, both nonnative richness and abundance were strongly correlated with shellfish aquaculture activities, and not with shipping activity. For epifaunal nonnative richness and abundance, neither vector was significantly correlated. Climate (temperature and salinity) helped explain nonnative richness but not abundance; there was no relationship of nonnative richness or abundance to native species richness and abundance or population density. Results suggest that aquaculture activities are responsible for many primary introductions of benthic nonnative species, and that temperature and salinity tolerances are responsible for post-introduction invasion success. While aquaculture and shipping vectors are becoming increasingly regulated to prevent further international spread of nonnative species, it will be important when managing nonnatives to consider secondary spread from intraregional transport through local shellfish aquaculture and shipping.  相似文献   

11.
Freshwater inflow is a driver of the functioning of estuaries, and average salinity is usually measured to identify the effects of inflow in salinity-zone habitats. However, salinity variability could act as a disturbance by producing unstable habitats, leading to the question: is salinity variance an indicator of benthic disturbance, and therefore a driver of community stability? The macrofauna communities of five estuaries that lie in a climatic gradient on the Texas coastline were analyzed using a 26-year data set. Comparisons within and between estuaries with different inflow regimes were used as a natural experiment to simulate press disturbance events (i.e., climatic inflow) and pulse disturbance (i.e., floods) in maintaining community stability. Salinity average and variance was compared with benthic community diversity, evenness, and species richness. Salinity variance was more correlated to benthic diversity for each estuarine system (r?=??0.6610; p?=?0.0015) than average salinity (r?=?0.3818; p?=?0.0967). As salinity variance decreased (i.e., stability increased), diversity levels of benthic communities increased, and areas with mgore freshwater inflow displayed lower levels of benthic diversity. These findings advance a component of the general theory of diversity maintenance that persistent stressors, such as salinity variability, can influence diversity.  相似文献   

12.
Long-term monitoring studies are needed to understand changes in ecosystem status when restoration measures are implemented. A long-term data series (1996–2007) of the Tagus estuary (Portugal) intertidal and subtidal benthic communities was collected in a degraded area where mitigation measures were implemented. Multivariate analysis was used to analyze spatial and temporal patterns in benthic community composition and trends in five benthic community metrics (i.e., taxonomic richness, density, biomass, Shannon–Wiener diversity and the AMBI index) were also examined. The results revealed a clear separation between intertidal and subtidal assemblages, although they had 50% of taxa in common, including the most abundant. Significant positive trends were found for all metrics showing that both intertidal and subtidal communities responded to the restoration measures implemented. Nevertheless, biotic indices need some adaptation before being universally applied to intertidal and subtidal habitats.  相似文献   

13.
A study was conducted to define winter distribution patterns of blue crabs,Callinectes sapidus, in the lower Chesapeake Bay and to relate these patterns to environmental variation. During February 1986 a stratified random survey was conducted to examine the distribution of blue crabs with respect to three major habitat types: 1) high energy, wave- and tide-dominated, spits and shoals; 2) moderate energy, tide-dominated basins; and 3) variable energy, tide-dominated or quiescent channels (natural or cut). Each major habitat type was further stratified on the basis of location (to account for possible salinity effects), resulting in a total of 17 habitat-stratum combinations. Blue crabs exhibited significant differences in abundance among habitats. Crabs were most abundant in the basin habitat and least abundant in the shoal and spit habitat. A posteriori evaluations of abundance patterns in relation to sediment type and depth showed that crabs were significantly more abundant where sediments contained between 41 and 60% sand and at depths exceeding 9 m. The sampled population of blue crabs was dominated by mature females. There were no significant differences in crab sex ratios between habitats, but significant differences between two fixed sites sampled through the winter showed that there were proportionately more male crabs at the western site than there were at the eastern site. The observed patterns indicate that some differential habitat utilization occurs and that overwintering female crabs are found preferentially in areas characterized by moderate energy regimes and fine, but sandy sediments.  相似文献   

14.
Watershed landscape indicators of estuarine benthic condition   总被引:1,自引:0,他引:1  
Do land use and cover characteristics of watersheds associated with small estuaries exhibit a strong enough signal to make landscape metrics useful for identifying degraded bottom communities? We tested this idea with 58 pairs of small estuaries (<260 km2) and watersheds in the U.S. Mid-Atlantic coastal plain (Delaware Bay to Chesapeake Bay). We considered 34 landscape metrics as potential explanatory variables and seven estuarine parameters as response variables. We developed three logistic regression models: one to calculate the probability of degraded benthic environmental quality (BEQ), as defined by chemical parameters, and two for the probability of degraded estuarine bottom communities, one using a benthic index (BI) and a second using the total number of bottom-dwelling species (TNBS, consisting of benthic macroinvertebrates and fishes). We evaluated the discriminatory power of the models with ROC (receiver operating characteristic) curves of sensitivity and specificity. All three models showed excellent discrimination of high and low values. A model using the sum of all human land uses and percent wetlands correctly classified BEQ in 86% of the cases; low benthic index and low total number of bottom species were each associated with degraded BEQ (p<0.01). The BI model used percent riparian urban, riparian wetlands, and agriculture on steep slopes (76% correct classification) and correctly predicted high-low benthic index of an independent data set 79% of the time (p<0.05). The TNBS model used percent wetlands, riparian wetlands, and riparian agriculture (74% correct classification). Watersheds with higher percentages of urban and agricultural land uses were associated with lower benthic environmental quality, benthic index, and biodiversity, whereas those with higher percentages of wetlands were associated with higher numbers. As human development of watersheds increases, statistical prediction rules developed from landscape metrics could be a cost-effective method to identify potentially threatened estuaries.  相似文献   

15.
Temporal changes in benthic foraminiferal morpho-groups were suggested as an effective proxy to reconstruct past monsoon intensity from the Arabian Sea. Here, in order to test the applicability of temporal variation in morpho-groups to reconstruct past monsoon intensity from the Bay of Bengal, we have documented recent benthic foraminiferal distribution from the continental shelf region of the northwestern Bay of Bengal. Based on the external morphology, benthic foraminifera were categorized into rounded symmetrical (RSBF) and angular asymmetrical benthic foraminifera (AABF). Additionally, a few other dominant groups were also identified based on test composition (agglutinated, calcareous) and abundance (Asterorotalids and Nonions). The relative abundance of each group was compared with the ambient physico-chemical conditions, including dissolved oxygen, organic matter, salinity and temperature. We report that the RSBF are abundant in comparatively warm and well oxygenated waters of low salinity, suggesting a preference for high energy environment, whereas AABF dominate relatively cold, hypersaline deeper waters with low dissolved oxygen, indicating a low energy environment. The agglutinated foraminifera, Asterorotalids and Nonions dominate shallow water, low salinity regions, whereas the calcareous benthic foraminiferal abundance increases away from the riverine influx regions. Food availability, as estimated from organic carbon abundance in sediments, has comparatively less influence on faunal distribution in the northwestern Bay of Bengal, as compared to dissolved oxygen, temperature and salinity. We conclude that the factors associated with freshwater influx affect the distribution of benthic foraminiferal morpho-groups in the northwestern Bay of Bengal and thus it can be used to reconstruct past monsoon intensity from the Bay of Bengal.  相似文献   

16.
Manipulative caging experiments were conducted in North Inlet, South Carolina, to measure the predatory effect of juvenile penaeid white shrimp,Litopenaeus setiferus, on their subtidal macrobenthic prey. We used the natural neighbor interpolation procedure within a Geographic Information System (GIS) to map macrobenthos distributions at both the start and end of the cage deployments. Moran’s I, a commonly used index of spatial autocorrelation, provided a quantitative metric for evaluating the statistical significance of the observed changes. We tested the hypothesis that juvenile white shrimp are optimal foragers by assessing whether their predatory behavior was targeted at higher density macrobenthos patches inside the enclosures, resulting in a more homogeneous distribution of prey after seven days. Since large changes in patchiness could occur over seven days without incurring a significant change in index value, we treated each index as a continuous measure of patchiness, and examined whether the value increased or decreased consistently among treatment replicates. Using Moran’s I, the abundance and spatial distribution of macrobenthos inside control, partial, open, and shrimp inclusion treatments varied in their response. After seven days, decreased patchiness was consistently observed in the high density shrimp treatment replicates, and increased patchiness in the open plots. The GIS natural neighbor interpolation created a succinct visual representation of dramatic changes in prey spatial distribution and prey densities throughout each cage. The GIS interpolation conveyed the dynamic nature of the spatial variability that would not have been evident by calculation of Moran’s I alone. Although we could only weakly support our hypothesis, the combination of visual interpolation methods with index calculations has great potential for gaining further insights into the role of different factors as they affect changes in spatial distribution of benthic infauna.  相似文献   

17.
The spatial arrangement of seagrass beds varies from scales of centimeters to meters (rhizomes, shoot groups), meters to tens of meters (patches), to tens of meters to kilometers (seagrass landscapes). In this study we examine the role of patch scale (patch size, seagrass % cover, seagrass biomass), landscape scale (fractal geometry, patch isolation) and wave exposure (mean wind velocity and exceedance) variables in influencing benthic community composition in seagrass beds at three intertidal sites in northern New Zealand (two sites in Manukau Harbour and one site in Whangapoua Harbour). Analysis of univariate community measures (numbers of individuals and species, species richness, diversity and evenness) and multivariate analyses indicated that there were significant differences in community composition inside and outside of seagrass patches at each of the three sites. Partialling out the spatial and temporal components of the ecological variation indicated that seagrass patch variables explained only 3–4% of the patch scale variation in benthic community composition at each of the sites. The temporal component was more important, explaining 12–14% of the variation. The unexplained variation was high (about 75%) at all three sites, indicating that other factors were influencing variation in community composition at the scale of the patches, or that there was a large amount of stochastic variation. Landscape and wave exposure variables explained 62.5% of the variation in the species abundance data, and the unexplained variation at the landscape level was correspondingly low (12%). Canonical correspondence analysis produced an ordination that suggests that, while mean wind velocity and exceedance were important in explaining the differences between the communities in the two harbours, spatial patterning of the habitat, primarily fractal dimension, and secondarily patch isolation (or some factors that were similarly correlated), were important in contributing to variability in community composition at the two sites in Manukau Harbour. This study suggests that spatial patterning of seagrass habitat at landscape scales, independent of the patch scale characteristics of the seagrass beds, can affect benthic community composition. Community composition inside and outside seagrass habitats involves responses to seagrass bed structure at a series of hierarchical levels, and we need to consider more than one spatial scale if we are to understand community dynamics in seagrass habitats.  相似文献   

18.
A multimetric fish index, the Estuarine Fish Community Index (EFCI) of Harrison and Whitfield (2004), was applied to data collected for 190 South African estuaries. Estuaries spanned three biogeographic regions and included three distinct estuarine typologies. The EFCI is based on 14 metrics or measures that represent four broad fish community attributes: species diversity and composition, species abundance, nursery function, and trophic integrity. Metric reference conditions and scoring criteria were developed separately for each estuary type within each zoogeographic region. The final EFCI was applied to each estuary by comparing its fish community with the appropriate reference. Index values ranged between 18 (very poor) and 66 (very good). A comparison of the EFCI with independent measures of estuarine condition revealed that the index was able to effectively differentiate between poor and good quality sites. Applying the EFCI to estuaries in which multiple samples were taken also showed that the index is reproducible. The EFCI is both a robust and sensitive method for assessing the ecological condition of estuarine systems; it is also an effective communication tool for converting ecological information into an easily understood format for managers, policy makers, and the general public.  相似文献   

19.
By applying discriminant analysis to benthic macroinvertebrate data, we have developed an indicator of benthic condition for northern Gulf of Mexico estuaries. The data used were collected by the United states Environmental Protection Agency’s Environmental Monitoring and Assessment Program (EMAP) in the Louisianian Province from 1991 to 1994. This benthic index represents a linear combination of the following weighted parameters: the proportion of expected species diversity, the mean abundance of tubificid oligochaetes, the percent of total abundance represented by capitellid polychaetes, the percent of total abundance represented by bivalve mollusks, and the percent of total abundance represented by amphipods. We successfully validated and retrospectively applied the benthic index to all of the benthic data collected by EMAP in the Louisianian Province. This benthic index was also calculated for independent data collected from Pensacola Bay, Florida, in order to demonstrate its flexibility and applicability to different estuarine systems within the same biogeographic region. The benthic index is a useful and valid indicator of estuarine condition that is intended to provide environmental managers with a simple tool for assessing the health of benthic macroinvertebrate communities.  相似文献   

20.
The relative abundances of the seagrass,Zostera marina L., and associated macroalgae were examined for Yaquina Bay, Oregon, U.S.A., to investigate variability in autotroph abundance along the salinity-temperature gradient and the potential for nuisance algal blooms. Possible explanations for the patterns in autotroph abundances were explored through examination of their correlations with the physicochemical characteristics of the water column. Study sites were established in each of three zones in the estuary defined by temperature and salinity and were sampled monthly June through September 1998 and in July 1999.Z. marina and macroalgal cover andZ. marina shoot density were measured in 0.25-m2 plots at each site. After cover estimates and shoot counts were made, material was harvested for determination ofZ. marina and macroalgal biomass. Water column variables were measured from stations near each study site and composited on a depth-averaged, monthly basis for each zone. BothZ. marina and green macroalgal abundance differed between sites, over the summer in 1998, and between years. Seasonal patterns were most obvious forZ. marina at the site closest to the ocean while the pattern in macroalgal abundance suggested a bloom moving up river as summer progressed. The physicochemical characteristics of the zones differed with the season and could be related to the patterns inZ. marina and macroalgal abundance. In particular, salinity was positively correlated withZ. marina abundance, while abundance of both autotrophs was related to light availability.Z. marina biomass ranged 19–109 g dry weight m?2; green macroalgae biomass ranged 5–234 g dry weight m?2. The biomass of the green macroalgae at several sites and dates equaled or exceed that of theZ. marina suggesting the potential for nuisance algal blooms does exist in Yaquina Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号