首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atlantic tomcod larvae, hatching in late February and early March 1975 and 1976 into a regime of accelerating river flows, were moved rapidly downriver from milepoint 42–54 (MP 0 is the estuary mouth) to the most seaward reaches of the estuary. This resulted in a spatiotemporal distribution markedly different from that of other Hudson River fish species. Peak tomcod density on posthatch sampling dates was observed most frequently at the George Washington Bridge station (MP 11). Correlation between movements of the 1.0‰ salt front and movements of the age-0 tomcod population was high (r=0.82); and may have been enhanced by high freshwater flows. The population epicenter was always seaward of the 1.0‰ salt front and mean distance between the two was 16–17 km. Moved by tidal and freshwater flows, the tomcod population oscillated between MP 0 and MP 43 during March–May 1973–1976. Location of the population epicenter after mid march was predicted (r2=0.76) to be seaward of the Tappan Zee Bridge (MP 30) when freshwater flows were greater than 450 m3 s?1. During flow regimes greater than 1,290 m3 s?1, the epicenter was predicted to be seaward of the George Washington Bridge (MP 11). An optimum-allocation sampling design for age-0 tomcod showed that 58% of the total effort from mid March to early June should be directed to the river region between MP 0 and MP 24, a region largely ignored in previous studies. *** DIRECT SUPPORT *** A01BY066 00013  相似文献   

2.
The Sungai Merbok estuary, in wet tropical Peninsular Malaysia, borders the Straits of Malacca. Tide, current, and salinity data are used to describe the salient hydrographic features of the mangrove-fringed system. The Sungai Merbok estuary is characterized by a 1.7 m semidiurnal tide with a 0.16 form number, peak currents of 1.3 m s?1, and mean freshwater discharge of 20 m3 s?1. The system is classified as 2a/2b estuary (Hansen and Rattray 1966) or 1a/1b during periods of low runoff. Gravitational circulation is highly variable (but coincides with the neap stratification) and vertical stratification varies from 10?2 to 1. The estuary displays a pronounced fortnightly neap-spring stratification-destratification cycle. The effective longitudinal dispersion coefficient is approximately 100 m2 s?1.  相似文献   

3.
Species of submerged aquatic vegetation (SAV) are frequently used in the management of estuarine systems to set restoration goals, nutrient load reduction goals, and water quality targets. As human need for water increases, the amount of freshwater required by estuaries has become an increasingly important issue. While the, science of establishing the freshwater needs of estuaries is not well developed, recent attempts have emphasized the freshwater requirements of fisheries. We evaluate the hypothesis that SAV can be used to establish freshwater inflow needs. Salinity tolerance data from laboratory and field studies of SAV in the Caloosahatchee estuary, Florida, are used to estimate a minimum flow required to maintain the salt-tolerant freshwater species,Vallisneria americana, at the head of the estuary and a maximum flow required to prevent mortality, of the marine speciesHalodule wrightii at its mouth. ForV. americana, laboratory experiments showed that little or no growth occurred between 10‰ and 15‰ In the field, lower shoot densities (<400 shoots m?2) were associated with salinities greater than 10‰. Results forH. wrightii were more variable than forV. americana. Laboratory experiments indicated that mortality could occur at salinities <6‰, with little growth occurring between 6‰ and 12‰. Field data indicated that higher blade densities (>600 blades m?2) tend to occur at salinities greater than 12‰ Relationships between salinity in the estuary and discharge from the Caloosahatchee River indicated that flows>8.5 m3 s?1 would produce tolerable salinity (<10‰) forV. americana and flows<89 m3 s?1 would avoid lethal salinities (<6‰) forH. wrightii.  相似文献   

4.
Determining the net exchange of constituents between a mangrove estuary system and the adjacent ocean has been re-examined using an extensive dataset from the Sungai Merbok a short, tidally energetic estuary in Malaysia. Previous analysis of the data had indicated that the time-mean sectionally averaged flow was not consistent with mass balance, apparently preventing meaningful estimation of net nutrient fluxes from the mangrove system. In this case the problem was aggravated by the lack of river gauge data and uncertainties introduced by the use of deflected-vane current meters to make the flow measurements. In an alternative approach to the analysis, we have sought to put bounds on the net discharge and hence obtain limits for the nutrient output from the estuary. Tide gauge measurements have been used in conjunction with the section flow data to determine the hypsometry of the mangrove system and hence yield an unbiased estimate of tidal transport Qt. A salt balance condition, appropriate to a mixed estuary is then applied to permit an estimate of Qf, the freshwater discharge. Qf determined this way is found to be close to zero and certainly less than estimates for the period (mean ≈7 m3 s?1) based on rainfall records and catchment area. The implication is that the combined effects of evaporation and transpiration are removing a large proportion of the fresh water entering the mangrove system from the rivers. The very low net discharge indicates total nitrogen exchange is dominated by the covariance of Qt with the sectionally averaged concentration Nt. The considerable variation in this latter term combined with the large amplitude of Qt results in a high variability of the nitrate flux so that the estimate of the mean (0.5 g s?1) is subject to substantial sampling uncertainty (SE=12 g s?1). The application of the salt balance condition to flux studies in other estuarine systems is considered. Particular attention is drawn to the requirements of this approach to flux determination and especially the need for good timing control to allow the proper determination of the tidal diffusion flux of salt and other components.  相似文献   

5.
A one-dimensional, hydrodynamical model of the Tamar Estuary shows good agreement with measured tidal elevations and currents. Computed currents are used to drive a one-dimensional moving-element model of the salt balance. The moving-element model overcomes the numerical difficulties associated with strong tidal advection. Axial distributions of salinity at high water, computed using the moving-element model, compare well with measurements. The modelled and observed high water salinity distributions in this macrotidal estuary show little dependence on tidal range. The major variability in salinity is due to runoff. This strong and rapid dependence on runoff is a consequence of short residence (or flushing) times. Typically, residence times are less than one day throughout the year in the upper 10 km of estuary. The residence times maximize in summer, reaching 14 d for the whole estuary. During high runoff winter periods residence times are less than 5 d. Mixing coefficients for the moving-element salinity model are deduced from salinity measurements. Dispersion coefficients at fixed locations along the estuary are deduced from solutions of the salinity model. The spatially-averaged coefficients at mean spring and neap tides are 180 and 240 m2 s?1, respectively, for average runoff. Therefore, spring-neap variations in dispersion are fairly small and show a negative correlation with tidal range. The spatially-averaged dispersion coefficients at mean tides vary from 150 to 300 m2 s?1 for typical summer and winter runoff, respectively. The increase in dispersion with runoff and the decrease with tidal range implies that buoyancy-driven currents generate an important component of the shear dispersion in this estuary.  相似文献   

6.
Bertioga Channel is a partially mixed (type 2) tidal estuary on the coastal plain of São Paulo, Brazil. Hourly current and salinity measurements during neap and spring tides in July 1991 yielded information about the physical structure of the system. Peak along-channel velocities varied from 40 cm s?1 to 60 cm s?1 during flood tides and from 70 cm s?1 to 100 cm s?1 during ebb tides. Net vertical velocity profiles indicate that the net current reverses directions at a depth of 2.5–3.0 m in the halocline. Due to appreciable fortnightly tidal modulation, the estuary alternates from being highly stratified (type 2b) during neap tides, with advection and diffusion contributing equally to the net upstream salt flux, to being moderately stratified (type 2a) during spring tides, when 90% of the net upstream salt transport is the result of effective tidal diffusion. Decomposition of the salt flux indicates that the relative contribution to the upstream salt transport by gravitational circulation shear is greater than the oscillatory tidal flux by a factor of 2.6 during neap tides. The oscillatory tidal flux is generated by the correlation of the tidal components of the u-velocity and salinity and is responsible for approximately the same amount of upstream salt transport, during neap and spring tides. However, during spring tides, this oscillatory term is greater than the other salt flux terms by a factor of 1.4. The total salt transport, through a unit width of the section perpendicular to the flow, was within 2% of the sum of the seven major decomposed, advective and dispersive terms. On the assumption that the Bertioga Channel is laterally homogeneous, the results also indicate that the estuary is not in steady state with respect to salt flux.  相似文献   

7.
A study was conducted between April 2004 and September 2005 to estimate groundwater and nutrient discharge to the Neuse River estuary in North Carolina. The largest groundwater fluxes were observed to occur generally within 20 m of the shoreline. Groundwater flux estimates based on seepage meter measurements ranged from 2.86?×?108 to 4.33?×?108 m3 annually and are comparable to estimates made using radon, a simple water-budget method, and estimates derived by using Darcy’s Law and previously published general aquifer characteristics of the area. The lower groundwater flux estimate (equal to about 9 m3 s?1), which assumed the narrowest groundwater discharge zone (20 m) of three zone widths selected for an area west of New Bern, North Carolina, most closely agrees with groundwater flux estimates made using radon (3–9 m3 s?1) and Darcy’s Law (about 9 m3 s?1). A groundwater flux of 9 m3 s?1 is about 40% of the surface-water flow to the Neuse River estuary between Streets Ferry and the mouth of the estuary and about 7% of the surface-water inflow from areas upstream. Estimates of annual nitrogen (333 tonnes) and phosphorus (66 tonnes) fluxes from groundwater to the estuary, based on this analysis, are less than 6% of the nitrogen and phosphorus inputs derived from all sources (excluding oceanic inputs), and approximately 8% of the nitrogen and 17% of the phosphorus annual inputs from surface-water inflow to the Neuse River estuary assuming a mean annual precipitation of 1.27 m. We provide quantitative evidence, derived from three methods, that the contribution of water and nutrients from groundwater discharge to the Neuse River estuary is relatively minor, particularly compared with upstream sources of water and nutrients and with bottom sediment sources of nutrients. Locally high groundwater discharges do occur, however, and could help explain the occurrence of localized phytoplankton blooms, submerged aquatic vegetation, or fish kills.  相似文献   

8.
The relative roles of river, atmospheric, and tidal forcings on estuarine sea level variability are examined in Breton Sound, a shallow (0.7 m) deltaic estuary situated in an interdistributary basin on the Mississippi River deltaic plain. The deltaic landscape contains vegetated marshes, tidal flats, circuitous channels, and other features that frictionally dissipate waves propagating through the system. Direct forcing by local wind stress over the surface of the estuary is minimal, owing to the lack of significant fetch due to landscape features of the estuary. Atmospheric forcing occurs almost entirely through remote forcing, where alongshore winds facilitate estuary-shelf exchange through coastal Ekman convergence. The highly frictional nature of the deltaic landscape causes the estuary to act as a low-pass filter to remote atmospheric forcing, where high-frequency, coastally-induced fluctuations are significantly damped, and the damping increases with distance from the estuary mouth. During spring, when substantial quantities of controlled Mississippi River inputs (?q = 62 m3 s-1) are discharged into the estuary, upper estuary subtidal sea levels are forced by a combination of river and remote atmospheric forcings, while river effects are less clear downestuary. During autumn (?q = 7 m3 s-1) sea level variability throughout the estuary is governed entirely by coastal variations at the marine boundary. A frequency-dependent analytical model, previously used to describe sea level dynamics forced by local wind stress and coastal forcing in deeper, less frictional systems, is applied in the shallow Breton Sound estuary. In contrast to deeper systems where coastally-induced fluctuations exhibit little or no frictional attenuation inside the estuary, these fluctuations in the shallow Breton Sound estuary show strong frequency dependent amplitude reductions that extend well into the subtidal frequency spectrum.  相似文献   

9.
The Swartvlei estuary possesses a prolific growth of both intertidal and subtidal eelgrass,Zostera capensis. During 1984 less than 12% of the eelgrass beds were located in the upper half of the estuary, yet deposition ofZostera/macroalgal wrack in this region, when the estuary was linked to the sea (open phase), was similar to that in the lower half. Over a period of 20 semidiurnal tidal cycles there was a net gain of 2.5 tonnes dry mass of plant material into the upper reaches. Export of aquatic macrophytes and filamentous algae from the lower reaches toward the sea over 20 tidal cycles amounted to 1.6 tonnes dry mass. The amount of plant material transported during spring tides was 2 to 3 times greater than that carried during neap tides. Shallowing of the estuary mouth due to sand deposition resulted in a decline in the tidal prism and a decrease in macrodetrital flux. Total export ofZostera and associated algae amounted to 0.87 g ash-free dry mass m?2d?1 and represented a monthly export of 18% ofZostera bed biomass. Deposition of plant wrack during the 1984–1985 closed phase amounted to 63 g dry mass per meter of shore per day at the lower reaches site but only 10 g m?1d?1 was recorded at the upper reaches site. The relatively low latter value was attributed to the absence of tidal action which transports macrodetritus from the lower and middle reaches into the upper part of the system. During the 1984 open phase 70 g m?1d?1 was deposited at the lower reaches site and 68 g m?1d?1 at the upper reaches site. The role of tides in the redistribution of aquatic macrophyte primary production in the Swartvlei estuary was therefore clearly underscored.  相似文献   

10.
In the tidal Potomac River, high river discharges during the spring are associated with high chlorophylla concentrations in the following in the following summer, assuming that summertime light and temperature conditions are favorable. Spring floods deliver large loads of particulate N and P to the tidal river. This particulate N and P could be mineralized by bacteria to inorganic N and P and released to the water column where it is available for phytoplankton use during summertime. However, during the study period relatively low concentrations of chlorophylla (less than 50 μg l?1 occurred in the tidal river if average monthly discharge during July or August exceeded 200 m3s?1. Discharge and other conditions combined to produce conditions favorable for nuisance levels of chlorophylla (greater than 100 μg l?1 approximately one year out of four. Chlorophylla maxima occurred in the Potomac River transition zone and estuary during late winter (dinoflagellates) and spring (diatoms). Typical seasonal peak concentrations were achieved at discharges as high as 970 m3 s?1, but sustained discharges greater than 1,100 m3 s?1 retarded development. Optimum growth conditions occurred following runoff events of 10 to 15 d duration which produced transit times to the transition zone of 7 to 10 d. Wet years with numerous moderate-sized runoff events, such as 1980, tend to produce greater biomass in the transition zone and estuary than do dry years such as 1981.  相似文献   

11.
The distribution of macroinfauna was quantified in subtidal, soft-bottom habitats, extending from the estuarine mouth to the tidal head of the Gamtoos—a small, shallow, temperate estuary situated on the south coast of South Africa. Sampling covered the full salinity gradient from fresh to marine waters, and all sediment types from marine sands to fluvial silts. A total of 35 taxa was recorded, of which 22 occurred throughout the year. Species richness and diversity declined from the seawater-dominated mouth region toward the fresh water section at the tidal head of the estuary. Sediment type generally bore no clear relation to biotic diversity. A marked drop in salinity between winter and summer sample series (Δ 0.2‰ to 24‰) coincided with a reduction of mean macrofaunal density by 70%, a more seaward relocation, and a compression of axial ranges of most taxa. Numerical classification and ordination of faunistically similar regions and of co-occurring species delineated four habitat zones along the longitudinal axis of the estuary which harbour four distinct macrofaunal assemblages: 1) A tidal inlet area with salinities close to seawater; clean, coarse, marine sands, rich in CaCO3 harbour a stenohaline fauna normally found on adjacent, marine sandy beaches. 2) In the lower reaches, where fine, fluvial silts of high organic content prevail, euryhaline polychaetes dominate the macrozoobenthic community; bottom salinities in this zone seldom dropped below 25‰ 3) The middle reaches, characterized by oligohaline- to polyhaline waters, stretch over sandy sediments of intermediate carbonate, silt, and organic fractions; the fauna comprises typical estuarine forms, which occurred throughout most of the estuary except at its seaward and landward limits. 4) The upper reaches encompass the limnetic waters near the tidal head of the estuary with sediments in this zone being composed mostly of coarse, clean sands, low in CaCO3; the macrobenthos in this region is dominated by taxa of freshwater origin, which generally do not penetrate seaward beyond the oligohaline waters, and by exceptionally euryhaline estuarine species. Salinity appears as the main factor in controlling faunal assemblages at both extremes of the estuarine gradient (i.e., tidal inlet and head), whereas sediment type delineates between communities in the mesohaline to polyhaline reaches. Axial (i.e., from tidal inlet to tidal head of the estuary) zonation patterns of macroinfauna broadly matched those of mesozooplankton and fishes, supporting the notion of a general structure underlying species distribution patterns in the Gamtoos estuary.  相似文献   

12.
To harness hydroelectric power, most of the flow of the Santee River, SC was diverted in 1942 into Charleston Harbor, where shoaling promptly became a major problem. For this reason, most of the diverted flow is scheduled to be rediverted to the Santee within the next decade, increasing the mean discharge of the Santee from 74 to 428 m3s?1. To assess the present hydrogrpahy of the Santee estuary under conditions of moderate discharge, we determined 226 vertical profiles of velocity, salinity, and temperature distributed over 17 stations in February, 1975. We found that 73 and 27% of the discharge reached the ocean via the North and South distributaries, respectively. The 1 ppt isohaline was found no further than 8 km upstream from the mouth, indicating the limited extent of the estuarine zone. The Santee is a partially mixed estuary classified as type 2b. The circulation parameter is approximately 3 and the stratification parameter approximately 0.3. The bulk parameters indicate the importance of tidal, mixing and a weakly developed gravitational circulation. When rediversion is completed, the net salinity in the lower Santee River can be expected to decrease drastically, which in turn is likely to terminate the lucrative oyster and clam fishery.  相似文献   

13.
The flushing time of the Providence River was estimated using three different data sets and three different methodologies. Dye concentrations were measured following instantaneous dye releases during wet weather experiments performed by the Narragansett Bay Project between October 1988 and June 1989. These data were analyzed to obtain flushing time estimates. Salinity measurements collected during the Sinbadd (Sampling In Narragansett Bay All During the Day) cruises, Spray (Sampling the Providence River All Year) cruises and wet weather experiments were used with the fraction of fresh water method and box model to calculate flushing time. The Sinbadd cruises performed 4 seasonal surveys at 22 stations in Narragansett Bay during 1986 to obtain a view of the whole Narragansett Bay with respect to the concentrations of nutrients and trace metals. The Spray cruises collected data in the Providence River at 10 stations to determine the relationship of nutrients and trace metals concentrations in the Seekonk and Providence rivers as a function of point source inputs. Based on the flushing time estimates, an exponential relationship between freshwater inflow and flushing time was developed (correlation coefficient of 0.826). The flushing time ranged from 0.8 d at high (90 m3 m?1) freshwater inflows to 4.4 d at low (20 m3 s?1) freshwater inflows. The average flushing time of the Providence River was estimated as 2.5 d for the mean freshwater inflow of 42.3 m3 s?1.  相似文献   

14.
Tidal currents and the spatial variability of tidally-induced shear stress were studied during a tidal cycle on four intertidal mudflats from the fluvial to the marine part of the Seine estuary. Measurements were carried out during low water discharge (<400 m3 s−1) in neap and spring tide conditions. Turbulent kinetic energy, covariance, and logarithmic profile methods were used and compared for the determination of shear stress. The cTKE coefficient value of 0.19 cited in the literature was confirmed. Shear stress values were shown to decrease above mudflats from the mouth to the fluvial part of the estuary due to dissipation of the tidal energy, from 1 to 0.2 N m−2 for spring tides and 0.8 to 0.05 N m−2 for neap tides. Flood currents dominate tidally-induced shear stress in the marine and lower fluvial estuary during neap and spring tides and in the upper fluvial part during spring tides. Ebb currents control tidally-induced shear stress in the upper fluvial part of the estuary during neap tides. These results revealed a linear relationship between friction velocities and current velocities. Bed roughness length values were calculated from the empirical relationship given by Mitchener and Torfs (1996) for each site; these values are in agreement with the modes of the sediment particle-size distribution. The influence of tidal currents on the mudflat dynamics of the Seine estuary was examined by comparing the tidally-induced bed shear stress and the critical erosion shear stress estimated from bed sediment properties. Bed sediment resuspension induced by tidal currents was shown to occur only in the lower part of the estuary.  相似文献   

15.
In September 1984, the freshwater input to the Eastmain River (James Bay, Canada) was increased by a factor of 50 over a 6-d period during a controlled reservoir discharge. Changes to the current, salinity and turbidity regimes were monitored during the peak runoff. Estuarine salinity values fell rapidly with increasing mean flow, as did the amplitude of the semi-diurnal tidal currents. A large increase in bottom shear stress dispersed the settled suspension layer into the water column, raising concentrations of suspended matter in the estuary by a factor of 4 in 3 d. The peak values exceeded 150 mg I?1. This led to erosion of the river silt deposits, with the export of an estimated 6 × 104 metric tons of sediments. After the reduction of discharge, current values returned to their normal range within a day, whereas upstream salinity intrusion occurred at a slower rate. Horizontal diffusivities of about 100 m2 s?1 were required to match the observed lag.  相似文献   

16.
 The Mfolozi Estuary on the KwaZulu-Natal coast of South Africa is the most turbid estuary in Natal due to poor catchment management, leading to large quantities of suspended particulate matter (SPM) entering the estuary from the Mfolozi River. This paper quantities some of the solute and sediment dynamics in the Mfolozi Estuary where the main documented environmental concern is the periodic input of SPM from the Mfolozi Estuary to the St. Lucia system, causing reduction of light penetration and endangering biological productivity in this important nature reserve. Synoptic water level results have allowed reach mean bed shear stresses and velocities to be calculated for an observed neap tidal cycle. Results indicate that ebb velocities dominate the sediment transport processes in the estuary when fluvial input in the Mfolozi River is of the order of 15–20 m3 s–1. Observed and predicted flood tide velocities are too low (<0.35 m s–1) to suspend and transport significant amounts of SPM. Observed results indicate that although the SPM load entering the estuary is dominantly from the Mfolozi River, the Msunduzi River flow plays a major role in the composition of the estuary's salinity and velocity fields. It is calculated that the Mfolozi Estuary would fill with sediment in 1.3 years if it was cut off from the sea. The major fluvial flood events help maintain the estuary by periodically pushing sediment seawards (spit progrades seawards 5 m yr–1) and scouring and maintaining the main flow channel in the estuary. During low fluvial flow conditions, tidal flow velocities will become the dominant control on sediment transport in the estuary. Interchange of SPM between the St. Lucia and Mfolozi estuaries under present conditions is complicated by the strong transverse velocity shear between the two systems at their combined mouth. This is creating a salinity-maintained axial convergence front that suppresses mixing of solutes and SPM between the systems for up to 10 h of the tidal cycle during observed conditions. Received: 22 May 1995 · Accepted: 31 July 1995  相似文献   

17.
St. Lucia Estuary is on the subtropical, predominantly microtidal Zululand coast of South Africa. Lake St. Lucia's surface area fluctuates between 420 and 215 km2 and has a mean depth of less than 1 m. The 21-km-long narrows connects Lake St. Lucia with the Indian Ocean. Tidal effects penetrate 14 km up the narrows. The St. Lucia system has changed substantially since the 1930s due to bad farming techniques within its catchment. Large amounts of sediment were deposited in the estuary mouth, resulting in relocation of the Mfolozi River mouth to the south at Mapelane. The St. Lucia catchment was subjected to two devastating floods in the last ten years: Cyclone Domoina during February 1984 and the September 1987 cutoff low flood. After floods scoured out the estuary, marine sand advanced up the estuary at a rate of 1200 m/y as a series of flood-tidal deltas. Over 600,000 m3 of sediment accumulated in the St. Lucia Estuary mouth from February 1988 to November 1989. Of this amount, 466,000 m3 of sediment was removed by dredging, although this has not stopped the shoaling. During high rainfall years, the estuary mouth is able to maintain an open outlet to the sea, but as lake levels drop, shoaling causes the mouth to constrict and eventually close. Without the dredging program the mouth would ultimately close during low rainfall years, causing management problems.  相似文献   

18.
Florida manatees (Trichechus manatus latirostris) overwintering in the Ten Thousand Islands and western Everglades have no access to power plants or major artesian springs that provide warm-water refugia in other parts of Florida. Instead, hundreds of manatees aggregate at artificial canals, basins, and natural deep water sites that act as passive thermal refugia (PTR). Monitoring at two canal sites revealed temperature inverted haloclines, which provided warm salty bottom layers that generally remained above temperatures considered adverse for manatees. At the largest PTR, the warmer bottom layer disappeared unless significant salt stratification was maintained by upstream freshwater inflow over a persistent tidal wedge. A detailed three-dimensional hydrology model showed that salinity stratification inhibited vertical convection induced by atmospheric cooling. Management or creation of temperature inverted haloclines may be a feasible and desirable option for resource managers to provide passive thermal refugia for manatees and other temperature sensitive aquatic species.  相似文献   

19.
Oxygen air-water gas exchange was measured using floating chambers in two shallow tidal estuaries of differing bathymetry and local terrain, near Waquoit Bay, Massachusetts (United States). The specific chamber design permitted measurements of gas flux in 15 min, allowing analysis of the relationship with wind speed and tidal stage. Exchange coefficients ranged from 0.5 to 2.5 g O2·m?2 h?1 atm?1 (equivalent to piston velocities of 1.5 to 7 cm h?1) for wind speeds of 0.3 to 9 m s?1 at 10 m elevation. While the relationships for each estuary appear linear (significant linear regressions with wind speed were shown for each estuary, and the slopes were different at the 99.5% confidence level), the range of speeds differed at the two sites and an exponential function of wind speed was consistent with the combined data from both estuaries. A power function of wind speed was not an acceptable model. The exchange coefficients for our estuaries are from 57% to as low as 9% of that predicted by previously published generic equations. Because the atmospheric correction can be significant in shallow, metabolically active coastal waters, we suggest that empirically determined relationships for gas exchange versus wind for a specific estuary are preferable to the predictions of the general equations. While the floating chamber method should be used cautiously, at low winds speeds (below 8 m s?1) and in slowly flowing waters, it provides a convenient approach for quantifying these site-specific differences. The differences, especially those between shallow sheltered systems and the open waters best fit by some published relationships, are ecologically important and do not appear yet to be measurable by other methods.  相似文献   

20.
In October of 2004, a 3-d observational program to measure flow and sediment resuspension within a coastal intertidal salt marsh was conducted in the North Inlet/Winyah Bay National Estuarine Research Reserve located near Georgetown, South Carolina. Current and acoustic backscatter profiles were obtained from a moored acoustic Doppler current profiler (ADCP) deployed in a shallow tidal channel during the spring phase of the tidal cycle under high discharge conditions. The channel serves as a conduit between Winyah Bay, a large brackish estuary, and North Inlet, a saline intertidal coastal salt marsh with little freshwater input. Salinity measurements indicate that the water column is vertically well mixed during flood, but becomes vertically stratified during early ebb. The stratification results from brackish (15 psu) Winyah Bay water entering North Inlet via the tidal channel, suggesting an exchange mechanism that permits North Inlet to receive a fraction of the poor water quality and high discharge flow from upland rivers. Although maximum flood currents exceed maximum ebb currents by 0.2 m s−1, suspended sediment concentrations are highest during the latter ebb phase and persist for a longer fraction of the ebb cycle. Even though the channel is flood-dominated, the higher concentrations occurring over a longer fraction of the ebb phase indicate net particulate transport from Winyah Bay to North Inlet during spring tide accompanied by high discharge. Our evidence suggests that the higher concentrations during ebb result from increased bed friction caused by flow asymmetries and variations in water depth in which the highest stresses occur near the end of ebb near low water despite stronger maximum currents during flood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号