首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 793 毫秒
1.
本文基于地层反射系数非高斯的统计特性,在反褶积输出单位方差约束下,将反褶积输出的负熵表示为非多项式函数,作为盲反褶积的目标函数,然后采用粒子群算法优化目标函数寻找最佳反褶积算子,实现地震信号的盲反褶积.数值模拟和实际资料处理结果表明,与传统反褶积方法相比,本文方法同时适应于最小相位子波及混合相位子波的反褶积,能够更好地从地震数据中估计反射系数,有效拓宽地震资料的频谱,得到高分辨率的地震资料.  相似文献   

2.
Deconvolution is an essential step for high-resolution imaging in seismic data processing. The frequency and phase of the seismic wavelet change through time during wave propagation as a consequence of seismic absorption. Therefore, wavelet estimation is the most vital step of deconvolution, which plays the main role in seismic processing and inversion. Gabor deconvolution is an effective method to eliminate attenuation effects. Since Gabor transform does not prepare the information about the phase, minimum-phase assumption is usually supposed to estimate the phase of the wavelet. This manner does not return the optimum response where the source wavelet would be dominantly a mixed phase. We used the kurtosis maximization algorithm to estimate the phase of the wavelet. First, we removed the attenuation effect in the Gabor domain and computed the amplitude spectrum of the source wavelet; then, we rotated the seismic trace with a constant phase to reach the maximum kurtosis. This procedure was repeated in moving windows to obtain the time-varying phase changes. After that, the propagating wavelet was generated to solve the inversion problem of the convolutional model. We showed that the assumption of minimum phase does not reflect a suitable response in the case of mixed-phase wavelets. Application of this algorithm on synthetic and real data shows that subtle reflectivity information could be recovered and vertical seismic resolution is significantly improved.  相似文献   

3.
Signal to noise ratio (SNR) and resolution are two important but contradictory characteristics used to evaluate the quality of seismic data. For relatively preserving SNR while enhancing resolution, the signal purity spectrum is introduced, estimated, and used to define the desired output amplitude spectrum after deconvolution. Since a real reflectivity series is blue rather than white, the effects of white reflectivity hypothesis on wavelets are experimentally analyzed and color compensation is applied after spectrum whitening. Experiments on real seismic data indicate that the cascade of the two processing stages can improve the ability of seismic data to delineate the geological details.  相似文献   

4.
Interpreting a post‐stack seismic section is difficult due to the band‐limited nature of the seismic data even post deconvolution. Deconvolution is a process that is universally applied to extend the bandwidth of seismic data. However, deconvolution falls short of this task as low and high frequencies of the deconvolved data are either still missing or contaminated by noise. In this paper we use the autoregressive extrapolation technique to recover these missing frequencies, using the high signal‐to‐noise ratio (S/N) portions of the spectrum of deconvolved data. I introduce here an algorithm to extend the bandwidth of deconvolved data. This is achieved via an autoregressive extrapolation technique, which has been widely used to replace missing or corrupted samples of data in signal processing. This method is performed in the spectral domain. The spectral band to be extrapolated using autoregressive prediction filters is first selected from the part of the spectrum that has a high signal‐to‐noise ratio (S/N) and is then extended. As there can be more than one zone of good S/N in the spectrum, the results of prediction filter design and extrapolation from three different bands are averaged. When the spectrum of deconvolved data is extended in this way, the results show higher vertical resolution to a degree that the final seismic data closely resemble what is considered to be a reflectivity sequence of the layered medium. This helps to obtain acoustic impedance with inversion by stable integration. The results show that autoregressive spectral extrapolation highly increases vertical resolution and improves horizon tracking to determine continuities and faults. This increase in coherence ultimately yields a more interpretable seismic section.  相似文献   

5.
The desired result of an optimum seismic data processing sequence, is a broad band zerophase section, i.e. a bandpassed version of the actual reflectivity function. However, a lot of socalled zerophase-sections still carry a significant phase-error, which is due to unrealistic assumptions in the processing stream in terms of the design of standard processes as for example deconvolution. The two major issues here are the color of the reflectivity series and the misuse of prewhitening. If not properly handled they lead to a phase- and amplitude spectrum bias in the final section, preventing it from being zerophase. Whereas the reflectivity bias leads to a phase error of 50 to 90 deg, the prewhitening bias results in a phase error, which is directly proportional to the logarithm of the actual prewhitening factor.Therefore, if the spike deconvolution process is applied in a time-variant manner, as a consequence a time-variant and usually frequency dependent phase error is introduced! In this article we have made an effort to include sufficient detail to facilitate a clear understanding of the problems involved.The standard processing flow should have a minimum-delay transform and spike deconvolution prestack, followed by a zerophase transform poststack, where the residual wavelet is assumed to be minimum phase.  相似文献   

6.
In this paper, we present a new method for seismic stratigraphic absorption compensation based on the adaptive molecular decomposition. Using this method, we can remove most of the effects resulting from wavelets truncation and interference which usually exist in the common time-frequency absorption compensation method. Based on the assumption that the amplitude spectrum of the source wavelet is smooth, we first construct a set of adaptive Gabor frames based on the time-variant properties of the seismic signal to transform the signal into the time-frequency domain and then extract the slowly varying component (the wavelet’s time-varying amplitude spectrum) in each window in the time-frequency domain. Then we invert the absorption compensation filter parameters with an objective function defined using the correlation coefficients in each window to get the corresponding compensation filters. Finally, we use these filters to compensate the time-frequency spectrum in each window and then transform the time-frequency spectrum to the time domain to obtain the absorption-compensated signal. By using adaptive molecular decomposition, this method can adapt to isolated and overlapped seismic signals from the complex layers in the inhomogeneous viscoelastic medium. The viability of the method is verified by synthetic and real data sets.  相似文献   

7.
随掘地震超前探测震源具有连续、非可控的特点,需要使用互相关技术将连续震源记录转换为等效脉冲震源记录以获取有效反射信号。但随掘地震超前探测信号往往包含一些能量较强且频带较窄的优势频率成分,使得互相关处理会引入较严重的干扰。为此,本文提出将基于变分模态分解(VMD)的希尔伯特谱白化方法应用于随掘地震超前探测信号。该方法首先利用VMD将地震信号分解为若干个本征模态函数(IMF),再对各IMF应用希尔伯特变换进行时频分解,最后使用白化滤波器对其希尔伯特谱进行谱白化。数值模拟结果表明基于VMD的希尔伯特谱白化方法能够在保持各道信号一致性的同时均衡信号的不同频率成分,有效压制互相关结果中的虚假同相轴,加快主峰旁瓣衰减。将本文方法应用于安徽淮北杨庄煤矿某巷道实际数据,成功探测了掌子面前方存在的断层构造,表明该方法具有较好的实用性。   相似文献   

8.
The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and the noise level not changes with space, whereas the actual situation does not satisfy this assumption, so that results after resolution improvement processing is not up to the expected effect. To solve these problems, we propose a seismic resolution improvement method based on the secondary time–frequency spectrum. First, we propose the secondary time-frequency spectrum based on S transform (ST) and discuss the reflection coefficient sequence and time-dependent wavelet in the secondary time–frequency spectrum. Second, using the secondary time–frequency spectrum, we design a twodimensional filter to extract the amplitude spectrum of the time-dependent wavelet. Then, we discuss the improvement of the resolution operator in noisy environments and propose a novel approach for determining the broad frequency range of the resolution operator in the time–frequency–space domain. Finally, we apply the proposed method to synthetic and real data and compare the results of the traditional spectrum-modeling deconvolution and Q compensation method. The results suggest that the proposed method does not need to estimate the Q value and the resolution is not limited by the bandwidth of the source. Thus, the resolution of the seismic data is improved sufficiently based on the signal-to-noise ratio (SNR).  相似文献   

9.
宽频带地震观测数据中有效信号和干扰噪声经常发生混频效应,常规的频率域滤波方法很难将二者分离.地震波信号属于时变非平稳信号,时频分析方法能够同时得到地震波信号随着时间和频率变化的振幅和相位特征,S变换是其中较为高效的时频分析工具之一.本文以S变换为例,提出了基于相位叠加的时频域相位滤波方法.与传统叠加方法相比,相位叠加方法对强振幅不敏感,对波形一致性相当敏感,更加利于有效弱信号信息的检测.时频域相位滤波方法滤除与有效信号不相干的背景噪声,保留了相位一致的有效信号成分,显著提高了信噪比.运用理论合成的远震接收函数数据和实际的宽频带地震观测数据检验结果显示该方法较传统的带通滤波方法相比,即使在信噪较低且混频严重条件下,时频域相位滤波方法的滤波效果依然很明显,有助于识别能量较弱的有效信号.  相似文献   

10.
基于核函数主分量的维纳滤波方法研究   总被引:2,自引:1,他引:1       下载免费PDF全文
针对强随机噪声地震资料背景下经典维纳滤波方法在信号的保幅及高维数据空间求解过程中产生病态矩阵的问题,提出利用核函数主分量维纳滤波压制强地震勘探随机噪声.首先利用线性核函数将地震信号映射到特征空间,再通过主分量分析方法提取地震数据主分量进行数据降维,并得到核主分量维纳滤波因子,从而进行核主分量维纳滤波(K-WPC).正演仿真及对实际地震资料处理表明,该方法对随机噪声有较好的压制作用,保幅效果也令人满意.  相似文献   

11.
用Q值刻画的地震衰减在地震信号处理和解释中具有很广泛的应用。利用反射地震资料进行Q值估计需要解决地震子波和反射系数序列耦合的问题。从反射地震资料中去除反射系数序列的影响,这个过程称为频谱校正。本文提出了一种基于子波估计的求取Q值的方法,进而设计了一个反Q滤波器。该方法利用反射地震资料的高阶统计量进行子波估计,并利用所估计子波实现频谱校正。我们利用合成数据实验给出了质心频移法与频谱比法这两种常用的Q值估计方法在不同参数设置下的性能。人工合成数据和实际数据处理表明,利用本文提出的方法进行频谱校正后,可以得到可靠的Q值估计。经过反Q滤波,地震数据的高频部分得到了有效地恢复。  相似文献   

12.
基于反射地震记录变子波模型提高地震记录分辨率   总被引:6,自引:1,他引:5       下载免费PDF全文
本文给出了地震记录变子波模型的一种近似数学表达式.基于该表达式研究了反射系数序列不满足白噪假设和子波在地下传播时发生变化这两种情况下地震道谱的组成及结构,讨论了谱白化及反褶积方法在这两种情况下效果不佳的原因.然后基于变子波模型,提出了一种新的提高地震记录分辨率的方法:第一步,用自适应于地震记录的Gabor分子窗把地震记录恰当地划分成若干片断,每段内信号近似平稳,然后将地震记录变换到时间-频率域;第二步,在变换域对每个分子窗内信号的振幅谱进行处理以拓宽频带;最后把处理后的时间-频率域函数反变换回时间域得到提高分辨率后的结果.本文提出的方法具有能较好地适用于反射系数不满足白噪假设的情况及提高分辨率后的地震记录能较好地保持原地震记录的相对能量关系等优点,模型和实际资料算例结果均表明,本文方法在拓宽地震资料频带及保持地震记录局部能量相对关系方面均明显优于谱白化方法.  相似文献   

13.
利用偏移进行视反射率估计的初步研究   总被引:1,自引:0,他引:1       下载免费PDF全文
视反射率估计是地震数据处理解释中的一项重要内容,通常采用反演的方法得到.本文以地震偏移和地震线性反演理论相结合为基础,并利用保幅单程波传播算子和保幅波动方程叠前偏移算法以及成像空间中的角度域波动方程偏移成像和照明补偿等方法技术,提出了一种利用单程波波动方程偏移进行地下反射面视反射率估计方法,并进行了理论模型的数值试验.这种估计方法得到的视反射率估计是一种近法向入射的小角度反射率.  相似文献   

14.
The time‐invariant gain‐limit‐constrained inverse Q‐filter can control the numerical instability of the inverse Q‐filter, but it often suppresses the high frequencies at later times and reduces the seismic resolution. To improve the seismic resolution and obtain high‐quality seismic data, we propose a self‐adaptive approach to optimize the Q value for the inverse Q‐filter amplitude compensation. The optimized Q value is self‐adaptive to the cutoff frequency of the effective frequency band for the seismic data, the gain limit of the inverse Q‐filter amplitude compensation, the inverse Q‐filter amplitude compensation function, and the medium quality factor. In the processing of the inverse Q‐filter amplitude compensation, the optimized Q value, corresponding gain limit, and amplitude compensation function are used simultaneously; then, the energy in the effective frequency band for the seismic data can be recovered, and the seismic resolution can be enhanced at all times. Furthermore, the small gain limit or time‐variant bandpass filter after the inverse Q‐filter amplitude compensation is considered to control the signal‐to‐noise ratio, and the time‐variant bandpass filter is based on the cutoff frequency of the effective frequency band for the seismic data. Synthetic and real data examples demonstrate that the self‐adaptive approach for Q value optimization is efficient, and the inverse Q‐filter amplitude compensation with the optimized Q value produces high‐resolution and low‐noise seismic data.  相似文献   

15.
基于带状混合矩阵ICA实现地震盲反褶积   总被引:1,自引:2,他引:1       下载免费PDF全文
基于对地震反褶积本质上是一个盲过程的认识,引入高阶统计学盲源分离技术——独立分量分析(ICA)实现地震盲反褶积.在无噪声假设条件下,利用地震记录时间延迟矩阵和地震子波带状褶积矩阵,将地震褶积模型转化为一般线性混合ICA模型,采用FastICA算法,将带状性质作为先验信息,实现所谓带状ICA算法(B\|ICA),得到个数与子波算子长度相等的多个估计反射系数序列和估计子波序列,最后利用褶积模型提供的附加信息从中优选出最佳的反射系数序列及相应的地震子波.模型数据和实际二维地震道数值算例表明:对于统计性反褶积,在不对反射系数作高斯白噪假设,不对子波作最小相位假设的所谓“全盲”条件下,基于ICA方法(反射系数非高斯分布,地震子波非最小相位)可以较好解决地震盲反褶积问题,是基于二阶统计特性的地震信号统计性反褶积方法的提升,具有可行性和应用前景.  相似文献   

16.
Amplitude spectra of input FM signals used in the vibratory source method of seismic exploration often show undesirable oscillations near the initial and terminal frequencies. These oscillations have an effect on the correlation background and distort the output signal. Considerable improvement in reducing the amplitude of these oscillations is obtained using a proper taper fuction. Attention is given to the relation between the tapering time and bandwidth of the spectrum. Analyses of the spectra of the received data from vibratory sources show considerable attenuation in comparison with the original field sweep. Since the matched filtering process will result in a series of waveforms which have the shape of the autocorrelation of the input signal, consideration is given to the autocorrelation function and its zero-lag coefficient of the FM signal in the presence of attenuation. A method has been developed which compensates for the attenuation and recovers the distortion of waveforms when the received data is correlated. The design of a waveform shaping filter for vibratory source data is given to reduce the influence of phase distortion on the received waveforms as well as to increase S/N ratio resolution. Parameters used for this filter are based on the properties of the FM signal and its autocorrelation function. Several examples from field data are presented to illustrate the methods. The results indicate that the use of the above techniques yields sections with good frequency resolution and improved S/N ratio.  相似文献   

17.
In certain areas continuous Vibroseis profiling is not possible due to varying terrain conditions. Impulsive sources can be used to maintain continuous coverage. While this technique keeps the coverage at the desired level, for the processing of the actual data there is the problem of using different sources resulting in different source wavelets. In addition, the effect of the free surface is different for these two energy sources. The approach to these problems consists of a minimum-phase transformation of the two-sided Vibroseis data by removal of the anticipation component of the autocorrelation of the filtered sweep and a minimum-phase transformation of the impulsive source data by replacement of the recording filter operator with its minimum-phase correspondent. Therefore, after this transformation, both datasets show causal wavelets and a conventional deconvolution (spike or predictive) may be used. After stacking, a zero-phase transformation can be performed resulting in traces well suited for computing pseudo-acoustic impedance logs or for application of complex seismic trace analysis. The solution is also applicable to pure Vibroseis data, thereby eliminating the need for a special Vibroseis deconvolution. The processing steps described above are demonstrated on synthetic and actual data. The transformation operators used are two-sided recursive (TSR) shaping filters. After application of the above adjustment procedure, remaining signal distortions can be removed by modifying only the phase spectrum or both the amplitude and phase spectra. It can be shown that an arbitrary distortion defined in the frequency domain, i.e., a distortion of the amplitude and phase spectrum, is noticeable in the time section as a two-sided signal.  相似文献   

18.
Bussgang算法是针对褶积盲源分离问题提出的,本文将其用于地震盲反褶积处理.由于广义高斯概率密度函数具有逼近任意概率密度函数的能力,从反射系数序列的统计特征出发,引入广义高斯分布来体现反射系数序列超高斯分布特征.依据反射系数序列的统计特征和Bussgang算法原理,建立以Kullback-Leibler距离为非高斯性度量的目标函数,并导出算法中涉及到的无记忆非线性函数,最终实现了地震盲反褶积.模型试算和实际资料处理结果表明,该方法能较好地适应非最小相位系统,能够同时实现地震子波和反射系数估计,有效地提高地震资料分辨率.  相似文献   

19.
One of the main objectives of seismic digital processing is the improvement of the signal-to-noise ratio in the recorded data. Wiener filters have been successfully applied in this capacity, but alternate filtering devices also merit our attention. Two such systems are the matched filter and the output energy filter. The former is better known to geophysicists as the crosscorrelation filter, and has seen widespread use for the processing of vibratory source data, while the latter is. much less familiar in seismic work. The matched filter is designed such that ideally the presence of a given signal is indicated by a single large deflection in the output. The output energy filter ideally reveals the presence of such a signal by producing a longer burst of energy in the time interval where the signal occurs. The received seismic trace is assumed to be an additive mixture of signal and noise. The shape of the signal must be known in order to design the matched filter, but only the autocorrelation function of this signal need be known to obtain the output energy filter. The derivation of these filters differs according to whether the noise is white or colored. In the former case the noise autocorrelation function consists of only a single spike at lag zero, while in the latter the shape of this noise autocorrelation function is arbitrary. We propose a novel version of the matched filter. Its memory function is given by the minimum-delay wavelet whose autocorrelation function is computed from selected gates of an actual seismic trace. For this reason explicit knowledge of the signal shape is not required for its design; nevertheless, its performance level is not much below that achievable with ordinary matched filters. We call this new filter the “mini-matched” filter. With digital computation in mind, the design criteria are formulated and optimized with time as a discrete variable. We illustrate the techniques with simple numerical examples, and discuss many of the interesting properties that these filters exhibit.  相似文献   

20.
In land seismic surveys spectrum equalization can increase the quality of seismic data in a selected frequency band. The power of lower frequencies in the spectrum of input traces is generally greater than that of higher frequencies, particularly in land seismic surveys because of ground roll. In order to improve the quality of seismic data it is necessary to raise the energy of higher frequencies to the same level as that of lower frequencies, without alteration of the phases. The first step of the method is to compute the amplitude spectrum of each input trace to determine a weighting function which is then applied to the amplitude spectrum in order to balance it. The function is the inverse of the short wavelength variation of the amplitude spectrum. The short wavelength variation can be obtained by interpolation between average values of the modulus of the amplitude spectrum computed in narrow bands within a selected band of frequencies. Another way of obtaining the short wavelength variation is to apply a low-pass filter to the amplitude spectrum. The calculations are readily performed in the frequency domain by the Fourier transform. Spectrum equalization is automatically adjusted to each trace and does not modify the average amplitude in the time domain. However, as the frequency band and energy of the ground roll both vary according to the distance from the shot, spectrum equalization tends to make the spectrum of output traces independent of the offset distance. The use of spectrum equalization before any two-dimensional filtering improves ground roll elimination. Continuity and resolution of horizons are also increased by spectrum equalization before CDP stack. Several examples of applications of spectrum equalization to seismic land and marine surveys are shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号