首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The frequency of barred spiral galaxies as a function of redshift contains important information on the gravitational influence of stellar discs in their dark matter haloes and may also distinguish between contemporary theories for the origin of galactic bulges. In this paper we present a new quantitative method for determining the strength of barred spiral structure, and verify its robustness to redshift-dependent effects. By combining galaxy samples from the Hubble Deep Field North with newly available data from the Hubble Deep Field South, we are able to define a statistical sample of 46 low-inclination spiral systems with I 814 W<23.2 mag. Analysing the proportion of barred spiral galaxies seen as a function of redshift, we find a significant decline in the fraction of barred spirals with redshift. The redshift distribution of 22 barred and 24 non-barred spirals with suitable inclinations is inconsistent with their being drawn from the same distribution at the 99 per cent confidence level. The physical significance of this effect remains unclear, but several possibilities include dynamically hotter (or increasingly dark-matter-dominated) high-redshift discs, or an enhanced efficiency in bar destruction at high redshifts. By investigating the formation of the 'orthogonal' axis of Hubble's classification tuning fork, our result complements studies of evolution in the early–late sequence, and pushes to later epochs the redshift at which the Hubble classification sequence is observed to be in place.  相似文献   

2.
We present data for a sample of 45 spiral galaxies over a range of Hubble types, imaged in the near-IR J K bands. Parameters are calculated describing the bulge, disc and bar K -band light distributions, and we look for correlations showing the interrelation between these components. We find that bulge profiles are not well-fitted by the classic de Vaucouleurs profile, and that exponential or R 1/2 fits are preferred. The bulge-to-disc ratio correlates only weakly with Hubble type. Many of the galaxies show central reddening of their J  −  K colours, which we interpret as due to nuclear starbursts or dusty AGN. We define a new method for measuring the strength of bars, which we call 'equivalent angle'. We stress that this is better than the traditional bar–interbar contrast, as it is not subject to seeing and resolution effects. Bars are found in 40 of the 45 galaxies, nine of which had been previously classified as unbarred. Bar strengths are found not to correlate with disc surface brightness or the presence of near neighbours, but a tendency is found for the most strongly barred galaxies to lie within a restricted, intermediate range of bulge-to-disc ratio. Bar light profiles are found to be either flat or exponentially decreasing along their long axes, with profile type not correlating strongly with Hubble type. Bar short axis profiles are significantly asymmetric, with the steeper profile being generally on the leading edge, assuming trailing arms. In the K band we find bars with higher axial ratios than have been found previously in optical studies.  相似文献   

3.
In the last decade, near-infrared imaging has highlighted the decoupling of gaseous and old stellar discs: the morphologies of optical (Population I) tracers compared to the old stellar disc morphology, can be radically different. Galaxies which appear multi-armed and even flocculent in the optical may show significant grand-design spirals in the near-infrared. Furthermore, the optically determined Hubble classification scheme does not provide a sound way of classifying dust-penetrated stellar discs: spiral arm pitch angles (when measured in the near-infrared) do not correlate with Hubble type. The dust-penetrated classification scheme of Block & Puerari provides an alternative classification based on near-infrared morphology, which is thus more closely linked to the dominant stellar mass component. Here we present near-infrared K -band images of 14 galaxies, on which we have performed a Fourier analysis of the spiral structure in order to determine their near-infrared pitch angles and dust-penetrated arm classes. We have also used the rotation curve data of Mathewson et al. to calculate the rates of shear in the stellar discs of these galaxies. We find a correlation between near-infrared pitch angle and rate of shear: galaxies with wide open arms (the γ class) are found to have rising rotation curves, while those with falling rotation curves belong to the tightly wound α bin. The major determinant of near-infrared spiral arm pitch angle is the distribution of matter within the galaxy concerned. The correlation reported in this study provides the physical basis underpinning spiral arm classes in the dust-penetrated regime and underscores earlier spectroscopic findings by Burstein and Rubin that Hubble type and mass distributions are unrelated.  相似文献   

4.
We have imaged a sample of 45 face-on spiral galaxies in the K band, to determine the morphology of the old stellar population, which dominates the mass in the disc. The K -band images of the spiral galaxies have been used to calculate different characteristics of the underlying density perturbation such as arm strengths, profiles and cross-sections, and spiral pitch angles. Contrary to expectations, no correlation was found between arm pitch angle and Hubble type, and combined with previous results this leads us to conclude that the morphology of the old stellar population bears little resemblance to the optical morphology used to classify galaxies. The arm properties of our galaxies seem inconsistent with predictions from the simplest density wave theories, and some observations, such as variations in pitch angle within galaxies, seem hard to reconcile even with more complex modal theories. Bars have no detectable effect on arm strengths for the present sample. We have also obtained B -band images of three of the galaxies. For these galaxies we have measured arm cross-sections and strengths, to investigate the effects of disc density perturbations on star formation in spiral discs. We find that B -band arms lead K -band arms and are narrower than K -band arms, apparently supporting predictions made by the large-scale shock scenario, although the effects of dust on B -band images may contribute towards these results.  相似文献   

5.
The inclination of M31 is too close to edge-on for a bar component to be easily recognized and is not sufficiently edge-on for a boxy/peanut bulge to protrude clearly out of the equatorial plane. Nevertheless, a sufficient number of clues allow us to argue that this galaxy is barred. We use fully self-consistent N -body simulations of barred galaxies and compare them with both photometric and kinematic observational data for M31. In particular, we rely on the near-infrared photometry presented in a companion paper. We compare isodensity contours to isophotal contours and the light profile along cuts parallel to the galaxy major axis and offset towards the north, or the south, to mass profiles along similar cuts on the model. All these comparisons, as well as position–velocity diagrams for the gaseous component, give us strong arguments that M31 is barred. We compare four fiducial N -body models to the data and thus set constraints on the parameters of the M31 bar, as its strength, length and orientation. Our 'best' models, although not meant to be exact models of M31, reproduce in a very satisfactory way the main relevant observations. We present arguments that M31 has both a classical and a boxy/peanut bulge. Its pseudo-ring-like structure at roughly 50 arcmin is near the outer Lindblad resonance of the bar and could thus be an outer ring, as often observed in barred galaxies. The shape of the isophotes also argues that the vertically thin part of the M31 bar extends considerably further out than its boxy bulge, that is, that the boxy bulge is only part of the bar, thus confirming predictions from orbital structure studies and from previous N -body simulations. It seems very likely that the backbone of M31's boxy bulge is families of periodic orbits, members of the x1-tree and bifurcating from the x1 family at its higher order vertical resonances, such as the x1v3 or x1v4 families.  相似文献   

6.
It is shown that the giant low surface brightness galaxies (GLSBs), characterized by a large but diffuse disc component, can result from ordinary spiral galaxies through dynamical evolution. Numerical simulations indicate that the formation of a bar in a gravitationally unstable disc with high surface density induces non-circular motions and radial mixing of disc matter, leading to the flattening of the disc density profile. The resulting decrease in the disc central surface brightness is ∼1.5 magnitude, while the disc scalelength is nearly doubled, transforming a typical high surface brightness galaxy to a GSLB. This scenario seems promising especially for the GSLBs possessing a significant bulge, which are difficult to incorporate into the traditional Hubble sequence. Namely, because this disc transmutation can operate even if a moderate bulge component exists, the GSLBs with a bulge are argued to have resulted from the high surface brightness galaxies which had already possessed a bulge. The current picture naturally explains other observed characteristics of the GSLBs as well, including the propensity for having grand-design spiral arms and a bar, a high incidence of active nuclei, and galaxy environments.  相似文献   

7.
Using simple dimensional arguments for both spiral and elliptical galaxies, we present formulae to derive an estimate of the halo spin parameter λ for any real galaxy, in terms of common observational parameters. This allows a rough estimate of λ, which we apply to a large volume-limited sample of galaxies taken from the Sloan Digital Sky Survey data base. The large numbers involved (11 597) allow the derivation of reliable λ distributions, as signal adds up significantly in spite of the errors in the inferences for particular galaxies. We find that if the observed distribution of λ is modelled with a lognormal function, as often done for this distribution in dark matter haloes that appear in cosmological simulations, we obtain parameters  λ0= 0.04 ± 0.005  and  σλ= 0.51 ± 0.05  , interestingly consistent with values derived from simulations. For spirals, we find a good correlation between empirical values of λ and visually assigned Hubble types, highlighting the potential of this physical parameter as an objective classification tool.  相似文献   

8.
We present subarcsecond-resolution, ground-based, near-infrared images of the central regions of a sample of 12 barred galaxies with circumnuclear star formation activity, which is organized in ring-like regions typically 1 kpc in diameter. We also present Hubble Space Telescope near-infrared images of 10 of our sample galaxies, and compare them with our ground-based data. Although our sample galaxies were selected for the presence of circumnuclear star formation activity, our broad-band near-infrared images are heterogeneous, showing a substantial amount of small-scale structure in some galaxies, and practically none in others. We argue that, where it exists, this structure is caused by young stars, which also cause the characteristic bumps or changes in slope in the radial profiles of ellipticity, major axis position angle, surface brightness and colour at the radius of the circumnuclear ring in most of our sample galaxies. In seven out of 10 HST images, star formation in the nuclear ring is clearly visible as a large number of small emitting regions, organized into spiral arm fragments, which are accompanied by dust lanes. Near-infrared colour index maps show much more clearly the location of dust lanes and, in certain cases, regions of star formation than single broad-band images. Circumnuclear spiral structure thus outlined appears to be common in barred spiral galaxies with circumnuclear star formation.  相似文献   

9.
We have modelled 38 barred galaxies by using near-infrared and optical data from the Ohio State University Bright Spiral Galaxy Survey. We constructed the gravitational potentials of the galaxies from H -band photometry, assuming a constant mass-to-light ratio. The halo component we choose corresponds to the so-called universal rotation curve. In each case, we used the response of gaseous and stellar particle disc to rigidly rotating potential to determine the pattern speed.
We find that the pattern speed of the bar depends roughly on the morphological type. The average value of corotation resonance radius to bar radius,     , increases from 1.15 ± 0.25 in types SB0/a–SBab to 1.44 ± 0.29 in SBb and 1.82 ± 0.63 in SBbc–SBc. Within the error estimates for the pattern speed and bar radius, all galaxies of type SBab or earlier have a fast bar     , whereas the bars in later type galaxies include both fast and slow rotators. Of 16 later type galaxies with a nominal value of     , there are five cases, where the fast-rotating bar is ruled out by the adopted error estimates.
We also study the correlation between the parameter     and other galactic properties. The clearest correlation is with the bar size: the slowest bars are also the shortest bars when compared to the galaxy size. A weaker correlation is seen with bar strength in a sense that slow bars tend to be weaker. These correlations leave room for a possibility that the determined pattern speed in many galaxies corresponds to actually that of the spiral, which rotates more slowly than the bar. No clear correlation is seen with either the galaxy luminosity or the colour.  相似文献   

10.
Quantitative structural analysis of the galaxies present in the Hawaiian Deep Fields SSA13 and SSA22 is reported. The structural parameters of the galaxies have been obtained automatically by fitting a two-component model (Sérsic r 1/ n bulge and exponential disc) to the surface brightness of the galaxies. The galaxies were classified on the basis of the bulge-to-total luminosity ratio  ( B / T )  . The magnitude selection criteria and the reliability of our method have been checked by using Monte Carlo simulations. A complete sample of objects up to redshift 0.8 has been achieved. Spheroidal objects (E/S0) represent ≈33 per cent and spirals ≈41 per cent of the total number of galaxies, while mergers and unclassified objects represent ≈26 per cent. We have computed the comoving space density of the different kinds of object. In an Einstein–de Sitter universe, a decrease in the comoving density of E/S0 galaxies is observed as redshift increases (≈30 per cent less at   z =0.8)  , while for spiral galaxies a relatively quiet evolution is reported. The framework of hierarchical clustering evolution models of galaxies seems to be the most appropriate to explain our results.  相似文献   

11.
We explore the rich globular cluster (GC) system of the nearby Sa galaxy M104, the 'Sombrero' (NGC 4594), using archive Wide Field Planetary Camera 2 data. The GC colour distribution is found to be bimodal at the >99 per cent confidence level, with peaks at     and     . The inferred metallicities are very similar to those of GCs in our Galaxy and M31. However, the Sombrero reveals a much enhanced number of red (metal-rich) GCs compared to other well-studied spirals. Because the Sombrero is dominated by a huge bulge and only has a modest disc, we associate the two subpopulations with the halo and bulge components, respectively. Thus our analysis supports the view that the metal-rich GCs in spirals are associated with the bulge rather than with the disc. The Sombrero GCs have typical effective (half-light) radii of ∼2 pc with the red ones being ∼30 per cent smaller than the blue ones. We identify many similarities between the GC system of the Sombrero and those of both late-type spirals and early-type galaxies. Thus both the GC system and the Hubble type of the Sombrero galaxy appear to be intermediate in their nature.  相似文献   

12.
Spiral galaxies contain both ordered and chaotic orbits. In normal spirals the perturbations are weak (of order 2–10%) and most orbits are ordered. The density wave theory refers mainly to linear perturbations. Nonlinear effects appear in the outer parts of the open spirals (S_b, S_c) and produce the termination of these spirals near the 4/1 resonance. On the other hand in barred spirals the perturbations are relatively strong (of order 100%). Then the outer spirals and the envelope of the bar are composed mainly of chaotic orbits, while the main body of the bar is composed of ordered orbits. The chaotic orbits of the spiral arms of strong barred galaxies are sticky, i.e. they do not escape from the galaxy for at least a Hubble time. The forms of these spirals are delineated by the unstable manifolds of the unstable periodic orbits L_1, L_2 near the ends of the bar and of other unstable periodic orbits inside and outside corotation.  相似文献   

13.
We investigate the properties of optically passive spirals and dusty red galaxies in the A901/2 cluster complex at redshift ∼0.17 using rest-frame near-ultraviolet–optical spectral energy distributions, 24-μm infrared data and Hubble Space Telescope morphologies from the STAGES data set. The cluster sample is based on COMBO-17 redshifts with an rms precision of  σ cz ≈ 2000 km s−1  . We find that 'dusty red galaxies' and 'optically passive spirals' in A901/2 are largely the same phenomenon, and that they form stars at a substantial rate, which is only four times lower than that in blue spirals at fixed mass. This star formation is more obscured than in blue galaxies and its optical signatures are weak. They appear predominantly in the stellar mass range of  log  M */M=[10, 11]  where they constitute over half of the star-forming galaxies in the cluster; they are thus a vital ingredient for understanding the overall picture of star formation quenching in clusters. We find that the mean specific star formation rate (SFR) of star-forming galaxies in the cluster is clearly lower than in the field, in contrast to the specific SFR properties of blue galaxies alone, which appear similar in cluster and field. Such a rich red spiral population is best explained if quenching is a slow process and morphological transformation is delayed even more. At  log  M */M < 10  , such galaxies are rare, suggesting that their quenching is fast and accompanied by morphological change. We note that edge-on spirals play a minor role; despite being dust reddened they form only a small fraction of spirals independent of environment.  相似文献   

14.
15.
By using the SDSS spectra, we have studied the star formation properties of the nearby spiral galaxies selected from the Revised Bright Galaxy Sample, and tried to find the effect of bar structure on the star formation activity in the nuclear regions of nearby galaxies. The stellar population composition and the intensity of star formation activities of each sample galaxy are acquired by using the stellar population synthesis code—STARLIGHT, and the star formation properties of nuclear regions are compared with those of integral sample galaxies. We find that the star formation in barred spiral galaxies is more active than that of unbarred spirals, and that barred spirals have younger stellar populations.  相似文献   

16.
The pattern speed is one of the fundamental parameters that determines the structure of barred galaxies. This quantity is usually derived from indirect methods or by employing model assumptions. The number of bar pattern speeds derived using the model-independent Tremaine & Weinberg technique is still very limited. We present the results of model-independent measurements of the bar pattern speed in four galaxies ranging in Hubble type from SB0 to SBbc. Three of the four galaxies in our sample are consistent with bars being fast rotators. The lack of slow bars is consistent with previous observations and suggests that barred galaxies do not have centrally concentrated dark matter haloes. This contradicts simulations of cosmological structure formation and observations of the central mass concentration in nonbarred galaxies.  相似文献   

17.
We investigate the effect of dust on the observed rotation rate of a stellar bar. The only direct way to measure this quantity relies on the Tremaine & Weinberg (TW) method which requires that the tracer satisfies the continuity equation. Thus, it has been applied largely to early-type barred galaxies. We show using numerical simulations of barred galaxies that dust attenuation factors typically found in these systems change the observed bar pattern speed by 20–40 per cent. We also address the effect of star formation on the TW method and find that it does not change the results significantly. The results presented here suggest that applications of the TW method can be extended to include barred galaxies covering the full range of Hubble type.  相似文献   

18.
We have determined a dust-free colour–magnitude (CM) relation for spiral galaxies, by using I  −  K colours in edge-on galaxies above the plane. We find that the scatter in this relation is small and approximately as large as can be explained by observational uncertainties. The slope of the near-IR CM relation is steeper for spirals than for elliptical galaxies. We suggest two possible explanations. First, the difference could be caused by vertical colour gradients in spiral galaxies. In that case these gradients should be similar for all galaxies, on average ∼0.15 dex in [Fe/H] per scaleheight, and should increase for later galaxy types. The most likely explanation, however, is that spirals and ellipticals have intrinsically different CM relations. This means that the stars in spirals are younger than those in ellipticals. The age, however, or the fraction of young stars in spiral galaxies would be determined solely by the luminosity of the galaxy, and not by its environment.  相似文献   

19.
We present bulge and disc (B/D) decompositions of existing   K '  surface brightness profiles for 65 Ursa Major (UMa) cluster spiral galaxies. This improves upon the disc-only fits of Tully et al. The 1996 disc fits were used by Tully & Verheijen for their discovery of the bimodality of structural parameters in the UMa cluster galaxies. It is shown that our new one-dimensional B/D decompositions yield disc structural parameters that differ only slightly from the basic fits of Tully et al. and evidence for structural bimodality of UMa galaxies is maintained. Our B/D software for the decomposition of one-dimensional surface brightness profiles of galaxies uses a non-linear minimization scheme to recover the best-fitting Sérsic bulge and the exponential disc while accounting for the possible presence of a compact nucleus and spiral arms and for the effects of seeing and disc truncations. In agreement with Tully & Verheijen, we find that the distribution of near-infrared disc central surface brightnesses is bimodal with an F-test confidence of 80 per cent. There is also strong evidence for a local minimum in the luminosity function at     . A connection between the brightness bimodality and a dynamical bimodality, based on new H  i linewidths, is identified. The B/D parameters are presented in Table 1 .  

  Table 1.  B/D parameters.  相似文献   


20.
A statistical study has been made for the variations along the Hubble sequence, os such parameters as the degree of tightness of winding of spiral arm λ, the pitch angle μ, the flatness of the disk H/D25 and the thickness H along the Hubble sequence for 365 spiral galaxies published in A&Ap Supplement Series. The mean values of these quantities for the various Hubble types have been obtained for the first time. The results of the statistics show clearly 1) that the Hubble classification of spiral galaxies is one which has only a qualitative and statistical significance, and 2) that the dispersion relation in the density wave theory is valid for most spiral galaxies, i.e., the arms of most spiral galaxies satisfy the requirements of being tightly wound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号