首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We present a new set of contour maps of the seismic structure of South America and the surrounding ocean basins. These maps include new data, helping to constrain crustal thickness, whole-crustal average P-wave and S-wave velocity, and the seismic velocity of the uppermost mantle (Pn and Sn). We find that: (1) The weighted average thickness of the crust under South America is 38.17 km (standard deviation, s.d. ±8.7 km), which is ∼1 km thinner than the global average of 39.2 km (s.d. ±8.5 km) for continental crust. (2) Histograms of whole-crustal P-wave velocities for the South American crust are bi-modal, with the lower peak occurring for crust that appears to be missing a high-velocity (6.9–7.3 km/s) lower crustal layer. (3) The average P-wave velocity of the crystalline crust (Pcc) is 6.47 km/s (s.d. ±0.25 km/s). This is essentially identical to the global average of 6.45 km/s. (4) The average Pn velocity beneath South America is 8.00 km/s (s.d. ±0.23 km/s), slightly lower than the global average of 8.07 km/s. (5) A region across northern Chile and northeast Argentina has anomalously low P- and S-wave velocities in the crust. Geographically, this corresponds to the shallowly-subducted portion of the Nazca plate (the Pampean flat slab first described by Isacks et al., 1968), which is also a region of crustal extension. (6) The thick crust of the Brazilian craton appears to extend into Venezuela and Colombia. (7) The crust in the Amazon basin and along the western edge of the Brazilian craton may be thinned by extension. (8) The average crustal P-wave velocity under the eastern Pacific seafloor is higher than under the western Atlantic seafloor, most likely due to the thicker sediment layer on the older Atlantic seafloor.  相似文献   

2.
Despite the violent eruption of the Siberian Traps at ~ 250 Ma, the Siberian craton has an extremely low heat flow (18–25 mW/m2) and a very thick lithosphere (300–350 km), which makes it an ideal place to study the influence of mantle plumes on the long-term stability of cratons. Compared with seismic velocities of rocks, the lower crust of the Siberian craton is composed mainly of mafic granulites and could be rather heterogeneous in composition. The very high Vp (> 7.2 km/s) in the lowermost crust can be fit by a mixture of garnet granulites, two-pyroxene granulites, and garnet gabbro due to magma underplating. The high-velocity anomaly in the upper mantle (Vp = 8.3-8.6 km/s) can be interpreted by a mixture of eclogites and garnet peridotites. Combined with the study of lower crustal and mantle xenoliths, we recognized multistage magma underplating at the crust-mantle boundary beneath the Siberian craton, including the Neoarchean growth and Paleoproterozoic assembly of the Siberian craton beneath the Markha terrane, the Proterozoic collision along the Sayan-Taimyr suture zone, and the Triassic Siberian Trap event beneath the central Tunguska basin. The Moho becomes a metamorphism boundary of mafic rocks between granulite facies and eclogite facies rather than a chemical boundary that separates the mafic lower crust from the ultramafic upper mantle. Therefore, multistage magma underplating since the Neoarchean will result in a seismic Moho shallower than the petrologic Moho. Such magmatism-induced compositional change and dehydration will increase viscosity of the lithospheric mantle, and finally trigger lithospheric thickening after mantle plume activity. Hence, mantle plumes are not the key factor for craton destruction.  相似文献   

3.
This study presents the crustal shear wave velocity structure and radial anisotropy along two linear seismic arrays across the North China Craton (NCC) from ambient noise tomography. About a half to one year long ambient noise data from 87 stations were used for obtaining the inter-station surface wave empirical Green's functions (EGFs) from cross-correlation. Rayleigh and Love dispersion curves within the period band 5–30 s were measured from the EGFs of the vertical and transverse components, respectively. These dispersion data were then used to determine the crustal shear wave velocity structure (VSV and VSH) and radial anisotropy (2(VSH ? VSV) / (VSH + VSV)) from point-wise linear inversion with constraints from receiver function analysis. Our results reveal substantial structural variations among different parts of the NCC. The Bohai Bay Basin in the eastern NCC is underlain by a thin crust (~ 30 km) with relatively low velocities (particularly VSV) and large positive radial anisotropy in the middle to lower crust. Such a crustal structure is no longer of a cratonic type and may have resulted from the widespread tectonic extension and intensive magmatism in this region since late Mesozoic. Beneath the Ordos Basin in the western NCC, the crust is relatively thicker (≥ 40 km) and well stratified, and presents a large-scale low velocity zone in the middle to lower crust and overall weak radial anisotropy except for a localized lower crust anomaly. The overall structural features of this region resemble those of typical Precambrian shields, in agreement with the long-term stability of the region. The crustal structure under the Trans North China Orogen (TNCO, central NCC) is more complicated and characterized by smaller scale velocity variations, strong positive radial anisotropy in the middle crust and rapid change to weak-to-negative anisotropy in the lower crust. These features may reflect complex deformations and crust–mantle interactions, probably associated with tectonic extension and magmatic underplating during the Mesozoic to Cenozoic evolution of the region. Our structural images in combination with previous seismic, geological and geochemical observations suggest that the Phanerozoic lithospheric reactivation and destruction processes may have affected the crust (especially the middle and lower crust) of the eastern NCC, and the effect probably extended to the TNCO, but may have minor influence on the crust of the western part of the craton.  相似文献   

4.
We have measured both P- and S-wave velocities (Vp and Vs) and Poisson's ratios (υ) of 60 typical ultrahigh pressure (UHP) metamorphic rock samples from the Chinese Continental Scientific Drilling (CCSD) main and pre-pilot holes and surface outcrops in the Sulu–Dabie orogenic belt at hydrostatic confining pressures up to 850 MPa. The experimental results, together with those compiled in Handbook of Seismic Properties of Minerals, Rocks and Ores [ Ji, S.C., Wang, Q., Xia, B., 2002. Handbook of Seismic Properties of Minerals, Rocks and Ores. Polytechnic International Press, Montreal, 630 pp.], reveal that except for monomineralic rocks such as quartzite, serpentinite, anorthosite, limestone, and marble the rest of the rock types have Poisson's ratios falling along an upward convex curve determined from the correlations between elastic moduli and density. Poisson's ratios increase with density as the lithology changes from granite, felsic gneiss and schist, through diorite–syenite, intermediate gneiss and metasediment, to gabbro–diabase, amphibolite, and mafic gneiss, and then decrease as the rocks become ultramafic in composition. Eclogite has a higher density but a lower Poisson's ratio than peridotite. The results were applied to constrain the crustal composition and tectonic evolution of the Chinese continental crust based on crustal thickness (H) and Poisson's ratio (υ) from 248 broadband seismic stations, measured using teleseismic receiver function techniques. The North China, Yangtze, South China and Northeast China blocks and Songpan–Ganzi Terrane are dominated by low (υ < 0.26) and moderate (0.26  υ < 0.28) υ values (> 70%), suggesting the dominance of felsic composition in the crust. The Lhasa terrane, Qiangtang terrane, and Indochina block are characterized by high proportions (33–42%) of measurements with very high υ values (≥ 0.30 and H is found for the South China block, Northeast block, Lhasa block, Qiangtang terrane and Indochina block, indicating either tectonic thickening of the felsic upper and middle crust by folding and thrusting or the removal of mafic layers from the lower crust into the upper mantle by delamination.  相似文献   

5.
We present a new regional model for the depth-averaged density structure of the cratonic lithospheric mantle in southern Africa constrained on a 30′ × 30′ grid and discuss it in relation to regional seismic models for the crust and upper mantle, geochemical data on kimberlite-hosted mantle xenoliths, and data on kimberlite ages and distribution. Our calculations of mantle density are based on free-board constraints, account for mantle contribution to surface topography of ca. 0.5–1.0 km, and have uncertainty ranging from ca. 0.01 g/cm3 for the Archean terrains to ca. 0.03 g/cm3 for the adjacent fold belts. We demonstrate that in southern Africa, the lithospheric mantle has a general trend in mantle density increase from Archean to younger lithospheric terranes. Density of the Kaapvaal mantle is typically cratonic, with a subtle difference between the eastern, more depleted, (3.31–3.33 g/cm3) and the western (3.32–3.34 g/cm3) blocks. The Witwatersrand basin and the Bushveld Intrusion Complex appear as distinct blocks with an increased mantle density (3.34–3.35 g/cm3) with values typical of Proterozoic rather than Archean mantle. We attribute a significantly increased mantle density in these tectonic units and beneath the Archean Limpopo belt (3.34–3.37 g/cm3) to melt-metasomatism with an addition of a basaltic component. The Proterozoic Kheis, Okwa, and Namaqua–Natal belts and the Western Cape Fold Belt with the late Proterozoic basement have an overall fertile mantle (ca. 3.37 g/cm3) with local (100–300 km across) low-density (down to 3.34 g/cm3) and high-density (up to 3.41 g/cm3) anomalies. High (3.40–3.42 g/cm3) mantle densities beneath the Eastern Cape Fold belt require the presence of a significant amount of eclogite in the mantle, such as associated with subducted oceanic slabs.We find a strong correlation between the calculated density of the lithospheric mantle, the crustal structure, the spatial pattern of kimberlites, and their emplacement ages. (1) Blocks with the lowest values of mantle density (ca. 3.30 g/cm3) are not sampled by kimberlites and may represent the “pristine” Archean mantle. (2) Young (< 90 Ma) Group I kimberlites sample mantle with higher density (3.35 ± 0.03 g/cm3) than the older Group II kimberlites (3.33 ± 0.01 g/cm3), but the results may be biased by incomplete information on kimberlite ages. (3) Diamondiferous kimberlites are characteristic of regions with a low-density cratonic mantle (3.32–3.35 g/cm3), while non-diamondiferous kimberlites sample mantle with a broad range of density values. (4) Kimberlite-rich regions have a strong seismic velocity contrast at the Moho, thin crust (35–40 km) and low-density (3.32–3.33 g/cm3) mantle, while kimberlite-poor regions have a transitional Moho, thick crust (40–50 km), and denser mantle (3.34–3.36 g/cm3). We explain this pattern by a lithosphere-scale (presumably, pre-kimberlite) magmatic event in kimberlite-poor regions, which affected the Moho sharpness and the crustal thickness through magmatic underplating and modified the composition and rheology of the lithospheric mantle to make it unfavorable for consequent kimberlite eruptions. (5) Density anomalies in the lithospheric mantle show inverse correlation with seismic Vp, Vs velocities at 100–150 km depth. However, this correlation is weaker than reported in experimental studies and indicates that density-velocity relationship in the cratonic mantle is strongly non-unique.  相似文献   

6.
The relationship among subducted oxidized oceanic crust and oxidation state of the subarc mantle, and arc magmas is one of the important aspects to evaluate convergent margin tectonics. However details of the oxidized mass transferred from buried oceanic crust to the overlying subarc mantle wedge remain obscure. Here we investigate the Songduo eclogites from south Tibet formed by the subduction of the paleo-Tethyan oceanic crust, and identify an abrupt decrease in pyrope and increase in almandine contents from the mantle to rim of garnet grains. This is coupled with a decrease in the Fe3 + content of epidote and Fe3 +/(Fe2 ++ Fe3 +) ratios from garnet core to rim domains, as well as speciation of calcite, a new mineral phase, in the rock matrix. Minor sulfates occur only as inclusions in garnet core domains, whereas sulfides are confined to the matrix as an accessory mineral phase. Aegirine augite occurs as relics or inclusions in garnet and omphacite. These features clearly suggest that oxidized components, Fe3 + and S6 +, were reduced as Fe2 + and S2 , respectively, at the subduction zone. Thermodynamic modeling in the P–T-log10fO2 space using updated Perplex_X programs further revealed that the Songduo eclogites experienced oxygen fugacity variation of up to 8 log10 units, with decreasing pressure. Petrological observations further suggest that the strong redox processes took place, after breaking of garnet, during the initial exhumation of the eclogites. CO2 and minor sulfur are subsequently transferred from the cold oceanic subduction zone to the overlying mantle wedge, partially released by arc volcanoes to atmosphere. Our study presents a case of C and S recycling between the Earth's exterior and interior.  相似文献   

7.
Charles Maurice  Don Francis 《Lithos》2010,114(1-2):95-108
Paleoproterozoic mafic dyke swarms (2.5–2.0 Ga) of the Ungava Peninsula can be divided in three chemical groups. The main group has a wide range of Fe (10–18 wt.% Fe2O3) and Ti (0.8–2.0 wt.% TiO2) contents, and the most magnesian samples have compositions consistent with melting of a fertile lherzolitic mantle at ~ 1.5 GPa. Dykes of a low-LREE (light rare earth element) subgroup (La/Yb ≤ 4) display decreasing Zr/Nb with increasing La/Yb ratios and positive εNd2.0 Ga values (+ 3.9 to + 0.2) that trend from primitive mantle towards the composition of Paleoproterozoic alkaline rocks. In contrast, dykes of a high-LREE subgroup (La/Yb ≥4) display increasing Zr/Nb ratios and negative εNd2.0 Ga values (? 2.3 to ? 6.4) that trend towards the composition of Archean crust. A low Fe–Ti group has low Fe (< 11 wt.% Fe2O3), Ti (< 0.8 wt.% TiO2), high field strength elements (HFSE; < 6 ppm Nb) and heavy rare earth elements (HREE; < 2 ppm Yb) contents, but are enriched in large ion lithophile elements (LILE; K/Ti = 0.7–3) and LREE (La/Yb > 4). These dykes are interpreted as melts of a depleted harzburgitic mantle that has experienced metasomatic enrichment. A positive correlation of Zr/Nb ratio and La/Yb ratio, negative εNd2.0 Ga values (? 14 to ? 6), and the presence of inherited Archean zircons further suggest the incorporation of a crustal component. A high Fe–Ti group has high Fe (> 14 wt.% Fe2O3) and Ti (> 1.4 wt.% TiO2) contents, along with higher Na contents relative to the main group dykes. Dykes of a high-Al subgroup (> 12 wt.% Al2O3) share Fe contents, εNd2.0 Ga values (? 2.3 to ? 3.4), La/Yb and Th/Nb ratios with Archean ferropicrites, and may represent evolved ferropicrite melts. A low-Al subgroup (< 12 wt.% Al2O3) has relatively lower Yb contents (< 2 ppm) and fractionated HREE patterns that indicate the presence of garnet in their melting residue. A comparison with ~ 5 GPa experimentally-derived melts suggests that these dykes may be derived from garnet-bearing pyroxenite or peridotite. The εNd2.0 Ga values (? 0.3 to ? 2.0) of these dykes lie between the compositions of Archean granitoids and Paleoproterozoic alkaline rocks, signifying their petrogenesis involved both crustal and mantle components.Paleoproterozoic dykes containing a crustal component occur within, or close to, an isotopically enriched Archean terrane (TDM 4.3–3.1 Ga), whereas dykes without this component occur in an isotopically juvenile terrane (TDM < 3.1 Ga). The lack of a crustal component and the positive εNd2.0 Ga values of dykes intruding the latter suggest that the crust they intruded was either too cold to be assimilated, or that its lower crust and/or lithosphere were Paleoproterozoic in age. In contrast, the ubiquitous presence of a crustal component and the diversity of mantle sources for dykes intruding the enriched terrane (lherzolite, harzburgite, pyroxenite) suggest a warmer crust with underlying heterogeneous lithospheric mantle.  相似文献   

8.
A central target in Earth sciences is to understand the processes controlling the stabilization and destruction of Archean continents. The North China craton (NCC) has in part lost its dense crustal root after the Mesozoic, and thus it is a key region to test models of crust–mantle differentiation and subsequent evolution of the continental crust. However, the timing and mechanisms responsible for its crustal thickening and reworking have been long debated. Here we report the Early Cretaceous Yinan (eastern NCC) adakitic granites, for which major/trace elemental models demonstrate that they are complementary to the analogy of the documented eclogitic relicts within the NCC. Based on their Late Archean inherited zircons, depleted mantle Nd model ages of ∼2.8 Ga, large negative εNd(t) values (−36.7 to −25.3) and strongly radiogenic initial 87Sr/86Sr ratios (0.7178–0.7264), we suggest that the Yinan adakitic granites were potentially formed by the dehydration melting of a thickened Archean mica-bearing mafic lower crust during the Early Cretaceous (ca. 124 Ma), corresponding to a major period (117–132 Ma) of the NCC Mesozoic intrusive magmatism. Combined previous results, it is shown that the thickening and reworking of the North China Archean lower crust occurred largely as two short-lived episodes at 155–180 Ma and 117–132 Ma, rather than a gradual, secular event. These correlated temporally with the superfast-spreading Pacific plate during the Mesozoic. The synchroneity of these events suggests rapid plate motion of the Pacific plate driving the episodic NCC crustal thickening and reworking, resulting in dense eclogitic residues that became gravitationally unstable. The onset of lithospheric delamination occurred when upwelling asthenosphere heated the base of lower crust to form coeval felsic magmas with or without involvement of juvenile mantle material. Collectively, the circum-Pacific massive crustal production could be attributed to the unusually rapid motion of Pacific at 155–180 Ma and 117–132 Ma.  相似文献   

9.
On the northeastern slope of the Kuznetsk Alatau, small differentiated alkaline basic intrusive massifs form an isometric area ~ 100 km across. They are composed of subalkalic and alkali gabbroids, basic and ultrabasic foidolites, nepheline and alkali syenites, and carbonatites. Results of complex (U–Pb, Sm–Nd, and Rb–Sr) isotope dating suggest that alkaline basic magmatism developed at two stages, in the Middle Cambrian–Early Ordovician (~ 510–480 Ma) and in the Early–Middle Devonian (~ 410–385 Ma). Finding of accessory zircons (age 1.3–2.0 Ga) in alkaline rocks suggests that the ascent of mantle plume was accompanied by the melting of fragments of Proterozoic mature continental crust composing the basement of the Caledonian orogen of the Kuznetsk Alatau. Probably, parental Cambrian–Ordovician alkaline mafic melts initiated metasomatism and lithosphere erosion. During the next melting of lithosphere substrate in ~ 100 Myr, this caused the generation of magmas of similar composition with inherited isotope parameters (εNd(T)  + 4.8 to + 5.7, TNd(DM)  0.8–0.9 Ga) pointing to the similar nature of their matter sources in the moderately depleted mantle.  相似文献   

10.
《Lithos》2007,93(1-2):175-198
The Neoproterozoic (∼ 820 Ma) Aries micaceous kimberlite intrudes the central Kimberley Basin, northern Western Australia, and has yielded a suite of 27 serpentinised ultramafic xenoliths, including spinel-bearing and rare, metasomatised, phlogopite–biotite and rutile-bearing types, along with minor granite xenoliths. Proton-microprobe trace-element analysis of pyrope and chromian spinel grains derived from heavy mineral concentrates from the kimberlite has been used to define a ∼ 35–40 mW/m2 Proterozoic geotherm for the central Kimberley Craton. Lherzolitic chromian pyrope highly depleted in Zr and Y, and Cr-rich magnesiochromite xenocrysts (class 1), probably were derived from depleted garnet peridotite mantle at ∼ 150 km depth. Sampling of shallower levels of the lithospheric mantle by kimberlite magmas in the north and north-extension lobes entrained high-Fe chromite xenocrysts (class 2), and aluminous spinel-bearing xenoliths, where both spinel compositions are anomalously Fe-rich for spinels from mantle xenoliths. This Fe-enrichment may have resulted from Fe–Mg exchange with olivine during slow cooling of the peridotite host rocks. Fine exsolution rods of aluminous spinel in diopside and zircon in rutile grains in spinel- and rutile-bearing serpentinised ultramafic xenoliths, respectively, suggest nearly isobaric cooling of host rocks in the lithospheric mantle, and indicate that at least some aluminous spinel in spinel-facies peridotites formed through exsolution from chromian diopside. Fe–Ti-rich metasomatism in the spinel-facies Kimberley mantle probably produced high-Ti phlogopite–biotite + rutile and Ti, V, Zn, Ni-enriched aluminous spinel ± ilmenite associations in several ultramafic xenoliths. U–Pb SHRIMP 207Pb/206Pb zircon ages for one granite (1851 ± 10 Ma) and two serpentinised ultramafic xenoliths (1845 ± 30 Ma; 1861 ± 31 Ma) indicate that the granitic basement and lower crust beneath the central Kimberley Basin are at least Palaeoproterozoic in age. However, Hf-isotope analyses of the zircons in the ultramafic xenoliths suggest that the underlying lithospheric mantle is at least late Archean in age.  相似文献   

11.
The study area lies between latitude 18–26°N and longitude 73–83°E, and mainly covers the Central India Tectonic Zone (CITZ). The frequency-dependent shear wave quality factor (Qs) has been estimated over the CITZ and its surroundings using Double Spectral Ratio (DSR) method. We have considered 25 local earthquakes with magnitude (ML) varies from 3.0 to 4.7 recorded at 11 stations running under national seismic network. The Fast Fourier Transformed (FFT) spectra were computed from the recorded waveform having time-window from onset of S-phase to 1.0 s and for a frequency-band of 0.1–10 Hz. Three different shear wave velocities (i.e., 3.87, 3.39 and 3.96 km/s) were obtained over the study area based on a pair of earthquakes recorded at a pair of stations. The low Qs values of 51–96 at 1 Hz (i.e., Qs = 51f0.49; Qs = 90f0.488 and Qs = 96f0.53) were found in the area covering the Son–Narmada–Tapti (SONATA) lineament, CITZ, eastern part of the Satpura fold belt, Vindhyan and Gondwana basins, Godavari and Mahanadi grabens, and southern part of Gangetic plain. Intermediate Qs values of the order of 204–277 (i.e., Qs = 204f0.56 and Qs = 277f0.55) were noted in the cartonic areas, namely, Bundelkhand, Dharwar-Bhandara and Bastar. While the higher Qs values of 391–628 at 1 Hz (i.e., Qs = 391f0.49, Qs = 409f0.48, Qs = 417f0.48, Qs = 500f0.66, Qs = 585f0.65 and Qs = 628f0.69) were found in the eastern part of the SONATA, CITZ, and the northeastern part of the Satpura fold belt. The low Qs values might be attributing to the more heterogeneous SONATA rift system. Low Qs values further may presumably be associated with lower-level of seismicity and apparently account for higher tectonic stress accumulation over long duration. The long-term accumulated stress is generally released through occasional triggering of moderate magnitude earthquakes in the SONATA zone. Surrounding the SONATA region, the higher Qs values possibly accounts for a more homogeneous subsurface structure along the SONATA zone.  相似文献   

12.
《Chemical Geology》2007,236(3-4):323-338
Serpentinized garnet peridotites from the Xugou peridotite body of the Sulu ultrahigh-pressure (UHP) metamorphic terrane, central eastern China, are refractory (olivines have Fo91.7–93.1), indicating their origin as residual mantle. Negative correlations between whole-rock MgO and TiO2, Al2O3, total Fe2O3 and CaO (r =  0.90 to − 0.95) and positive correlations between whole-rock Al2O3 and CaO and incompatible elements [Li, V, Cu, Ga, Sr, Y, Zr, heavy rare earth elements (HREEs), Hf, Pb and U] (r = 0.69 to 0.98) likely reflect melt depletion trends. Four highly refractory samples were selected for Re–Os isotopic analysis. Although they show evidence of variable enrichment of incompatible elements during serpentinization/metasomatism, no correlations exist between 187Re/188Os or 187Os/188Os with either La or Re (r = 0.00 to 0.17). These results indicate that any Re addition was fairly recent and did not affect the Os isotopic composition significantly. The correlation between 187Os/188Os and 187Re/188Os ratios thus, most likely reflects an ancient melt extraction event.The TRD, TMA and errorchron ages of the Xugou peridotites are all similar, suggesting that these peridotites formed around 2.0 Ga ago. This age is similar to Os model ages of mantle peridotites from the Dabie terrane, but contrasts markedly with the Archean ages of the continental lithospheric mantle (CLM) beneath the eastern block of the North China craton (NCC). If we assume that the Dabie–Sulu belt formed by the Triassic collision of the Yangtze craton with the eastern block of NCC and that the Archean aged CLM of the latter persisted until the Triassic, the Paleoproterozoic ages suggest derivation of these Dabie–Sulu mantle peridotites from the Yangtze craton. A Yangtze craton origin is consistent with the existing tectonic model of the Dabie–Sulu UHP belt. Our results support the hypothesis that the crust and underlying lithospheric mantle of the Yangtze craton were subducted to depths of > 180–200 km to form the world's largest UHP belt.  相似文献   

13.
Mafic granulite and spinel lherzolite xenoliths from Cenozoic alkaline basalts near Al-Ashkhara, eastern Oman, have been selected for a systematic mineralogical, geochemical and Sr–Nd–Pb isotopic study. This is the only place in E Arabia where samples of both lower crust and upper mantle can be examined. Lower crustal xenoliths consist of two mineralogically and chemically distinct groups: gabbronorite (subequal abundances of ortho- and clino-pyroxene and plagioclase) and plagioclase pyroxenite (dominant pyroxene and subordinate plagioclase). Temperature estimates for lower crustal xenoliths using the two pyroxene geothermometer (T-Wells) yield 810–865 °C. The mineral assemblage (spinel–pyroxene–plagioclase) and Al content in pyroxene indicate that plagioclase-bearing xenoliths equilibrated at 5–8 kbar (13 and 30 km depth) in the lower crust. εNd and 87Sr/86Sr calculated at 700 Ma for Al-Ashkhara lower crustal xenoliths (+ 6.4 to + 6.6; 87Sr/86Sr = 0.7028 to 0.7039) are consistent with the interpretation that juvenile, mafic melts were added to the lower crust during Neoproterozoic time and that there was no discernible contribution from pre-Neoproterozoic crust. Upper mantle xenoliths consist of both dry and hydrous (phlogopite-bearing) lherzolites. These peridotites are more Fe-rich than expected for primitive mantle or melt residues and probably formed by pervasive circulation of melts that have refertilized pre-existing mantle peridotites. Mineral equilibration temperatures range from 990 to 1070 °C. Isotopic compositions calculated at 700 Ma are εNd = + 6.8 to + 7.8 and 87Sr/86Sr = 0.7016 to 0.7025, indicating depleted upper mantle. Pb isotopic compositions indicate that the metasomatism was relatively recent, perhaps related to Paleogene tectonics and basanite igneous activity. Nd model ages for the spinel peridotite xenoliths range between 0.59 and 0.65 Ga. The xenolith data suggest that eastern Arabian lower crust is of hotspot origin, in contrast to western Arabian lower crust, which mostly formed at a convergent plate margin. Geochemical and isotopic differences between lower crust and upper mantle indicate that these are unrelated, possibly because delamination replaced the E Arabian mantle root in Neoproterozoic time.  相似文献   

14.
Comparing the early Earth to the present day, geological–geochemical evidence points towards higher mantle potential temperature and a different type of tectonics. In order to investigate possible changes in Precambrian tectonic styles, we conduct 3D high-resolution petrological–thermomechanical numerical modelling experiments for oceanic plate subduction under an active continental margin at a wide range of mantle potential temperature TP (∆ TP = 0  250 K, compared to present day conditions). At present day mantle temperatures (∆ TP = 0 K), results of numerical experiments correspond to modern-style subduction, whereas at higher temperature conditions important systematic changes in the styles of both lithospheric deformation and mantle convection occur. For ∆ TP = 50  100 K a regime of dripping subduction emerges which is still very similar to present day subduction but is characterised by frequent dripping from the slab tip and a loss of coherence of the slab, which suggests a close relationship between dripping subduction and episodic subduction. At further increasing ∆ TP = 150  200 K dripping subduction is observed together with unstable dripping lithosphere, which corresponds to a transitional regime. For ∆ TP = 250 K, presumably equivalent to early Archean, the dominating tectonic style is characterised by small-scale mantle convection, unstable dripping lithosphere, thick basaltic crust and small plates. Even though the initial setup is still defined by present day subduction, this final regime shows many characteristics of plume-lid tectonics. Transition between the two end-members, plume-lid tectonics and plate tectonics, happens gradually and at intermediate temperatures elements of both tectonic regimes are present. We conclude, therefore, that most likely no abrupt geodynamic regime transition point can be specified in the Earth's history and its global geodynamic regime gradually evolved over time from plume-lid tectonics into modern style plate tectonics.  相似文献   

15.
We here present the results of the inverse modeling of crustal S-phases recorded from a 400-km-long seismic profile, with azimuth nearly N30W, from Lianxian, near Hunan Province, to Gangkou Island, near Guangzhou City, Guangdong Province, in the southern margin of South China continent. The finding in this case is that many shot gathers provided by this wide-angle seismic experiment show relatively strong reflected and refracted S-phases, in particular some crustal refractions (Sg waves) and Moho reflections (SmS waves or simply Sm waves). The P-wave velocity structure of the crust and uppermost mantle was already obtained through the interpretation of vertical-component shot gathers. Now, with constraints introduced by the P-wave velocity architecture and after picking up S-wave traveltime data on the seismograms, we have obtained the S-velocity model of the crust by adjusting these traveltimes but keeping the geometry of the crustal reflectors. Our results demonstrate: (1) the average crustal S-velocity is about 3.64 km/s to the northwest of the Wuchuan-Sihui fault, and 3.62 km/s to the southeast of this fault; (2) relatively constant S-velocity of about 3.42 km/s for the upper crust, 3.55 km/s for the middle crust and laterally varying shear velocity around 3.82 km/s for the lower crust; (3) correspondingly, Vp/Vs ratio is 1.73 for the upper crust, 1.71 for the middle crust and 1.74 for the lower crust. Both shear velocities and Vp/Vs ratio correlate well with the major active faults that break the study area, and show significant changes especially in the upper crust. High Poisson’s ratio (1.8) is observed at shallow depth beneath the Minzhong depression to the southeast of the Wuchuan-Sihui fault and the Huiyuan depression in the southern margin of South China continent. In contrast, a very low Vp/Vs ratio (1.68) is observed between 8 and 14 km depth beneath Huiyuan. At deeper depth, a high Vp/Vs ratio (1.76) is observed in the lower crust beneath the Minzhong depression.  相似文献   

16.
We discuss here the mineralogical and geochemical characteristics of mafic intrusive rocks from the Nagaland-Manipur Ophiolites (NMO) of Indo-Myanmar Orogenic Belt, northeast India to define their mantle source and tectonic environment. Mafic intrusive sequence in the NMO is characterized by hornblende-free (type-I) and hornblende-bearing (type-II) rocks. The type-I is further categorized as mafic dykes (type-Ia) of tholeiitic N-MORB composition, having TiO2 (0.72–1.93 wt.%) and flat REE patterns (LaN/YbN = 0.76–1.51) and as massive gabbros (type-Ib) that show alkaline E-MORB affinity, having moderate to high Ti content (TiO2 = 1.18 to 1.45 wt.%) with strong LREE-HREE fractionations (LaN/YbN = 4.54–7.47). Such geochemical enrichment from N-MORB to E-MORB composition indicates mixing of melts derived from a depleted mantle and a fertile mantle/plume source at the spreading center. On the other hand, type-II mafic intrusives are hornblende bearing gabbros of SSZ-type tholeiitic composition with low Ti content (TiO2 = 0.54 wt.%–0.86 wt.%) and depleted LREE pattern with respect to HREE (LaN/YbN = 0.37–0.49). They also have high Ba/Zr (1.13–2.82), Ba/Nb (45.56–151.66) and Ba/Th (84.58–744.19) and U/Th ratios (0.37–0.67) relative to the primitive mantle, which strongly represents the melt composition generated by partial melting of depleted lithospheric mantle wedge contaminated by hydrous fluids derived from subducting oceanic lithosphere in a forearc setting. Their subduction related origin is also supported by presence of calcium-rich plagioclase (An16.6–32.3). Geothermometry calculation shows that the hornblende bearing (type-II) mafic rocks crystallized at temperature in range of 565°–625 °C ± 50 (at 10 kbar). Based on these available mineralogical and geochemical evidences, we conclude that mid ocean ridge (MOR) type mafic intrusive rocks from the NMO represent the section of older oceanic crust which was generated during the divergent process of the Indian plate from the Australian plate during Cretaceous period. Conversely, the hornblende-bearing gabbros (type-II) represent the younger oceanic crust which was formed at the forearc region by partial melting of the depleted mantle wedge slightly modified by the hydrous fluids released from the subducting oceanic slab during the initial stage of subduction of Indian plate beneath the Myanmar plate.  相似文献   

17.
《Chemical Geology》2007,236(1-2):112-133
The Cida A-type granitic stock (∼ 4 km2) and Ailanghe I-type granite batholith (∼ 100 km2) in the Pan-Xi (Panzhihua-Xichang) area, SW China, are two important examples of granites formed during an episode of magmatism associated with the Permian Emeishan mantle plume activity. This is a classic setting of plume-related, anorogenic magmatism exhibiting the typical association of mantle-derived mafic and alkaline rocks along with silicic units. SHRIMP zircon U–Pb data reveal that the Cida granitic pluton (261 ± 4 Ma) was emplaced shortly before the Ailanghe granites (251 ± 6 Ma). The Cida granitoids display mineralogical and geochemical characteristics of A-type granites including high FeO/MgO ratios, elevated high-field-strength elements (HFSE) contents and high Ga/Al ratios, which are much higher than those of the Ailanghe granites. All the granitic rocks show significant negative Eu anomalies and demonstrate the characteristic negative anomalies in Ba, Sr, and Ti in the spidergrams. It can be concluded that the Cida granitic rocks are highly fractionated A-type granitoids whereas the Ailanghe granitic rocks belong to highly evolved I-type granites.The Cida granitoids and enclaves have Nd and Sr isotopic initial ratios (εNd(t) =  0.25 to + 1.35 and (87Sr/86Sr)i = 0.7023 to 0.7053) close to those of the associated mafic intrusions and Emeishan basalts, indicating the involvement of a major mantle plume component. The Ailanghe granites exhibit prominent negative Nb and Ta anomalies and weakly positive Pb anomalies in the spidergram and have nonradiogenic εNd(t) ratios (− 6.34 to − 6.26) and high (87Sr/86Sr)i values (0.7102 to 0.7111), which indicate a significant contribution from crustal material. These observations combined with geochemical modeling suggest that the Cida A-type granitoids were produced by extensive fractional crystallization from basaltic parental magmas. In contrast, the Ailanghe I-type granites most probably originated by partial melting of the mid-upper crustal, metasedimentary–metavolcanic rocks from the Paleo-Mesoproterozoic Huili group and newly underplated basaltic rocks.In the present study, it is proposed that petrogenetic distinctions between A-type and I-type granites may not be as clear-cut as previously supposed, and that many compositional and genetically different granites of the A- and I-types can be produced in the plume-related setting. Their ultimate nature depends more importantly on the type and proportion of mantle and crustal material involved and melting conditions. Significant melt production and possible underplating and/or intrusion into the lower crust, may play an important role in generating the juvenile mafic lower crust (average 20 km) in the central part of the Emeishan mantle plume.  相似文献   

18.
We determine detailed 3-D Vp and Vs structures of the crust and uppermost mantle beneath the Kyushu Island, southwest Japan, using a large number of arrival times from local earthquakes. From the obtained Vp and Vs models, we further calculate Poisson’s ratio images beneath the study area. By using this large data set, we successfully image the 3-D seismic velocity and Poisson’s ratio structures beneath Kyushu down to a depth of 150 km with a more reliable spatial resolution than previous studies. Our results show very clear low Vp and low Vs anomalies in the crust and uppermost mantle beneath the northern volcanoes, such as Abu, Kujyu and Unzen. Low-velocity anomalies are seen in the mantle beneath most other volcanoes. In contrast, there are no significant low-velocity anomalies in the crust or in the upper mantle between Aso and Kirishima. The subducting Philippine Sea slab is imaged generally as a high-velocity anomaly down to a depth of 150 km with some patches of normal to low seismic wave velocities. The Poisson’s ratio is almost normal beneath most volcanoes. The crustal seismicity is distributed in both the high- and low-velocity zones, but most distinctly in the low Poisson’s ratio zone. A high Poisson’s ratio region is found in the forearc crustal wedge above the slab in the junction area with Shikoku and Honshu; this high Poisson’s ratio could be caused by fluid-filled cracks induced by dehydration from the Philippine Sea slab. The Poisson’s ratio is normal to low in the forearc mantle in middle-south Kyushu. This is consistent with the absence of low-frequency tremors, and may indicate that dehydration from the subducting crust is not vigorous in this region.  相似文献   

19.
Based on the analysis of experimental data on the viscosity of mafic to ultramafic magmatic melts with the use of our structure-chemical model for the calculation and prediction of the viscosity of magmas, we have first predicted that diamond-carryihg kimberlite magma must ascend from mantle to crust with considerable acceleration. The viscosity of kimberlite magma decreases by more than three times during its genesis, evolution, and ascent from mantle to crust despite the significant decrease in the temperature of the ascending kimberlite magma (~ 150 °C) and its partial crystallization and degassing. In the case of partial melting (< 1 wt.%) of carbonated peridotite in the mantle at depths of 250-350 km, high-viscosity (~ 35 Pas) kimberlite melts can be generated at ~ 8.5 GPa and ~ 1350 °C, the water content in the melt being up to ~ 8 wt.%, C(OH-) = 0-2 wt.%, and C(H2O) = 0-6 wt.%. On the other hand, during the formation of kimberlite pipes, dikes, and sills, the viscosity of near-surface kimberlite melts is much lower (~ 10 Pa s) at ~ 50 MPa and 1200 °C, the volume contents of crystals (Vcr) and the fluid phase (bubbles) (Vfl) are 35 and 5 vol.%, respectively, and the water content in magma, C(OH-), is 0.5 wt.%. On the contrary, the viscosity of basaltic magmas increases by more than two orders of magnitude during their ascent from mantle to crust. The basaltic magmas which can be generated in the asthenosphere at depths of ~ 100 km have the minimum viscosity (up to ~ 2.3 Pas) at ~ 4.0 GPa, 1350 °C, C(OH-) - 3 wt.%, and C(H2O) - 5 wt.%. However, at the final stage of evolution (e.g., during volcanic eruptions), the viscosity of basaltic magma is considerably higher (600 Pa s) at ~ 10 MPa, 1180 °C, Vcr - 30 vol.%, Vf - 15 vol.%, and C(OH-) - 0.5 wt.%.  相似文献   

20.
The origin of high-Mg adakitic granitoids in collisional orogens can provide important information about the nature of the lower crust and upper mantle during the orogenic process. Late-Triassic high-Mg adakitic granite and its mafic enclaves from the Dongjiangkou area, the Qinling orogenic belt, central China, were derived by partial melting of subducted continental crust and underwent interaction with the overlying mantle wedge peridotite. Adakitic affinity of the different facies of the Dongjiangkou granite body are: high Sr, Ba, high La/Yb and Sr/Y, low Y,Yb, Yb/Lu and Dy/Yb, and no significant Eu anomalies, suggesting amphibole + garnet and plagioclase-free restite in their source region. Evolved Sr-Nd-Pb isotopic compositions [(87Sr/86Sr)i = 0.7050 to 0.7055,εNd(t) = –6.6 to –3.3; (206Pb/204Pb)i = 17.599 to 17.799, (207Pb/204Pb)i = 15.507 to 15.526, (208Pb/204Pb)i = 37.775 to 37.795] and high K2O, Rb, together with a large variation in zircon Hf isotopic composition (εHf(t) = ?9.8 to + 5.0), suggest that the granite was derived from reworking of the ancient lower continental crust. CaO, P2O5, K2O/Na2O, Cr, Ni, Nb/Ta, Rb/Sr and Y increase, and SiO2, Sr/Y and Eu/Eu* decrease with increasing MgO, consistent with interaction of primitive adakitic melt and overlying mantle peridotite. Zircons separated from the host granites have U-Pb concordia ages of 214 ± 2 Ma to 222 ± 2 Ma, compatible with exhumation ages of Triassic UHP metamorphic rocks in the Dabie orogenic belt. Mafic microgranular enclaves and mafic dykes associated with the granite have identical zircon U-Pb ages of 220 Ma, and are characterized by lower SiO2, high TiO2, Mg# and similar evolved Sr-Nd-Pb isotopic composition. Zircons from mafic microgranular enclaves (MMEs) and mafic dykes also show a large variation in Hf isotopic composition with εHf(t) between ?11.3 and + 11.3. It is inferred that they were formed by partial melting of enriched mantle lithosphere and contaminated by the host adakitic granite magma.In combination with the regional geology, high-Mg# adakitic granitoid rocks in the Dongjiangkou area are considered to have resulted from interaction between subducted Yangtze continental crust and the overlying mantle wedge. Triassic continental collision caused detachment of the Yangtze continental lithosphere subducted beneath the North China Craton, at ca. 220 Ma causing asthenosphere upwelling and exhumation of the continental crust. Triassic clockwise rotation of the Yangtze Craton caused extension in the Dabie area which led to rapid exhumation of the subducted continental lithosphere, while compression in the Qinling area and high-P partial melting (amphibole ± garnet stability field) of the subducted continental crust produced adakitic granitic magma that reacted with peridotite to form Mg-rich hybrid magma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号