首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— We report nitrogen isotopic data obtained from a stepwise gas release of two grain-size fractions of the gas-rich meteorite Pesyanoe. Cosmic-ray-produced 15Nc may be present in all temperature steps ≥600 °C, and we correct this component using spallation 21Ne data. The resulting ratios reveal the presence of more than one trapped N component. Indigenous N is released above 1000 °C with an isotopic signature of δ15N = ?33‰. This is consistent with the rather uniform signatures of indigenous nitrogen in enstatite meteorites. There is no evidence for the presence of “very light” N of δ15N ? ?200‰. On the other hand, a “heavy” nitrogen component appears in the temperature range 700–800 °C, and coincides with a major release of solar-type noble gases. For a two-component mixture, the isotopic shifts in this temperature range define a lower limit δ15Ncorr = ?6‰ for the second component (e.g., solar-type nitrogen). However, for the case of a solar-type component, the calculated δ15N signature depends on the adopted elemental abundances. For example, adoption of the relative abundances of 14N and noble gases in lunar ilmenite 71501 yields δ15N ? +170, which is in the range of the heavier nitrogen signatures observed on the lunar surface.  相似文献   

2.
The nitrogen isotope ratio of middle atmosphere nitrogen oxide is predicted as a function of altitude. Nitrogen oxides originate photochemically either from stratospheric nitrous oxide reacting with O(1D) or in the mesosphere and thermosphere from direct dissociation of N2 and ionization-initiated reactions involving O2 and N2. During its formation process, N2O acquires a nitrogen isotopic composition of N isotopes different than N2. Photodissociation within the stratosphere also modifies the proportion of isotopes. Reaction of stratospheric NO with O3 produces NO2, which when photodissociated yields NO depleted in 15N relative to NO2 in laboratory air. The value of δ15NO in the stratosphere is −100‰. In the altitude region between 50 and 65 km, NO is transformed into NO2 and then returned to NO by reaction of NO2 with O and by NO2 photodissociation. These reactions determine the isotopic makeup of NO. Above 65 km, nitric oxide is produced by local ionization processes and gas phase photochemical reactions involving N2 and excited O2. These processes determine the isotopic composition of NO in the upper mesosphere and thermosphere. Here δ15NO is 0‰. Air transported into the mesosphere above 65 km will reflect the NO isotopic values of the region below, while mesospheric NO transported below 65 km will not be distinguishable from NO originating in the stratosphere.  相似文献   

3.
Abstract— We performed in situ morphological and isotopic studies of graphite in the primitive chondrites Khohar (L3), Mezö‐Madaras (L3), Inman (L3), Grady (H3), Acfer 182 (CH3), Acfer 207 (CH3), Acfer 214 (CH3), and St. Marks (EH5). Various graphite morphologies were identified, including book, veins, fibrous, fine‐grained, spherulitic, and granular graphite, and cliftonite. SIMS measurements of H, C, N, and O isotopic compositions of the graphites revealed large variations in the isotopic ratios of these four elements. The δ15N and δ13C values show significant variations among the different graphite types without displaying any strict correlation between the isotopic composition and morphology. In the Khohar vein graphites, large 15N excesses are found, with δ15Nmax ~+955‰, confirming previous results. Excesses in 15N are also detected in fine‐grained graphites in chondrites of the CH clan, Acfer 182, Acfer 207, and Acfer 214, with δ15N ranging up to +440‰. The 15N excesses are attributed to ion‐molecule reactions at low temperatures in the interstellar molecular cloud (IMC) from which the solar system formed, though the largest excesses seem to be incompatible with the results of some recent calculation. Significant variations in the carbon isotopic ratios are detected between graphite from different chondrite groups, with a tendency for a systematic increase in δ13C from ordinary to enstatite to carbonaceous chondrites. These variations are interpreted as being due to small‐ and large‐scale carbon isotopic variations in the solar nebula.  相似文献   

4.
Abstract— We have studied the carbon and nitrogen stable isotope geochemistry of a small pristine sample of the Tagish Lake carbonaceous chondrite by high‐resolution stepped‐combustion mass spectrometry, and compared the results with data from the Orgueil (CI1), Elephant Moraine (EET) 83334 (CM1) and Murchison (CM2) chondrites. The small chip of Tagish Lake analysed herein had a higher carbon abundance (5.81 wt%) than any other chondrite, and a nitrogen content (?1220 ppm) between that of CI1 and CM2 chondrites. Owing to the heterogeneous nature of the meteorite, the measured carbon abundance might be artificially high: the carbon inventory and whole‐rock carbon isotopic composition (δ13C ? +24.4%o) of the chip was dominated by 13C‐enriched carbon from the decomposition of carbonates (between 1.29 and 2.69 wt%; δ13C ? +67%o and δ18O ? +35%o, in the proportions ?4:1 dolomite to calcite). In addition to carbonates, Tagish Lake contains organic carbon (?2.6 wt%, δ13C ? ?9%o; 1033 ppm N, δ15N ? +77%o), a level intermediate between CI and CM chondrites. Around 2% of the organic material is thermally labile and solvent soluble. A further ?18% of the organic species are liberated by acid hydrolysis. Tagish Lake also contains a complement of presolar grains. It has a higher nanodiamond abundance (approximately 3650–4330 ppm) than other carbonaceous chondrites, along with ?8 ppm silicon carbide. Whilst carbon and nitrogen isotope geochemistry is not diagnostic, the data are consistent with classification of Tagish Lake as a CI2 chondrite.  相似文献   

5.
This study characterizes carbon and nitrogen abundances and isotopic compositions in ureilitic fragments of Almahata Sitta. Ureilites are carbon‐rich (containing up to 7 wt% C) and were formed early in solar system history, thus the origin of carbon in ureilites has significance for the origin of solar system carbon. These samples were collected soon after they fell, so they are among the freshest ureilite samples available and were analyzed using stepped combustion mass spectrometry. They contained 1.2–2.3 wt% carbon; most showed the major carbon release at temperatures of 600–700 °C with peak values of δ13C from ?7.3 to +0.4‰, similar to literature values for unbrecciated (“monomict”) ureilites. They also contained a minor low temperature (≤500 °C) component (δ13C = ca ?25‰). Bulk nitrogen contents (9.4–27 ppm) resemble those of unbrecciated ureilites, with major releases mostly occurring at 600–750 °C. A significant lower temperature release of nitrogen occurred in all samples. Main release δ15N values of ?53 to ?94‰ fall within the range reported for diamond separates and acid residues from ureilites, and identify an isotopically primordial nitrogen component. However, they differ from common polymict ureilites which are more nitrogen‐rich and isotopically heavier. Thus, although the parent asteroid 2008TC3 was undoubtedly a polymict ureilite breccia, this cannot be deduced from an isotopic study of individual ureilite fragments. The combined main release δ13C and δ15N values do not overlap the fields for carbonaceous or enstatite chondrites, suggesting that carbon in ureilites was not derived from these sources.  相似文献   

6.
The water‐soluble organic compounds in carbonaceous chondrite meteorites constitute a record of the synthetic reactions occurring at the birth of the solar system and those taking place during parent body alteration and may have been important for the later origins and development of life on Earth. In this present work, we have developed a novel methodology for the simultaneous analysis of the molecular distribution, compound‐specific δ13C, and enantiomeric compositions of aliphatic monocarboxylic acids (MCA) extracted from the hot‐water extracts of 16 carbonaceous chondrites from CM, CR, CO, CV, and CK groups. We observed high concentrations of meteoritic MCAs, with total carbon weight percentages which in some cases approached those of carbonates and insoluble organic matter. Moreover, we found that the concentration of MCAs in CR chondrites is higher than in the other meteorite groups, with acetic acid exhibiting the highest concentration in all samples. The abundance of MCAs decreased with increasing molecular weight and with increasing aqueous and/or thermal alteration experienced by the meteorite sample. The δ13C isotopic values of MCAs ranged from ?52 to +27‰, and aside from an inverse relationship between δ13C value and carbon straight‐chain length for C3–C6 MCAs in Murchison, the 13C‐isotopic values did not correlate with the number of carbon atoms per molecule. We also observed racemic compositions of 2‐methylbutanoic acid in CM and CR chondrites. We used this novel analytical protocol and collective data to shed new light on the prebiotic origins of chondritic MCAs.  相似文献   

7.
Abstract— Isheyevo is a metal‐rich carbonaceous chondrite that contains several lithologies with different abundances of Fe,Ni metal (7–90 vol%). The metal‐rich lithologies with 50–60 vol% of Fe,Ni metal are dominant. The metal‐rich and metal‐poor lithologies are most similar to the CBb and CH carbonaceous chondrites, respectively, providing a potential link between these chondrite groups. All lithologies experienced shock metamorphism of shock stage S4. All consist of similar components—Fe,Ni metal, chondrules, refractory inclusions (Ca, Al‐rich inclusions [CAIs] and amoeboid olivine aggregates [AOAs]), and heavily hydrated lithic clasts—but show differences in their modal abundances, chondrule sizes, and proportions of porphyritic versus non‐porphyritic chondrules. Bulk chemical and oxygen isotopic compositions are in the range of CH and CB chondrites. Bulk nitrogen isotopic composition is highly enriched in 15N (δ15N = 1122‰). The magnetic fraction is very similar to the bulk sample in terms of both nitrogen release pattern and isotopic profile; the non‐magnetic fraction contains significantly less heavy N. Carbon released at high temperatures shows a relatively heavy isotope signature. Similarly to CBb chondrites, ~20% of Fe,Ni‐metal grains in Isheyevo are chemically zoned. Similarly to CH chondrites, some metal grains are Ni‐rich (>20 wt% Ni). In contrast to CBb and CH chondrites, most metal grains are thermally decomposed into Ni‐rich and Ni‐poor phases. Similar to CH chondrites, chondrules have porphyritic and non‐porphyritic textures and ferromagnesian (type I and II), silica‐rich, and aluminum‐rich bulk compositions. Some of the layered ferromagnesian chondrules are surrounded by ferrous olivine or phyllosilicate rims. Phyllosilicates in chondrule rims are compositionally distinct from those in the hydrated lithic clasts. Similarly to CH chondrites, CAIs are dominated by the hibonite‐, grossite‐, and melilite‐rich types; AOAs are very rare. We infer that Isheyevo is a complex mixture of materials formed by different processes and under different physico‐chemical conditions. Chondrules and refractory inclusions of two populations, metal grains, and heavily hydrated clasts accreted together into the Isheyevo parent asteroid in a region of the protoplanetary disk depleted in fine‐grained dust. Such a scenario is consistent with the presence of solar wind—implanted noble gases in Isheyevo and with its comparatively old K‐Ar age. We cannot exclude that the K‐Ar system was affected by a later collisional event. The cosmic‐ray exposure (CRE) age of Isheyevo determined by cosmogenic 38Ar is ~34 Ma, similar to that of the Bencubbin (CBa) meteorite.  相似文献   

8.
Abstract— The N and C abundances and isotopic compositions of acid-insoluble carbonaceous material in thirteen primitive chondrites (five unequilibrated ordinary chondrites, three CM chondrites, three enstatite chondrites, a CI chondrite and a CR chondrite) have been measured by stepped combustion. While the range of C isotopic compositions observed is only ~δ13C = 30%, the N isotopes range from δ15N ' -40 to 260%. After correction for metamorphism, presolar nanodiamonds appear to have made up a fairly constant 3–4 wt% of the insoluble C in all the chondrites studied. The apparently similar initial presolar nanodiamond to organic C ratios, and the correlations of elemental and isotopic compositions with metamorphic indicators in the ordinary and enstatite chondrites, suggest that the chondrites all accreted similar organic material. This original material probably most closely resembles that now found in Renazzo and Semarkona. These two meteorites have almost M-shaped N isotope release profiles that can be explained most simply by the superposition of two components, one with a composition between δ15N = -20 and -40% and a narrow combustion interval, the other having a broader release profile and a composition of δ15N ~ 260%. Although isotopically more subdued, the CI and the three CM chondrites all appear to show vestiges of this M-shaped profile. How and where the components in the acid-insoluble organics formed remains poorly constrained. The small variation in nanodiamond to organic C ratio between the chondrite groups limits the local synthesis of organic matter in the various chondrite formation regions to at most 30%. The most 15N-rich material probably formed in the interstellar medium, and the fraction of organic N in Renazzo in this material ranges from 40 to 70%. The isotopically light component may have formed in the solar system, but the limited range in nanodiamond to total organic C ratios in the chondrite groups is consistent with most of the organic material being presolar.  相似文献   

9.
We report the bulk C abundances, and C and O isotopic compositions of carbonates in 64 CM chondrites, 14 CR chondrites, 2 CI chondrites, LEW 85332 (C2), Kaba (CV3), and Semarkona (LL3.0). For the unheated CMs, the total ranges of carbonate isotopic compositions are δ13C ≈ 25–75‰ and δ18O ≈ 15–35‰, and bulk carbonate C contents range from 0.03 to 0.60 wt%. There is no simple correlation between carbonate abundance and isotopic composition, or between either of these parameters and the extent of alteration. Unless accretion was very heterogeneous, the uncorrelated variations in extent of alteration and carbonate abundance suggests that there was a period of open system behavior in the CM parent body, probably prior to or at the start of aqueous alteration. Most of the ranges in CM carbonate isotopic compositions can be explained by their formation at different temperatures (0–130 °C) from a single fluid in which the carbonate O isotopes were controlled by equilibrium with water (δ18O ≈ 5‰) and the C isotopes were controlled by equilibrium with CO and/or CH413C ≈ ?33‰ or ?20‰ for CO‐ or CH4‐dominated systems, respectively). However, carbonate formation would have to have been inefficient, otherwise carbonate compositions would have resembled those of the starting fluid. A quite similar fluid composition (δ18O ≈ ?5.5‰, and δ13C ≈ ?31‰ or ?17‰ for CO‐ or CH4‐dominated systems, respectively) can explain the carbonate compositions of the CIs, although the formation temperatures would have been lower (~10–40 °C) and the relative abundances of calcite and dolomite may play a more important role in determining bulk carbonate compositions than in the CMs. The CR carbonates exhibit a similar range of O isotopes, but an almost bimodal distribution of C isotopes between more (δ13C ≈ 65–80‰) and less altered samples (δ13C ≈ 30–40‰). This bimodality can still be explained by precipitation from fluids with the same isotopic composition (δ18O ≈ ?9.25‰, and δ13C ≈ ?21‰ or ?8‰ for CO‐ or CH4‐dominated systems, respectively) if the less altered CRs had higher mole fractions of CO2 in their fluids. Semarkona and Kaba carbonates have some of the lightest C isotopic compositions of the meteorites studied here, probably because they formed at higher temperatures and/or from more CO2‐rich fluids. The fluids responsible for the alteration of chondrites and from which the carbonates formed were almost certainly accreted as ices. By analogy with cometary ices, CO2 and/or CO would have dominated the trapped volatile species in the ices. The chondrites studied are too oxidized for CO‐dominated fluids to have formed in their parent bodies. If CH4 was the dominant C species in the fluids during carbonate formation, it would have to have been generated in the parent bodies from CO and/or CO2 when oxidation of metal by water created high partial pressures of H2. The fact that the chondrite carbonate C/H2O mole ratios are of the order predicted for CO/CO2‐H2O ices that experienced temperatures of >50–100 K suggests that the chondrites formed at radial distances of <4–15 AU.  相似文献   

10.
Abstract— Micrometeorites (MMs) currently represent the largest steady‐state mass flux of extraterrestrial matter to Earth and may have delivered a significant fraction of volatile elements and organics to the Earth's surface. Nitrogen and noble gases contents and isotopic ratios have been measured in a suite of 17 micrometeorites recovered in Antarctica (sampled in blue ice at Cap Prudhomme) and Greenland (separated from cryoconite) that have experienced variable thermal metamorphism during atmospheric entry. MMs were pyrolized using a CO2 laser and the released gases were analyzed for nitrogen and noble gas abundances and isotopic ratios by static mass spectrometry after specific purification. Noble gases are a mixture of cosmogenic, solar, atmospheric, and possibly chondritic components, with atmospheric being predominant in severely heated MMs. δ15N values vary between ?240 ± 62‰ and +206 ± 12‰, with most values being within the range of terrestrial and chondritic signatures, given the uncertainties. Crystalline MMs present very high noble gas contents up to two orders of magnitude higher than carbonaceous chondrite concentrations. In contrast, nitrogen contents between 4 ppm and 165 ppm are much lower than those of carbonaceous chondrites, evidencing either initially low N content in MMs and/or degradation of phases hosting nitrogen during atmospheric entry heating and terrestrial weathering. Assuming that the original N content of MMs was comparable to that of carbonaceous chondrites, the contribution of nitrogen delivery by these objects to the terrestrial environment would have been probably marginal from 3.8 Gyr ago to present but could have been significant (?10%) in the Hadean, and even predominant during the latest stages of terrestrial accretion.  相似文献   

11.
Abstract— Isotopic variations have been reported for many elements in iron meteorites, with distinct N signatures found in the metal and graphite of IAB irons. In this study, a dozen IAB/IIICD iron meteorites (see Table 1 for new classifications) were analyzed by stepwise pyrolysis to resolve nitrogen components. Although isotopic heterogeneity has been presumed to be lost in thermally processed parent objects, the high‐resolution nitrogen isotopic data indicate otherwise. At least one reservoir has a light nitrogen signature, δ15N = ?(74 ± 2)‰, at 900 °C to 1000 °C, with a possible second, even lighter, reservoir in Copiapo (δ15N ≤ ?82‰). These releases are consistent with metal nitride decomposition or low‐temperature metal phase changes. Heavier nitrogen reservoirs are observed in steps ≤700 °C and at 1200 °C to 1400 °C. The latter release has a δ15N signature with a limit of ≥?16‰. Xenon isotopic signatures are sensitive indicators for the presence of inclusions because of the very low abundances of Xe in metal. The combined high‐temperature release shows 131Xe and 129Xe excesses to be consistent with shifts expected for Te(n,γ) reaction in troilite by epithermal neutrons, but there are also possible alterations in the isotopic ratios likely due to extinct 129I and cosmic‐ray spallation. The IAB/IIICD iron data imply that at least one light N component survived the formation processes of iron parent objects which only partially exchanged nitrogen between phases. Preservation of separate N reservoirs conflicts with neither the model of impact‐heating effects for these meteorites nor reported age differences between metal and silicates.  相似文献   

12.
Abstract– High‐precision isotope imaging analyses of reversely zoned melilite crystals in the gehlenitic mantle of Type A CAI ON01 of the Allende carbonaceous chondrite reveal that there are four types of oxygen isotopic distributions within melilite single crystals: (1) uniform depletion of 16O (δ18O ≈ ?10‰), (2) uniform enrichment of 16O (δ18O ≈ ?40‰), (3) variations in isotopic composition from 16O‐poor core to 16O‐rich rim (δ18O ≈ ?10‰ to ?30‰, ?20‰ to ?45‰, and ?10‰ to ?35‰) with decreasing åkermanite content, and (4) 16O‐poor composition (δ18O ≥ ?10‰) along the crystal rim. Hibonite, spinel, and perovskite grains are 16O‐rich (δ18O ≈ ?45‰), and adjoin 16O‐poor melilites. Gas‐solid or gas‐melt isotope exchange in the nebula is inconsistent with both the distinct oxygen isotopic compositions among the minerals and the reverse zoning of melilite. Fluid‐rock interaction on the parent body resulted in 16O‐poor compositions of limited areas near holes, cracks, or secondary phases, such as anorthite or grossular. We conclude that reversely zoned melilites mostly preserve the primary oxygen isotopic composition of either 16O‐enriched or 16O‐depleted gas from which they were condensed. The correlation between oxygen isotopic composition and åkermanite content may indicate that oxygen isotopes of the solar nebula gas changed from 16O‐poor to 16O‐rich during melilite crystal growth. We suggest that the radial excursions of the inner edge of the protoplanetary disk gas simultaneously resulted in both the reverse zoning and oxygen isotopic variation of melilite, due to mixing of 16O‐poor disk gas and 16O‐rich coronal gas. Gas condensates aggregated to form the gehlenite mantle of the Type A CAI ON01.  相似文献   

13.
Angrites are a small group of ancient basaltic achondrites, notable for their unusual chemistry and extreme volatile depletion. No comprehensive study of indigenous light elements currently exists for the group. Measurement of the abundances and isotopic composition of carbon and nitrogen could provide information pertaining to the evolution of the angrite parent body. Bulk‐sample stepped combustion analyses of five angrites and a glass separate from D'Orbigny were combined with earlier data and acid dissolution experiments of carbonates found in D'Orbigny to compile an inventory of indigenous carbon and nitrogen. Indigenous carbon combusted between 700 °C and 1200 °C, with abundances of 10–140 ppm and a mass‐weighted δ13C of ?25 to ?20‰ with the exception of D'Orbigny (δ13C approximately ?5‰). Nitrogen was released at 850–1200 ºC, 1–20 ppm with a δ15N ?3‰ to +4‰; again, D'Orbigny (δ15N approximately +20 to +25‰) was an exception. We interpret these components as largely indigenous and decoupled; the carbon in graphitic or amorphous form, while the nitrogen is present as a dissolved component in the silicates. No relationship with the textural sub‐classification of angrites is apparent. We suggest that the angrite parent body contains a reservoir of reduced carbon and thus may have undergone a change in redox conditions, although the timing and mechanism for this remain unclear.  相似文献   

14.
Abstract— We report in situ measurements of O‐isotopic compositions of magnetite and primary and secondary olivine in the highly unequilibrated oxidized CV chondrites Kaba and Mokoia. In both meteorites, the magnetite and the secondary olivine (fayalite, Fa90–100) have O‐isotopic compositions near the terrestrial fractionation (TF) line; the mean Δ17O (= δ17O‐0.52 × δ18O) value is about ?1%‰. In contrast, the compositions of nearby primary (chondrule), low‐FeO olivines (Fa1–2) are well below the TF line; Δ17O values range from ?3 to ?9%‰. Krot et al. (1998) summarized evidence indicating that the secondary phases in these chondrites formed by aqueous alteration in an asteroidal setting. The compositions of magnetite and fayalite in Kaba and Mokoia imply that the O‐isotopic composition of the oxidant was near or somewhat above the TF line. In Mokoia the fayalite and magnetite differ in δ18O by ~20%‰, whereas these same materials in Kaba have virtually identical compositions. The difference between Mokoia magnetite and fayalite may indicate formation in isotopic equilibrium in a water‐rich environment at low temperatures, ~300 K. In contrast, the similar compositions of these phases in Kaba may indicate formation of the fayalite by replacement of preexisting magnetite in dry environment, with the O coming entirely from the precursor magnetite and silica. The Δ17O of the oxidant incorporated into the CV parent body (as phyllosilicates or H2O) appears to have been much (7–8%‰) lower than that in that incorporated into the LL parent body (Choi et al, 1998), which suggests that the O‐isotopic composition of the nebular gas was spatially or temporally variable.  相似文献   

15.
We determined the chlorine isotope composition of 16 Martian meteorites using gas source mass spectrometry on bulk samples and in situ secondary ion microprobe analysis on apatite grains. Measured δ37Cl values range from ?3.8 to +8.6‰. The olivine‐phyric shergottites are the isotopically lightest samples, with δ37Cl mostly ranging from ?4 to ?2‰. Samples with evidence for a crustal component have positive δ37Cl values, with an extreme value of 8.6‰. Most of the basaltic shergottites have intermediate δ37Cl values of ?1 to 0‰, except for Shergotty, which is similar to the olivine‐phyric shergottites. We interpret these data as due to mixing of a two‐component system. The first component is the mantle value of ?4 to ?3‰. This most likely represents the original bulk Martian Cl isotope value. The other endmember is a 37Cl‐enriched crustal component. We speculate that preferential loss of 35Cl to space has resulted in a high δ37Cl value for the Martian surface, similar to what is seen in other volatile systems. The basaltic shergottites are a mixture of the other two endmembers. The low δ37Cl value of primitive Mars is different from Earth and most chondrites, both of which are close to 0‰. We are not aware of any parent‐body process that could lower the δ37Cl value of the Martian mantle to ?4 to ?3‰. Instead, we propose that this low δ37Cl value represents the primordial bulk composition of Mars inherited during accretion. The higher δ37Cl values seen in many chondrites are explained by later incorporation of 37Cl‐enriched HCl‐hydrate.  相似文献   

16.
We have investigated the H and Cl systematics in apatite from four brecciated lunar meteorites. In Northwest Africa (NWA) 4472, most of the apatites contain ~2000–6000 ppm H2O with δD between ?200 and 0‰, except for one grain isolated in the matrix, which contains ~6000 ppm H2O with δD of ~500–900‰. This low‐δD apatite contains ~2500–7500 ppm Cl associated with δ37Cl of ~15–20‰, while the high‐δD grain contains ~2500 ppm Cl with δ37Cl of ~7–15‰. In NWA 773, apatites in a first group contain ~700–2500 ppm H2O with δD values averaging around ~0 ± 100‰, while apatites in a second group contain ~5500–16500 ppm H2O with δD ~250 ± 50‰. In Sayh al Uhaymir (SaU) 169 and Kalahari (Kal) 009, apatites are similar in terms of their H2O contents (~600–3000 ppm) and δD values (?100 to 200‰). In SaU 169, apatites contain ~6000–10,000 ppm Cl, characterized by δ37Cl of ~5–12‰. Overall, most of the analyzed apatite grains have δD within the range reported for carbonaceous chondrites, similar to apatite analyzed in ancient (>3.9 Ga) lunar magmatic. One grain in NWA 4472 has H and Cl isotope compositions similar to apatite from mare basalts. With an age of 4.35 Ga, this grain could be a representative of the oldest known lunar volcanic activity. Finally, since numerous evolved clasts in NWA 773 formed through silicate liquid immiscibility, the apatite grains with extremely high H2O contents, reaching pure hydroxylapatite composition, could provide insights into the effects of such process on the evolution of volatiles in lunar magmas.  相似文献   

17.
Abstract— We present an approach to assess the nature of materials involved in the accretion of Mars by the planet's nitrogen (δ15N) and oxygen (Δ17O) isotopic compositions as derived from data on martian meteorites. δ15N for Mars has been derived from nitrogen and xenon systematics, while Δ17O has been taken from the literature data. These signatures indicate that Mars has most probably accreted from enstatite and ordinary chondritic materials in a ratio of 74:26 and may not have a significant contribution from the carbonaceous (CI, CM, or CV) chondrites. This is consistent with the chromium isotopic (?53Cr) signatures of martian meteorites and the bulk planet Fe/Si ratio for Mars as suggested by the moment of inertia factor (I/MR2) obtained from the Mars Pathfinder data. Further, a simple homogeneous accretion from the above two types of materials is found to be consistent with the planet's moment of inertia factor and the bulk composition of the mantle. But, it requires a core with 6.7 wt% Si, which is consistent with the new results from the high pressure and temperature melting experiments and chemical data on the opaque minerals in enstatite chondrites.  相似文献   

18.
We identified 66 chromite grains from 42 of ~5000 micrometeorites collected from Indian Ocean deep‐sea sediments and the South Pole water well. To determine the chromite grains precursors and their contribution to the micrometeorite flux, we combined quantitative electron microprobe analyses and oxygen isotopic analyses by high‐resolution secondary ion mass spectrometry. Micrometeorite chromite grains show variable O isotopic compositions with δ18O values ranging from ?0.8 to 6.0‰, δ17O values from 0.3 to 3.6‰, and Δ17O values from ?0.9 to 1.6‰, most of them being similar to those of chromites from ordinary chondrites. The oxygen isotopic compositions of olivine, considered as a proxy of chromite in chromite‐bearing micrometeorites where chromite is too small to be measured in ion microprobe have Δ17O values suggesting a principal relationship to ordinary chondrites with some having carbonaceous chondrite precursors. Furthermore, the chemical compositions of chromites in micrometeorites are close to those reported for ordinary chondrite chromites, but some contribution from carbonaceous chondrites cannot be ruled out. Consequently, carbonaceous chondrites cannot be a major contributor of chromite‐bearing micrometeorites. Based on their oxygen isotopic and elemental compositions, we thus conclude with no ambiguity that chromite‐bearing micrometeorites are largely related to fragments of ordinary chondrites with a small fraction from carbonaceous chondrites, unlike other micrometeorites deriving largely from carbonaceous chondrites.  相似文献   

19.
As part of an integrated consortium study, we have undertaken O, Cd, Cr, Si, Te, Ti, and Zn whole rock isotopic measurements of the Winchcombe CM2 meteorite. δ66Zn values determined for two Winchcombe aliquots are +0.29 ± 0.05‰ (2SD) and +0.45 ± 0.05‰ (2SD). The difference between these analyses likely reflects sample heterogeneity. Zn isotope compositions for Winchcombe show excellent agreement with published CM2 data. δ114Cd for a single Winchcombe aliquot is +0.29 ± 0.04‰ (2SD), which is close to a previous result for Murchison. δ130Te values for three aliquots gave indistinguishable results, with a mean value of +0.62 ± 0.01‰ (2SD) and are essentially identical to published values for CM2s. ε53Cr and ε54Cr for Winchcombe are 0.319 ± 0.029 (2SE) and 0.775 ± 0.067 (2SE), respectively. Based on its Cr isotopic composition, Winchcombe plots close to other CM2 chondrites. ε50Ti and ε46Ti values for Winchcombe are 3.21 ± 0.09 (2SE) and 0.46 ± 0.08 (2SE), respectively, and are in line with recently published data for CM2s. The δ30Si composition of Winchcombe is −0.50 ± 0.06‰ (2SD, n = 11) and is essentially indistinguishable from measurements obtained on other CM2 chondrites. In conformity with petrographic observations, oxygen isotope analyses of both bulk and micromilled fractions from Winchcombe clearly demonstrate that its parent body experienced extensive aqueous alteration. The style of alteration exhibited by Winchcombe is consistent with relatively closed system processes. Analysis of different fractions within Winchcombe broadly support the view that, while different lithologies within an individual CM2 meteorite can be highly variable, each meteorite is characterized by a predominant alteration type. Mixing of different lithologies within a regolith environment to form cataclastic matrix is supported by oxygen isotope analysis of micromilled fractions from Winchcombe. Previously unpublished bulk oxygen isotope data for 12 CM2 chondrites, when combined with published data, define a well-constrained regression line with a slope of 0.77. Winchcombe analyses define a more limited linear trend at the isotopically heavy, more aqueously altered, end of the slope 0.77 CM2 array. The CM2 slope 0.77 array intersects the oxygen isotope field of CO3 falls, indicating that the unaltered precursor material to the CMs was essentially identical in oxygen isotope composition to the CO3 falls. Our data are consistent with earlier suggestions that the main differences between the CO3s and CM2s reflect differing amounts of water ice that co-accreted into their respective parent bodies, being high in the case of CM2s and low in the case of CO3s. The small difference in Si isotope compositions between the CM and CO meteorites can be explained by different proportions of matrix versus refractory silicates. CMs and COs may also be indistinguishable with respect to Ti and Cr isotopes; however, further analysis is required to test this possibility. The close relationship between CO3 and CM2 chondrites revealed by our data supports the emerging view that the snow line within protoplanetary disks marks an important zone of planetesimal accretion.  相似文献   

20.
We hypothesize the formation of neon associated with isotopically anomalous xenon (Xe-HL) in meteoritic nanodiamonds and designated as Ne-X through the mixing of the Ne-HL and Ne-S subcomponents. The Ne-HL subcomponent is neon from the helium (He/C) zone of a type II supernova or a mixture of neon from this zone and its hydrogen zone, while the Ne-S subcomponent is spallation neon formed during a supernova explosion in nuclear spallation reactions induced by high-energy protons. Based on this hypothesis and the presumed abundances of neon isotopes in the zones of a high-mass (25M ) supernova after its explosion, we have calculated the abundances of neon components in nanodiamond separates and its grain-size fractions. Our calculations have shown the following. (1) The main source of Ne-HL is neon from the helium zone of the supernova; as a result, the 20Ne/22Ne and 21Ne/22Ne ratios for Ne-X are 0.26 ± 0.03 and 0.19 ± 0.04, respectively. The isotopic composition of Ne-X is identical to that for Ne-A2 if Ne-HL is produced by the mixing of neon from the helium and hydrogen zones in proportion 1: 1.06. (2) In meteoritic nanodiamonds, the main neon abundance is determined by neon of the P3 component (Ne-P3). Ne-P3 is retained during thermal metamorphism, because it is sited in traps of the crystal lattice of diamond with a high energy of its activation. (3) The Ne-X/Ne-P3 ratio increases with nanodiamond grain size; as a result, there is no need to invoke an additional neon component (Ne-P6) to interpret the data on neon in meteoritic nanodiamonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号