首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Data from the literature are used to construct a homogeneous catalog of fundamental astrophysical parameters for 145 globular clusters of the Milky Way Galaxy. The catalog is used to analyze the relationships between chemical composition, horizontal-branch morphology, spatial location, orbital elements, age, and other physical parameters of the clusters. The overall globular-cluster population is divided by a gap in the metallicity function at [Fe/H]=?1.0 into two discrete groups with well-defined maxima at [Fe/H]=?1.60±0.03 and ?0.60±0.04. The mean spatial-kinematic parameters and their dispersions change abruptly when the metallicity crosses this boundary. Metal-poor clusters occupy a more or less spherical region and are concentrated toward the Galactic center. Metal-rich clusters (the thick disk subsystem), which are far fewer in number, are concentrated toward both the Galactic center and the Galactic plane. This subsystem rotates with an average velocity of V rot=165±28 km/s and has a very steep negative vertical metallicity gradient and a negligible radial gradient. It is, on average, the youngest group, and consists exclusively of clusters with extremely red horizontal branches. The population of spherical-subsystem clusters is also inhomogeneous and, in turn, breaks up into at least two groups according to horizontal-branch morphology. Clusters with extremely blue horizontal branches occupy a spherical volume of radius ~9 kpc, have high rotational velocities (V rot=77±33 km/s), have substantial and equal negative radial and vertical metallicity gradients, and are, on average, the oldest group (the old-halo subsystem). The vast majority of clusters with intermediate-type horizontal branches occupy a more or less spherical volume ≈18 kpc in radius, which is slightly flattened perpendicular to the Z direction and makes an angle of ≈30° to the X-axis. On average, this population is somewhat younger than the old-halo clusters (the young-halo subsystem), and exhibits approximately the same metallicity gradients as the old halo. As a result, since their Galactocentric distance and distance from the Galactic plane are the same, the young-halo clusters have metallicities that are, on average, Δ[Fe/H] ≈0.3 higher than those for old-halo clusters. The young-halo subsystem, which apparently consists of objects captured by the Galaxy at various times, contains many clusters with retrograde orbits, so that its rotational velocity is low and has large errors, V rot=?23±54 km/s. Typical parameters are derived for all the subsystems, and the mean characteristics of their member globular clusters are determined. The thick disk has a different nature than both the old and young halos. A scenario for Galactic evolution is proposed based on the assumption that only the thick-disk and old-halo subsystems are genetically associated with the Galaxy. The age distributions of these two subsystems do not overlap. It is argued that heavy-element enrichment and the collapse of the proto-Galactic medium occurred mainly in the period between the formation of the old-halo and thick-disk subsystems.  相似文献   

2.
We have used published, high-accuracy, ground-based and satellite proper-motion measurements, a compilation of radial velocities, and photometric distances to compute the spatial velocities and Galactic orbital elements for 174 RR Lyrae (ab) variable stars in the solar neighborhood. The computed orbital elements and published heavy-element abundances are used to study relationships between the chemical, spatial, and kinematic characteristics of nearby RR Lyrae variables. We observe abrupt changes of the spatial and kinematic characteristics at the metallicity [Fe/H]≈?0.95 and also when the residual spatial velocities relative to the LSR cross the critical value V res≈290 km/s. This provides evidence that the general population of RR Lyrae stars is not uniform and includes at least three subsystems occupying different volumes in the Galaxy. Based on the agreement between typical parameters for corresponding subsystems of RR Lyrae stars and globular clusters, we conclude that metal-rich stars and globular clusters belong to a rapidly rotating and fairly flat, thick-disk subsystem with a large negative vertical metallicity gradient. Objects with larger metal deficiencies can, in turn, be subdivided into two populations, but using different criteria for stars and clusters. We suggest that field stars with velocities below the critical value and clusters with extremely blue horizontal branches form a spherical, slowly rotating subsystem of the protodisk halo, which has a common origin with the thick disk; this subsystem has small but nonzero radial and vertical metallicity gradients. The dimensions of this subsystem, estimated from the apogalactic radii of orbits of field stars, are approximately the same. Field stars displaying more rapid motion and clusters with redder horizontal branches constitute the spheroidal subsystem of the accreted outer halo, which is approximately a factor of three larger in size than the first two subsystems. It has no metallicity gradients; most of its stars have eccentric orbits, many display retrograde motion in the Galaxy, and their ages are comparatively low, supporting the hypothesis that the objects in this subsystem had an extragalactic origin.  相似文献   

3.
Marsakov  V. A.  Koval’  V. V.  Gozha  M. L. 《Astronomy Reports》2019,63(4):274-288

A catalog of Galactic globular clusters has been compiled and used to analyze relations between the chemical and kinematic parameters of the clusters. The catalog contains positions, distances, luminosities, metallicites, and horizontal-branch morphology indices for 157 globular clusters, as well as space velocities for 72 globular clusters. For 69 globular clusters, these data are suppleented with the relative abundances of 28 chemical elements produced in various nuclear-synthesis processes, taken from 101 papers published between 1986 and 2018. The tendency for redder horizontal branches in lowmetallicity accreted globular clusters is discussed. The discrepancy between the criteria for cluster membership in the thick-disk and halo subsystems based on chemical and kinematic properties is considered. This is manifest through the fact that all metal-rich ([Fe/H] > ?1.0) clusters are located close to the center and plane of the Galaxy, regardless of their kinematic membership in particular Galaxy subsystems. An exception is three accreted clusters lost by a dwarf galaxy in Sagittarius. At the same time, the fraction of more distant clusters is high among metal-poorer clusters in any kinematically selected Galactic subsystem. In addition, all metal-rich clusters whose origins are related to the same protogalactic cloud are located in the [Fe/H]–[α/Fe] diagram considerably higher than the strip populated with field stars. All metal-poor clusters (most of them accreted) populate the entire width of the strip formed by high-velocity (i.e., presumably accreted) field stars. Stars of dwarf satellite galaxies (all of them being metal-poor) are located in this diagram much lower than accreted field stars. These facts suggest that all stellar objects in the accreted halo are remnants of galaxies with higher masses than those in the current environment of the Galaxy. Differences in the relative abundances of α-process elements among stellar objects of the Galaxy and surrounding dwarf satellite galaxies confirmthat the latter have left no appreciable stellar traces in the Galaxy, with the possible exception of the low-metallicity cluster Rup 106, which has low relative abundances of α-process elements.

  相似文献   

4.
An analysis of the abundance of cobalt in atmospheres of red giants, indicates they can be divided into two groups: stars with the normal [Co/Fe] abundance and those with a small [Co/Fe] excess. A comparative analysis of the spectrograms taking into account the effect of superfine splitting provides evidence for a [Co/Fe] excess in some stars. We have also detected physical and kinematical differences between these groups. Stars with a [Co/Fe] excess are related to the thick-disk population of the Galaxy. These stars are older and less massive, display lower metallicities, and have Galactic velocities corresponding to those of thick-disk objects. It is suggested that the observed pattern of a [Co/Fe] excess in the halo and thick disk reflects the chemical composition of the Galaxy at a very early stage of its evolution, when Population III objects existed. The lower abundance excess in the thick disk compared to the halo and the absence of an excess in the thin disk are due to the contributiuon from Type I supernovae at later stages of the Galaxy’s evolution. We have found that the thick disk of the Galaxy displays gradients of its cobalt and iron abundances, possibly providing evidence that the thick disk formed as a result of the collapse of a protogalactic cloud.  相似文献   

5.
A catalog compiling the parameters of 346 open clusters, including their metallicities, positions, ages, and velocities has been composed. The elements of the Galactic orbits for 272 of the clusters have been calculated. Spectroscopic determinations of the relative abundances, [el/Fe], for 14 elements synthesized in various nuclear processes averaged over data from 109 publications are presented for 90 clusters. The compiled data indicate that the relative abundances of primary α elements (oxygen and magnesium) exhibit different dependences on metallicity, age, Galactocentric distance, and the elements of the Galactic orbits in clusters with high, elongated orbits satisfying the criterion (Zmax2 + 4e2)1/2 > 0.40 and in field stars of the Galactic thin disk (Zmax is the maximum distance of the orbit from the Galactic plane in kiloparsec and e is the eccentricity of the Galactic orbit). Since no systematic effects distorting the relative abundances of the studied elements in these clusters have been found, these difference suggest real differences between clusters with high, elongated orbits and field stars. In particular, this supports the earlier conclusion, based on an analysis of the elements of the Galactic orbits, that some clusters formed as a result of interactions between high-velocity,metal-poor clouds and the interstellar mediumof theGalactic thin disk. On average, clusters with high, elongated orbits and metallicities [Fe/H] < -0.1 display lower relative abundances of the primary a elements than do field stars. The low [O, Mg/Fe] ratios of these clusters can be understood if the high-velocity clouds that gave rise to them were formed of interstellar material from regions where the star-formation rate and/or the masses of Type II supernovae were lower than near the Galactic plane. It is also shown that, on average, the relative abundances of the primary a elements are higher in relatively metal-rich clusters with high, elongated orbits than in field stars. This can be understood if clusters with [Fe/H] > -0.1 formed as a result of interactions between metal-rich clouds with intermediate velocities and the interstellar medium of the Galactic disk; such clouds could form from returning gas in a so-called “Galactic fountain.”  相似文献   

6.
Deep stellar photometry of one of the most distant Galactic globular clusters, Palomar 3, based on frames taken with the VLT in Johnson–Cousins broadband V and I filters is presented, together with medium-resolution stellar spectroscopy in the central region of the cluster obtained with the CARELEC spectrograph of the Observatoire de Haute Provence and measurements of the Lick spectral indices for the integrated spectrum. Computations of the orbital parameters of Palomar 3 and nine Galactic globular clusters with similar metallicities and ages are also presented. The orbital parameters, age, metallicity, and distance of Palomar 3 are estimated. The interstellar absorption is consistent with and supplements values fromthe literature. The need to obtainmore accurate data on the propermotions, ages, and chemical compositions of the cluster stars to elucidate the origin of this globular cluster is emphasized.  相似文献   

7.
The analysis of the kinematic properties of the Galactic thick disk based on data from modern catalogs of stellar radial velocities and proper motions is presented. A new aspect of new determination of the kinematic characteristics of the thick disk is that the selected objects define this disk’s properties near the plane of symmetry. The velocity dispersion of stars in the Galactic thick disk in the radial direction and the direction of the Galactic rotation have been determined. The stellar-velocity distribution in the direction of the rotation is asymmetric. The parameters of this asymmetry have been determined, and the lag of the rotational velocity of the thick disk relative to objects in the thin disk estimated. The value of this “asymmetric drift,” about 20 km/s, suggests larger spatial scales for the kinematic characteristics in the radial direction for the Galactic thick disk than for the thin disk.  相似文献   

8.
The distribution of sites where globular clusters have crossed the Galactic disk during the last 100 million years has been analyzed using the most recent kinematic data for 133 globular clusters (GCs). ThreeGCs (NGC 6341, NGC 7078, and ω Cen) whose distances between the positions where they crossed the Galactic disk and trajectories of the Gould Belt are less than 20% of their heliocentric distances at the crossing time (82, 98, and 96 million years ago, respectively) have been identified. For each of the clusters, this was their next to last, rather than their last, crossing of the Galactic disk. The passage of any one of these three GCs through the disk could potentially have initiated the formation of the Gould Belt.  相似文献   

9.
High-accuracy absolute proper motions, radial velocities, and distances have now been measured for a number of dwarf-galaxy companions of the Milky Way, making it possible to study their 3D dynamics. Galactic orbits for 11 such galaxies (Fornax, Sagittarius, Ursa Minor, LMC, SMC, Sculptor, Sextans, Carina, Draco, Leo I, Leo II) have been derived using two previously refined models for the Galactic potential with the Navarro–Frenk–White and Allen–Santillán expressions for the potential of the dark-matter halo, and two different masses for the Galaxy within 200 kpc—0.75 × 1012 M and 1.45 × 1012 M . The character of the orbits of most of these galaxies indicates that they are tightly gravitationally bound to the Milky Way, even with the lower-mass model for the gravitational potential. One exception is the most distant galaxy in the list, Leo I, whose orbit demonstrates that it is only weakly gravitationally bound, even using the higher-mass model of the gravitational potential.  相似文献   

10.
The properties of the relative abundances of rapid and slow neutron-capture elements are studied using a catalog containing spectroscopic abundance determinations for 14 elements produced in various nuclear-synthesis processes for 90 open clusters. The catalog also contains the positions, ages, velocities, and elements of the Galactic orbits of the clusters. The relative abundances of both r-elements (Eu) and s-elements (Y, Ba, La, and Ce) in clusters with high, elongated orbits and in field stars of the Galactic thin disk display different dependences on metallicity, age, Galactocentric distance, and the elements of the Galactic orbits, supporting the view that these objects have different natures. In young clusters, not only barium, but also the three other studied s-elements display significantly higher relative abundances than field stars of the same metallicity. The relative abundances of Eu are lower in highmetallicity clusters ([Fe/H] > -0.1) with high, elongated orbits than in field giants, on average, while the [Eu/Fe] ratios in lower-metallicity clusters are the same as those in field stars, on average, although with a large scatter. The metallicity dependence of the [O, Mg/Eu] ratios in clusters with high, elongated orbits and in field stars are substantially different. These and other described properties of the Eu abundances, together with the properties of the abundances of primary a-elements, can be understood in a natural way if clusters with high, elongated orbits with different metallicities formed as a result of interactions of two types of high-velocity clouds with the interstellar medium of the Galactic disk: low-metallicity highvelocity clouds that formed from “primordial” gas, and high-metallicity clouds with intermediate velocities that formed in “Galactic fountains.”  相似文献   

11.
Stellar photometry obtained using the Hubble Space Telescope is used to study the distributions of the number densities of stars of various ages in 12 irregular and dwarf spiral galaxies viewed edge-on. Two subsystems can be distinguished in all the galaxies: a thin disk comprised of young stars and a thick disk containing a large fraction of old stars (primarily red giants) in the system. Variations of the stellar number density in the thin and thick disks in the Z direction perpendicular to the plane of the galaxy follow an exponential law. The size of the thin disk corresponds to the visible size of the galaxy at the μ = 25 mag/arcsec2 isophote, while the thick disk is a factor of two to three larger. In addition to a thick disk, the massive irregular galaxy M82 also has a more extended stellar halo that is flattened at the galactic poles. The results of our previous study of 12 face-on galaxies are used together with the new results presented here to construct an empirical model for the stellar structure of irregular galaxies. Original Russian Text ? N.A. Tikhonov, 2006, published in Astronomicheskiĭ Zhurnal, 2006, Vol. 83, No. 7, pp. 579–588.  相似文献   

12.
The dependences of the velocity ellipsoids of F-G stars of the thin disk of the Galaxy on their ages and metallicities are analyzed based on the new version of the Geneva-Copenhagen Catalog. The age dependences of the major, middle, and minor axes of the ellipsoids, and also of the dispersion of the total residual velocity, obey power laws with indices 0.25, 0.29, 0.32, and 0.27 (with uncertainties ±0.02). Due to the presence of thick-disk objects, the analogous indices for all nearby stars are about a factor of 1.5 larger. Attempts to explain such values are usually based on modeling relaxation processes in the Galactic disk. Elimination of stars in the most numerous moving groups from the sample slightly reduces the corresponding indices (0.22, 0.26, 0.27, and 0.24). Limiting the sample to stars within 60 pc of the Sun, so that the sample can be considered to be complete, leaves both the velocity ellipsoids and their age dependences virtually unchanged. With increasing age, the velocity ellipsoid increases in size and becomes appreciablymore spherical, turns toward the direction of the Galactic center, and loses angular momentum. The shape of the velocity ellipsoid remains far from equilibrium. With increasing metallicity, the velocity ellipsoid for stars of mixed age increases in size, displays a weak tendency to become more spherical, and turns toward the direction of the Galactic center (with these changes occurring substantially more rapidly in the transition through the metallicity [Fe/H]≈−0.25). Thus, the ellipsoid changes similarly to the way it does with age; however, with decreasing metallicity, the rotational velocity about the Galactic center monotonically increases, rather than decreases (!). Moreover, the power-law indices for the age dependences of the axes depend on the metallicity, and display a maximum near [Fe/H] ≈−0.1. The age dependences of all the velocity-ellipsoid parameters for stars with equal metallicity are roughly the same. It is proposed that the appearance of a metallicity dependence of the velocity ellipsoids for thin-disk stars, recorded from the close to the Sun, is most likely due to the radial migration of stars.  相似文献   

13.
Data of our compiled catalog containing the positions, velocities, and metallicities of 415 RR Lyrae variable stars and the relative abundances [el/Fe] of 12 elements for 101 RR Lyrae stars, including four α elements (Mg, Ca, Si, and Ti), are used to study the relationships between the chemical and spatial–kinematic properties of these stars. In general, the dependences of the relative abundances of α elements on metallicity and velocity for the RR Lyrae stars are approximately the same as those for field dwarfs. Despite the usual claim that these stars are old, among them are representatives of the thin disk, which is the youngest subsystem of the Galaxy. Attention is called to the problem of lowmetallicity RR Lyrae stars. Most RR Lyrae stars that have the kinematic properties of thick disk stars have metallicities [Fe/H] < ?1.0 and high ratios [α/Fe] ≈ 0.4, whereas only about 10% of field dwarfs belonging to the so-called “low-metallicity tail” have this chemical composition. At the same time, there is a sharp change in [α/Fe] in RR Lyrae stars belonging just to the thick disk, providing evidence for a long period of formation of this subsystem. The chemical compositions of SDSS J1707+58, V455 Oph, MACHO176.18833.411, V456 Ser, and BPSCS 30339–046 do not correspond to their kinematics.While the first three of these stars belong to the halo, according to their kinematics, the last two belong to the thick disk. It is proposed that they are all most likely extragalactic, but the possible appearance of some of them in the solar neighborhood as a result of the gravitational action of the bar on field stars cannot be ruled out.  相似文献   

14.
Galactic orbits have been constructed over long time intervals for ten globular clusters located near the Galactic center. A model with an axially symmetric gravitational potential for the Galaxy was initially applied, after which a non-axially symmetric potential corresponding to the central bar was added. Variations in the trajectories of all these globular clusters in the XY plane due to the influence of the bar were detected. These were greatest for the cluster Terzan 4 in the meridional (RZ) plane. The globular clusters Terzan 1, Terzan 2, Terzan 4, Terzan 9, NGC 6522, and NGC 6558 always remained within the Galactic bulge, no farther than 4 kpc from the Galactic center.  相似文献   

15.
The luminosity and mass functions of a group of Galactic open clusters are constructed by applying a statistical method to photometric data from the USNO-A1 catalog. Despite some limitations, this catalog can be used for statistical analyses in Galactic astronomy. Pairwise comparisons of the derived cluster luminosity functions are performed for five age intervals. The differences between the luminosity functions of the open clusters are not statistically significant in most cases. It is concluded that the luminosity functions are approximately universal throughout a large volume in the solar neighborhood. Combined luminosity and mass functions are constructed for six age intervals. The slope of the mass spectrum may vary somewhat from cluster to cluster, and the mean slope may be somewhat higher than the Salpetervalue.  相似文献   

16.
In our model describing the leakage of ionizing radiation from the Galactic disk into the halo, disk stars can contribute substantially to the ionization of halo objects such as high-velocity clouds and the Magellanic stream. This ionization is produced by a relatively hard radiation field, which can maintain its ionizing effect even at a considerable distance from the plane of the disk.  相似文献   

17.
We have derived the LTE neodymium abundances in 60 cool stars with metallicities [Fe/H] from 0.25 to ?1.71 by applying a synthetic-spectrum analysis to spectroscopic observations of NdII lines with a resolution of λ/Δλ?60 000 and signal-to-noise ratios of 100–200. We have improved the atomic parameters of NdII and blending lines by analyzing the corresponding line pro files in the solar spectrum. Neodymium is overabundant with respect to iron in halo stars, [Nd/Fe]=0.33±0.09, with the [Nd/Fe] ratio decreasing systematically with metallicity when [Fe/H]>?1. This reflects an onset of efficient iron production in type I supernovae during the formation of the thick disk. The [Nd/Ba] and [Nd/Eu] abundance ratios behave differently in halo, thick-disk, and thin-disk stars. The observed abundance ratios in halo stars, [Nd/Ba]=0.34±0.08 and [Nd/Eu]=?0.27±0.05, agree within the errors with the ratios of the elemental yields for the r-process. These results support the conclusion of other authors based on analyses of other elements that the r-process played the dominant role in the synthesis of heavy elements during the formation of the halo. The [Nd/Ba] and [Nd/Eu] ratios for thick-disk stars are almost independent of metallicity ([Nd/Ba]=0.28(±0.03)?0.01(±0.04) [Fe/H] and [Nd/Eu]=?0.13(±0.03)+0.05(±0.04) [Fe/H]) but are smaller in absolute value than the corresponding ratios for halo stars, suggesting that the synthesis of s-process nuclei started during the formation of the thick disk. The s-process is estimated to have contributed ?30% of the neodymium produced during this stage of the evolution of the Galaxy. The [Nd/Ba] ratio decreases abruptly by 0.17 dex in the transition from the thick to the thin disk. The systematic decrease of [Nd/Ba] and increase of [Nd/Eu] with increasing metallicity of thin-disk stars point toward a dominant role of the s-process in the synthesis of heavy elements during this epoch.  相似文献   

18.
Hubble Space Telescope archive data are used to perform photometry of stars in seven fields at the center and periphery of the galaxy NGC 2366. The variation of the number density of stars of various ages with galactocentric radius and along the minor axis of the galaxy are determined. The boundaries of the thin and thick disks of the galaxy are found. The inferred sizes of the subsystems of NGC 2366 (Z thin = 4 kpc and Z thick = 8 kpc for the thin and thick disks, respectively) are more typical for spiral galaxies. Evidence for a stellar halo is found at the periphery of NGC 2366 beyond the thick disk of the galaxy.  相似文献   

19.
The abundances of 19 chemical elements in the atmospheres of five stars belonging to three globular clusters have been determined by applying the model-atmospheremethod to 430.0–790.0 nm spectra obtained with the échelle spectrometer of the 6-m telescope of the Special Astrophysical Observatory. The abundances of silicon, calcium, iron-peak elements, copper, zinc, and neutron-capture elements follow the abundance patterns for halo stars. The abundance of sodium in M 10 giants provides evidence that different mixing mechanisms operate in halo and cluster stars or that light elements are enriched in different ways in the pre-stellar matter from which some globular clusters and halo stars were formed.  相似文献   

20.
Sharina  M. E.  Maricheva  M. I. 《Astronomy Reports》2021,65(6):455-476
Astronomy Reports - This paper presents the results of the analysis of the integrated-light spectra of eight Galactic globular clusters with a relatively low luminosity and stellar density: Palomar...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号