首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Inorganic gases are commonly seen in eastern China and occasionally in southern China from the shallow water columns above hot and cold springs. The gases contain 68% to nearly 100% CO2, with δ13CCO2 and δ13C1 values in the range of −1.18‰ to −6.00‰ and −19.48‰ to −24.94‰, respectively. All of the 34 large inorganic CO2 and one inorganic methane accumulations discovered in China are distributed in eastern parts of the country, from both onshore and continental shelf basins. No commercial inorganic gas accumulation has been found in central and western China. This is a review of the occurrence and geochemical characteristics of inorganic gas accumulations in Chinese sedimentary basins. A detailed study of gas samples collected from four representative inorganic CO2 pools and one possible inorganic methane pool indicates that inorganic alkane gases typically show δ13C1 values greater than −10‰ versus PDB (mostly −30‰), with a positive stable carbon isotope sequence of δ13C1 < δ 13C2 < δ13C3 < δ 13C4. In contrast, the δ13C1 values of biogenic alkane gases are lighter than −30‰, with a negative isotope sequence (i.e. δ13C1 > δ13C2 > δ 13C3 > δ13C4). Inorganic gases also tend to show less negative δ13CCO2 values (−10‰) than biogenic gases (<−10‰).  相似文献   

2.
Carbon isotope and molecular compositions of Mississippian to Upper Cretaceous mud gases have been examined from four depth profiles across the Western Canada Sedimentary Basin (WCSB). The profiles range from the shallow oil sands in the east (R0 = 0.25) to the very mature sediments in the overthrust zone to the west (R0 = 2.5). In the undisturbed WCSB, δ13C1δ13C2 and δ13C2δ13C3 cross-plots show three maturity and alteration trends: (1) pre-Cretaceous gas sourced from type II kerogen; (2) Cretaceous Colorado Group gas; and (3) Lower Cretaceous Mannville Group biodegraded gas. A fourth set of distinctly different maturity trends is recognized for Lower Cretaceous gas sourced from type III kerogen in the disturbed belt of the WCSB. Displacement of these latter maturity trends to high δ13C2 values suggests that the sampled gas was trapped after earlier formed gas escaped, probably as a result of overthrusting. Unusually 13C-enriched gas (δ13C1 = −34‰, δ13C2 = −13‰, and δ13C3 = 0‰), from the Gething Formation in the disturbed belt, is the result of late stage gas cracking in a closed system. In general, gas maturity is consistent with the maturity of the host sediments in the WCSB, suggesting that migration and mixing of gases was not pervasive on a broad regional and stratigraphic scale. The ‘Deep Basin’ portion of the WCSB is an exception. Here extensive cross-formational homogenization of gases has occurred, in addition to updip migration along the most permeable stratigraphic units.  相似文献   

3.
Previous studies on the coal-bed methane potential of the Zonguldak basin have indicated that the gases are thermogenic and sourced by the coal-bearing Carboniferous units. In this earlier work, the origin of coal-bed gas was only defined according to the molecular composition of gases and to organic geochemical properties of the respective source rocks, since data on isotopic composition of gases were not available. Furthermore, in the western Black Sea region there also exist other source rocks, which may have contributed to the coal-bed gas accumulations. The aim of this study is to determine the origin of coal-bed gas and to try a gas-source rock correlation. For this purpose, the molecular and isotopic compositions of 13 headspace gases from coals and adjacent sediments of two wells in the Amasra region have been analyzed. Total organic carbon (TOC) measurements and Rock-Eval pyrolysis were performed in order to characterize the respective source rocks. Coals and sediments are bearing humic type organic matter, which have hydrogen indices (HI) of up to 300 mgHC/gTOC, indicating a certain content of liptinitic material. The stable carbon isotope ratios (δ13C) of the kerogen vary from −23.1 to −27.7‰. Air-free calculated gases contain hydrocarbons up to C5, carbon dioxide (<1%) and a considerable amount of nitrogen (up to 38%). The gaseous hydrocarbons are dominated by methane (>98%). The stable carbon isotope ratios of methane, ethane and propane are defined as δ13C1: −51.1 to −48.3‰, δ13C2: −37.9 to −25.3‰, δ13C3: −26.0 to −19.2 ‰, respectively. The δD1 values of methane range from −190 to −178‰. According to its isotopic composition, methane is a mixture, partly generated bacterially, partly thermogenic. Molecular and isotopic composition of the gases and organic geochemical properties of possible source rocks indicate that the thermogenic gas generation took place in coals and organic rich shales of the Westphalian-A Kozlu formation. The bacterial input can be related to a primary bacterial methane generation during Carboniferous and/or to a recent secondary bacterial methane generation. However, some peculiarities of respective isotope values of headspace gases can also be related to the desorption process, which took place by sampling.  相似文献   

4.
Coal-derived hydrocarbons from Middle–Lower Jurassic coal-bearing strata in northwestern China are distributed in the Tarim, Junggar, Qaidam, and Turpan-Harmi basins. The former three basins are dominated by coal-derived gas fields, distributed in Cretaceous and Tertiary strata. Turpan-Harmi basin is characterized by coal-derived oil fields which occur in the coal measures. Based on analysis of gas components and carbon isotopic compositions from these basins, three conclusions are drawn in this contribution: 1) Alkane gases with reservoirs of coal measures have no carbon isotopic reversal, whereas alkane gases with reservoirs not of coal measures the extent of carbon isotopic reversal increases with increasing maturity; 2) Coal-derived alkane gases with high δ13C values are found in the Tarim and Qaidam basins (δ13C1: − 19.0 to − 29.9‰; δ13C2: − 18.8 to − 27.1‰), and those with lowest δ13C values occur in the Turpan-Harmi and Junggar basins (δ13C1: − 40.1 to − 44.0‰; δ13C2: − 24.7 to − 27.9‰); and 3) Individual specific carbon isotopic compositions of light hydrocarbons (C5–8) in the coal-derived gases are lower than those in the oil-associated gases. The discovered carbon isotopic reversal of coal-derived gases is caused by isotopic fractionation during migration and secondary alteration. The high and low carbon isotopic values of coal-derived gases in China may have some significance on global natural gas research, especially the low carbon isotope value of methane may provide some information for early thermogenic gases. Coal-derived methane typically has much heavier δ13C than that of oil-associated methane, and this can be used for gas–source rock correlation. The heavy carbon isotope of coal-derived ethane is a common phenomenon in China and it shed lights on the discrimination of gas origin. Since most giant gas fields are of coal-derived origin, comparative studies on coal-derived and oil-associated gases have great significance on future natural gas exploration in the world.  相似文献   

5.
Chemical and isotopic compositions have been measured on 62 microbial gases from Tertiary hemipelagic sediments in the Middle America Trench off Guatemala and from decaying kelp and surf grass currently accumulating in Scripps Submarine Canyon off southern California. Gases from the Middle America Trench have been generated primarily by the reduction of carbon dioxide; methane δ13C varies from −84‰ to −39‰, methane δD varies from −208‰ to −145‰, and carbon dioxide δ13 C varies from −27‰ to +28‰. Gases from Scripps Submarine Canyon have been generated primarily by acetate dissimilation; methane δ13 C varies from −63‰ to −43‰, methane δD varies from −331‰ to −280‰, and carbon dioxide δ13C varies from −17‰ to +3‰.Methane δ13C values as heavy as −40‰ appear to be uncommon for gases produced by carbon dioxide reduction and, in the Middle America Trench, are associated with unusually positive carbon dioxide δ13C values. However, based on the 25‰ intramolecular fractionation between acetate car☐yl carbon and methyl carbon estimated from the Scripps Submarine Canyon data, methane produced by acetate dissimilation may commonly have heavy δ13C values. The δD of methane derived from acetate is more negative than natural methanes from other origins. Microbial methane δD values appear to be controlled primarily by interstitial water δD and by the relative proportions of methane derived from carbon dioxide and acetate.The chemical and isotopic compositions of microbial gas and thermogenic gas overlap, making it difficult to determine the origins of many commercial natural gases from methane δ13C and C2+ hydrocarbon concentrations alone. Measurements of methane δD and carbon dioxide δ13C can provide useful additional information, and together with ethane δ13C data, help identify gases with mixed microbial and thermogenic origins.  相似文献   

6.
A review of the geochemistry of methane in natural gas hydrate   总被引:7,自引:0,他引:7  
The largest accumulations on Earth of natural gas are in the form of gas hydrate, found mainly offshore in outer continental margin sediment and, to a lesser extent, in polar regions commonly associated with permafrost. Measurements of hydrocarbon gas compositions and of carbon-isotopic compositions of methane from natural gas hydrate samples, collected in subaquatic settings from around the world, suggest that methane guest molecules in the water clathrate structures are mainly derived by the microbial reduction of CO2 from sedimentary organic matter. Typically, these hydrocarbon gases are composed of > 99% methane, with carbon-isotopic compositions (δ13CPDB) ranging from − 57 to − 73‰. In only two regions, the Gulf of Mexico and the Caspian Sea, has mainly thermogenic methane been found in gas hydrate. There, hydrocarbon gases have methane contents ranging from 21 to 97%, with δ13C values ranging from − 29 to − 57‰. At a few locations, where the gas hydrate contains a mixture of microbial and thermal methane, microbial methane is always dominant. Continental gas hydrate, identified in Alaska and Russia, also has hydrocarbon gases composed of > 99% methane, with carbon-isotopic compositions ranging from − 41 to − 49‰. These gas hydrate deposits also contain a mixture of microbial and thermal methane, with thermal methane likely to be dominant. Published by Elsevier Science Ltd  相似文献   

7.
Variations in the carbon isotopic composition (δ13C) of pristane, phytane, n-heptadecane (n-C17), C29 ααα 20R sterane, and aryl isoprenoids provide evidence for a diverse community of algal and bacterial organisms in organic matter of the Upper Ordovician Maquoketa Group of the Illinois Basin. Carbon isotopic compositions of pristane and phytane from the Maquoketa are positively covariant (r = 0.964), suggesting that these compounds were derived from a common source inferred to be primary producers (algae) from the oxygenated photic zone. A variation of 3‰ in δ13C values (−31 to −34‰) for pristane and phytane indicates that primary producers utilized variable sources of inorganic carbon. Average isotopic compositions of n-C17 (−32‰) and C29 ααα 20R sterane (−31‰) are enriched in 13C relative to pristane and phytane (−33‰) suggesting that these compounds were derived from a subordinate group of primary producers, most likely eukaryotic algae. In addition, a substantial enrichment of 13C in aryl isoprenoids (−14 to −18‰) and the identification of tetramethylbenzene in pyrolytic products of Maquoketa kerogen indicate a contribution from photosynthetic green sulfur bacteria to the organic matter. The presence of anaerobic, photosynthetic green sulfur bacteria in organic matter of the Maquoketa indicates that anoxic conditions extended into the photic zone.The δ13C of n-alkanes and the identification of an unusual suite of straight-chain n-alkylarenes in the m/z 133 fragmentograms of Ordovician rocks rich in Gloeocapsomorpha prisca (G. prisca) indicate that G. prisca did not contribute to the organic matter of the Maquoketa Group.  相似文献   

8.
Stable isotope ratios of oxygen and carbon were determined for CO2 in soil gas in the vicinity of the massive sulfide deposit at Crandon, Wisconsin with the objective of determining the source of anomalously high CO2 concentrations detected previously by McCarthy et al. (1986). Values of δ13C in soil gas CO2 from depths between 0.5 and 1.0 m were found to range from −12.68‰ to −20.03‰ (PDB). Organic carbon from the uppermost meter of soil has δ13C between −24.1 and −25.8‰ (PDB), indicating derivation from plant species with the C3 (Calvin) type of photosynthetic pathway. Microbial decomposition of the organic carbon and root respiration from C3 and C4 (Hatch-Slack) plants, together with atmospheric CO2 are the likely sources of carbon in soil gas CO2. Values of δ18O in soil-gas CO2 range from 32 to 38‰ (SMOW). These δ18O values are intermediate between that calculated for CO2 gas in isotopic equilibrium with local groundwaters and that for atmospheric CO2. The δ18O data indicate that atmospheric CO2 has been incorporated by mixing or diffusion. Any CO2 generated by microbial oxidation of organic matter has equilibrated its oxygen isotopes with the local groundwaters.The isotopic composition of soil-gas CO2 taken from directly above the massive sulfide deposit was not distinguishable from that of background samples taken 1 to 2 km away. No enrichment of the δ13C value of soil-gas CO2 was observed, contrary to what would be expected if the anomalous CO2 were derived from the dissolution of Proterozoic marine limestone country rock or of Paleozoic limestone clasts in glacial till. Therefore, it is inferred that root respiration and decay of C3 plant material were responsible for most CO2 generation both in the vicinity of the massive sulfide and in the “background” area, on the occasion of our sampling. Interpretation of our data is complicated by the effects of rainfall, which significantly reduced the magnitude of the CO2 anomaly. Therefore, we cannot rule out the possible mechanism of carbonate dissolution driven by pyrite oxidation, as proposed by Lovell et al. (1983) and McCarthy et al. (1986). Further work is needed on seasonal and daily variations of CO2 concentrations and stable isotope ratios in various hydrogeologic and ecologic settings so that more effective sampling strategies can be developed for mineral exploration using soil gases.  相似文献   

9.
Oil and gas exploration in eastern Tarim Basin, NW China has been successful in recent years, with several commercial gas accumulations being discovered in a thermally mature to over-mature region. The Yingnan2 (YN2) gas field, situated in the Yingnan structure of the Yingjisu Depression, produces gases that are relatively enriched in nitrogen and C2+ alkanes. The δ13C1 (−38.6‰ to −36.2‰) and δ13C2 values (−30.9‰ to −34.7‰) of these gases are characteristic of marine sourced gases with relatively high maturity levels. The distributions of biomarkers in the associated condensates suggest close affinities with the Cambrian–Lower Ordovician source rocks which, in the Yingjisu Sag, are currently over-mature (with 3–4%Ro). Burial and thermal maturity modeling results indicate that paleo-temperatures of the Cambrian–Lower Ordovician source rocks had increased from 90 to 210 °C during the late Caledonian orogeny (458–438 Ma), due to rapid subsidence and sediment loading. By the end of Ordovician, hydrocarbon potential in these source rocks had been largely exhausted. The homogenization temperatures of hydrocarbon fluid inclusions identified from the Jurassic reservoirs of the YN2 gas field suggest a hydrocarbon emplacement time as recent as about 10 Ma, when the maturity levels of Middle–Lower Jurassic source rocks in the study area were too low (<0.7%Ro) to form a large quantity of oil and gas. The presence of abundant diamondoid hydrocarbons in the associated condensates and the relatively heavy isotopic values of the oils indicate that the gases were derived from thermal cracking of early-formed oils. Estimation from the stable carbon isotope ratios of gaseous alkanes suggests that the gases may have been formed at temperatures well above 190 °C. Thus, the oil and gas accumulation history in the study area can be reconstructed as follows: (1) during the late Caledonian orogeny, the Cambrian–Lower Ordovician marine source rocks had gone through the peak oil, wet gas and dry gas generation stages, with the generated oil and gas migrating upwards along faults and fractures to form early oil and gas accumulations in the Middle–Upper Ordovician and Silurian sandstone reservoirs; (2) since the late Yanshanian orogeny, the early oil accumulations have been buried deeper and oil has undergone thermal cracking to form gas; (3) during the late Himalayan orogeny, the seals for the deep reservoirs were breached; and the gas and condensates migrated upward and eventually accumulating in the relatively shallow Jurassic reservoirs.  相似文献   

10.
Stable (δ13C and δ18O) and radiogenic 87Sr/86Sr isotopic data have been used to investigate the origin of cleat dawsonite (NaAlCO3(OH)2) in the Late Permian Wittingham Coal Measures of the Upper Hunter region in the Sydney Basin, New South Wales. The δ13CPDB values have a narrow range (− 1.7‰ to + 2.4‰), with an average of + 0.3‰, suggesting a magmatic source for the carbon. In contrast, δ18OSMOW values have a wide range (+ 13.6‰ to + 19.8‰), and decrease systematically with decreasing distance from a major intrusion. This systematic variation reflects establishment of localised hydrothermal cells. Water–rock interaction between fluids associated with these hydrothermal cells, and Rb-poor volcaniclastic detritus in the coal measures, produced mantle-like 87Sr/86Sr (0.705032 to 0.706464) in the dawsonite.  相似文献   

11.
The Pleistocene deposits at Zhoukoudian, often referred to as the “Peking Man” site, contain dental remains from a diverse group of herbivores, including Equus sanmeniensis, Cervus elaphus, Cervus nippon, Megaloceros pachyosteus, Sus lydekkeri, and Dicerorhinus choukoutienensis. The carbon and oxygen isotopic compositions of structural carbonate within the enamel of these teeth are used to reconstruct the paleodiet and paleoenvironment of the mammals. The δ13C values of enamel from Zhoukoudian range from −2.3‰ to −13.0‰, indicating that these mammals consumed between 25% and 100% C3 plants. The presence of significant amounts of C4 plants in the diets of some herbivore species indicates that at the onset of the Middle Pleistocene local habitats included mixed C3/C4 vegetation. By approximately 470,000 yr ago, C3 plants dominated the diets of herbivores studied, suggesting that the abundance of C4 flora had decreased in the area. For all deer analyzed in this study, the values of δ13C and δ18O decrease substantially from about 720,000 to 470,000 yr ago. This trend may be due to a strengthening of the winter monsoon during the Middle Pleistocene.  相似文献   

12.
Widespread mud volcanism across the thick (≤ 14 km) seismically active sedimentary prism of the Gulf of Cadiz is driven by tectonic activity along extensive strike–slip faults and thrusts associated with the accommodation of the Africa–Eurasia convergence and building of the Arc of Gibraltar, respectively. An investigation of eleven active sites located on the Moroccan Margin and in deeper waters across the wedge showed that light volatile hydrocarbon gases vented at the mud volcanoes (MVs) have distinct, mainly thermogenic, origins. Gases of higher and lower thermal maturities are mixed at Ginsburg and Mercator MVs on the Moroccan Margin, probably because high maturity gases that are trapped beneath evaporite deposits are transported upwards at the MVs and mixed with shallower, less mature, thermogenic gases during migration. At all other sites except for the westernmost Porto MV, δ13C–CH4 and δ2H–CH4 values of ~ − 50‰ and − 200‰, respectively, suggest a common origin for methane; however, the ratio of CH4/(C2H6 + C3H8) varies from ~ 10 to > 7000 between sites. Mixing of shallow biogenic and deep thermogenic gases cannot account for the observed compositions which instead result mainly from extensive migration of thermogenic gases in the deeply-buried sediments, possibly associated with biodegradation of C2+ homologues and secondary methane production at Captain Arutyunov and Carlos Ribeiro MVs. At the deep-water Bonjardim, Olenin and Carlos Ribeiro MVs, generation of C2+-enriched gases is probably promoted by high heat flux anomalies which have been measured in the western area of the wedge. At Porto MV, gases are highly enriched in CH4 having δ13C–CH4 ~ − 50‰, as at most sites, but markedly lower δ2H–CH4 values < − 250‰, suggesting that it is not generated by thermal cracking of n-alkanes but rather that it has a deep Archaeal origin. The presence of petroleum-type hydrocarbons is consistent with a thermogenic origin, and at sites where CH4 is predominant support the suggestion that gases have experienced extensive transport during which they mobilized oil from sediments ~ 2–4 km deep. These fluids then migrate into shallower, thermally immature muds, driving their mobilization and extrusion at the seafloor. At Porto MV, the limited presence of petroleum in mud breccia sediments further supports the hypothesis of a predominantly deep microbial origin of CH4.  相似文献   

13.
Carbon isotope chemostratigraphy has been used for worldwide correlation of Precambrian/Cambrian (Pc/C) boundary sections, and has elucidated significant change of the carbon cycle during the rapid diversification of skeletal metazoa (i.e. the Cambrian Explosion). Nevertheless, the standard δ13C curve of the Early Cambrian has been poorly established mainly due to the lack of a continuous stratigraphic record. Here we report high-resolution δ13C chemostratigraphy of a drill core sample across the Pc/C boundary in the Three Gorge area, South China. This section extends from an uppermost Ediacaran dolostone (Dengying Fm.), through a lowermost Early Cambrian muddy limestone (Yanjiahe Fm.) to a middle Early Cambrian calcareous black shale (Shuijingtuo Fm.). As a result, we have identified two positive and two negative isotope excursions within this interval. Near the Pc/C boundary, the δ13Ccarb increases moderately from 0 to + 2‰ (positive excursion 1: P1), and then drops dramatically down to − 7‰ (negative excursion 1: N1). Subsequently, the δ13Ccarb increases continuously up to about + 5‰ at the upper part of the Nemakit–Daldynian stage. After this positive excursion, δ13Ccarb sharply decreases down to about − 9‰ (N2) just below the basal Tommotian unconformity. These continuous patterns of the δ13C shift are irrespective of lithotype, suggesting a primary origin of the record. Moreover, the obtained δ13C profile, except for the sharp excursion N2, is comparable to records of other sections within and outside of the Yangtze Platform. Hence, we conclude that the general feature of our δ13C profile best represents the global change in seawater chemistry. The minimum δ13C of the N1 (− 7‰) is slightly lower than carbon input from the mantle, thus implying an enhanced flux of 13C-depleted carbon just across the Pc/C boundary. Hence, the ocean at that time probably became anoxic, which may have affected the survival of sessile or benthic Ediacaran biota. The subsequent δ13C rise up to + 5‰ (P2) indicates an increase of primary productivity or an enhanced rate of organic carbon burial, which should have resulted in lowering pCO2 and following global cooling. This scenario accounts for the cause of the global-scale sea-level fall at the base of the Tommotian stage. The subsequent, very short-term, and exceptionally low δ13C (− 9‰) in N2 could have been associated with the release of methane from gas hydrates due to the sea-level fall. The inferred dramatic environmental changes (i.e., ocean anoxia, increasing productivity, global cooling and subsequent sea-level fall with methane release) appear to coincide with or occur just before the Cambrian Explosion. This may indicate synchronism between the environmental changes and rapid diversification of skeletal metazoa.  相似文献   

14.
The CO2 gas reservoir sandstones in the Hailaer Basin contain abundant dawsonite and provide an ideal laboratory to study whether any genetic relationship exists between dawsonite and the modern gas phase of CO2. The origins of dawsonite and CO2 in these sandstones were studied by petrographic and isotopic analysis. According to the paragenetic sequence of the sandstones, dawsonite grew later than CO2 charging at 110–85 Ma. The dawsonite δ18O value is 7.4‰ (SMOW), and the calculated δ18O values of the water present during dawsonite growth are from −11.4‰ to −9.2‰ (SMOW). This, combined with the NaHCO3-dominated water linked to dawsonite growth, suggests meteoric water being responsible for dawsonite growth. The δ13C values of gas phase CO2 and the ratios of 3He/4He of the associated He suggest a mantle magmatic origin of CO2-rich natural gas in Hailaer basin. Dawsonite δ13C values are −5.3‰ to −1.5‰ (average −3.4‰), and the calculated δ13C values of CO2 gas in isotopic equilibrium with dawsonite are −11.4‰ to −7.3‰. These C isotopic values are ambiguous for the dawsonite C source. From the geological context, the timing of events, together with formation water conditions for dawsonite growth, dawsonite possibly grew in meteoric-derived water, atmospherically-derived CO2 maybe, or at least the dominant, C source for dawsonite. It seems that there are few relationships between dawsonite and the modern gas phase of CO2 in the Hailaer basin.  相似文献   

15.
The Ledong gas field, consisting of three gas pools in a shale diapir structure zone, is the largest gas discovery in the Yinggehai Basin. The gases produced from the Pliocene and Quaternary marine sandstone reservoirs show a considerable variation in chemical composition, with 5.4–88% CH4, 0–93% CO2, and 1–23.7% N2. The CO2-enriched gases often display heavier methane δ13C values than those with low CO2 contents. The δ15N values of the gases range from −8 to −2‰, and the N2 content correlates negatively with the CO2 content. The high geothermal gradient associated with a relatively great burial depth in this area has led to the generation of hydrocarbon and nitrogen gases from the Lower–Middle Miocene source rocks and the formation of abundant CO2 from the Tertiary calcareous-shales and pre-Tertiary carbonates. The compositional heterogeneities and stable carbon isotope data of the produced gases indicate that the formation of the LD221 gas field is attributed to three phases of gas migration: initially biogenic gas, followed by thermogenic hydrocarbon gas, and then CO2-rich gas. The filling processes occurred within a short period approximately from 1.2 to 0.1 Ma based on the results of the kinetics modeling. Geophysical and geochemical data show that the diapiric faults that cut through Miocene sediments act as the main pathways for upward gas migration from the deep overpressured system into the shallow normal pressure reservoirs, and that the deep overpressure is the main driving force for vertical and lateral migration of the gases. This gas migration pattern implies that the transitional pressure zone around the shale diapir structures was on the pathway of upward migrating gases, and is also a favorable place for gas accumulation. The proposed multiple sources and multiple phases of gas migration and accumulation model for the Ledong gas field potentially provide useful information for the future exploration efforts in this area.  相似文献   

16.
We collected sediment samples and pore water samples from the surface sediment on the Daini Atsumi Knoll, and analyzed the sediments for CH4, C2H6, and δ13CCH4, and the pore fluids for CH4, C2H6, δ13CCH4, Cl, SO42−, δ18OH2O, and δDH2O, respectively. A comparison of the measured concentration and isotopic composition of methane in pore water samples with those in sediment samples revealed that methane was present in the sediment samples at a higher concentration and was isotopically heavier than those in the pore water samples. It suggests that the effect of the release of a sorbed gas bound to organic particles when heated prior to analysis of hydrocarbons was larger than that of the degassing process. A large amount of a sorbed gas would be a significant source of natural gas. Two striking features are the chemical and isotopic composition of the pore water samples taken from the different sites around the Daini Atsumi Knoll. In the KL09, KL10, and KP07 samples, Cl concentrations in the pore water samples showed depletion to a minimum of 460 mmol/kg, correspond to  17% dilution of seawater, however the latter was not enriched in CH4. The isotopic compositions of pore water samples suggested the low-Cl fluids in the pore water were not derived from dissociation of methane hydrate, but were derived from input of meteoric water. In contrast, in the KP05 samples from the north flank of the Daini Atsumi Knoll, pore water were characterized by CH4 enrichment more than 370 μmol/kg, but not depleted in Cl concentrations. The observed methane concentration in the KP05 samples is not sufficient for methane hydrate to form in situ, indicating that the existence of methane hydrate in the surface sediment is negligible, as supported by Cl concentration. Based on the stable carbon isotope ratio of methane in the pore fluid from the KP05 site (δ13CCH4 < − 50‰PDB), methane is thought to be of microbial origin. The pore waters in the surface sediments in the north flank of the Daini Atsumi Knoll were not directly influenced by upward fluid bearing methane of thermogenic origin from a deeper part of the sedimentary layer. However, extremely high methane concentration in the north flank site as compared with the concentration of pore water taken from the normal seafloor suggests that the north flank site is not the normal seafloor. We hypothesize that upward migration of chemically-reduced fluids from a deeper zone of the sedimentary layer reduces chemically-oxidized solutes in the surface sediment. As a consequence methane production replaced sulfate reduction as the microbial metabolism in the reduced environment of the surface sediment.  相似文献   

17.
Sulfur and carbon contents and isotope ratios are reported for five Archean iron-formations, Helen, Nakina and Finlayson, Lumby and Bending Lake areas, distributed across 850 km of the Canadian shield all 2.7 Ga-old.A δ34S profile through a complete stratigraphic column (oxide facies excluded) of the Helen iron-formation shows a δ34S range of 30.2‰, mean δ34S value of 2.5‰ and a standard deviation (δi) of 7.3‰ In sharp contrast to the sulfide and siderite facies, the oxide facies in the column shows a uniform δ34S value close to zero. The δ34S values obtained for the other four iron-formations are again wide ranging, highly variable in the sulfide and pyrite—siderite facies, but uniform and close to zero for the oxide facies.The carbon in the oxide, siderite, chert facies has δ13C values of +2.3 to −1.1‰ in the range of Phanerozoic marine carbonates. However, the carbonates in the graphite rich sulfide facies have δ13C values as low as −7.6‰. The mixing of reduced carbon with marine carbonate is suggested to explain the light carbonate values. The reduced carbon associated with the light carbonate is also relatively light at up to δ13Corg = 33.5‰, but is in the range of other Precambrian values. Distal, high temperature, abiogenic sulfate reduction as a source of highly fractionated sulfides in the Archean iron-formations is ruled out on the basis of both isotopic and geologic evidence. It is concluded that only the bacterial reduction of sulfate at low temperatures could produce the wide ranging, highly variable δ34S values exhibited by these sulfides over large areas.  相似文献   

18.
A methodology has been developed to determine chemical and carbon isotopic compositions of trace amounts of hydrocarbon gas compounds (methane, ethane, propane, iso- and normal-butane) present as dissolved compounds in the porewater of the low permeability Callovo-Oxfordian argillites in eastern Paris Basin, France. Results indicate that the studied hydrocarbons contain significant amounts of ethane, butane and propane, in addition to methane. Carbon isotopic compositions reflect primarily thermogenic origin (thermal cracking of organic matter), and lack of any significant biodegradation. Because temperature did not exceed 50 °C in the studied argillites, investigated hydrocarbons must have originated in hotter/deeper organic-bearing formations, possibly Stephanian coals. Data supports the predominance of high maturity thermogenic gas in the upper part of the Callovo-Oxfordian, and low maturity thermogenic gas mixed with minor bacterially produced methane in the lower part of the formation. A mixing between three end-member gases models quite well the data: one thermogenic gas with a low maturity (42% methane, with a δ13C of − 53‰), a gas with higher maturity (55% methane, with a δ13C of − 47‰) and a bacterial gas (99.45% methane, with a δ13C of − 80‰). This study illustrates that migration of hydrocarbon gases can take place in rocks with very low permeability and porosity, such as compacted mudrocks, given enough time. It further suggests that the studied fluid migration and transfer in aquitards would help characterization and understanding of fluid movements in sedimentary basins, as a complement to studies focused on water aquifers and hydrocarbon reservoirs. Chemical and isotopic composition of dissolved hydrocarbons in porewater can be used as natural tracers of fluid circulation in sedimentary basins, in addition to more conventional tracers.  相似文献   

19.
The Changkeng Au and Fuwang Ag deposits represent an economically significant and distinct member of the Au–Ag deposit association in China. The two deposits are immediately adjacent, but the Au and Ag orebodies separated from each other. Ores in the Au deposit, located at the upper stratigraphic section and in the southern parts of the orefield, contain low Ag contents (< 11 ppm); the Ag orebodies, in the lower stratigraphic section, are Au-poor (< 0.2 ppm). Changkeng is hosted in brecciated cherts and jasperoidal quartz and is characterized by disseminated ore minerals. Fuwang, hosted in the Lower Carboniferous Zimenqiao group bioclastic limestone, has vein and veinlet mineralization associated with alteration comprised of quartz, carbonate, sericite, and sulfides. Homogenization temperatures of fluid inclusions from quartz veinlets in the Changkeng and Fuwang deposits are in the range of 210 ± 80 °C and 230 ± 50 °C, respectively. Salinities of fluid inclusions from the two deposits range from 1.6 to 7.3 wt.% and 1.6 to 2.6 wt.% equiv. NaCl, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of the fluid inclusions from the Changkeng deposit range from − 80‰ to − 30‰, − 7.8‰ to − 3.0‰, − 16.6‰ to − 17.0‰ and 0.0100 to 0.0054 Ra, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of fluid inclusions from the Fuwang deposit range from − 59‰ to − 45‰, − 0.9‰ to 4.1‰, − 6.7‰ to − 0.6‰ and 0.5930 to 0.8357 Ra, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of the fluid inclusions suggest the ore fluids of the Changkeng Au-ore come from the meteoric water and the ore fluids of the Fuwang Ag-ore are derived from mixing of magmatic water and meteoric water. The two deposits also show different Pb-isotopic signatures. The Changkeng deposit has Pb isotope ratios (206Pb/204Pb: 18.580 to 19.251, 207Pb/204Pb: 15.672 to 15.801, 208Pb/204Pb: 38.700 to 39.104) similar to those (206Pb/204Pb: 18.578 to 19.433, 207Pb/204Pb: 15.640 to 15.775, 208Pb/204Pb: 38.925 to 39.920) of its host rocks and different from those (206Pb/204Pb: 18.820 to 18.891, 207Pb/204Pb: 15.848 to 15.914, 208Pb/204Pb: 39.579 to 39.786) of the Fuwang deposit. The different signatures indicate different sources of ore-forming material. Rb–Sr isochron age (68 ± 6 Ma) and 40Ar–39Ar age (64.3 ± 0.1 Ma) of the ore-related quartz veins from the Ag deposit indicate that the Fuwang deposit formed during the Cenozoic Himalayan tectonomagmatic event. Crosscutting relationships suggests that Au-ore predates Ag-ore. The adjacent Changkeng and Fuwang deposits could, however, represent a single evolved hydrothermal system. The ore fluids initially deposited Au in the brecciated siliceous rocks, and then mixing with the magmatic water resulted in Ag deposition within fracture zones in the limestone. The deposits are alternatively the product of the superposition of two different geological events. Age evidence for the Fuwang deposit, together with the Xiqiaoshan Tertiary volcanic-hosted Ag deposit in the same area, indicates that the Pacific Coastal Volcanic Belt in the South China Fold Belt has greater potential for Himalayan precious metal mineralization than previous realized.  相似文献   

20.
Lime mortar and plaster were sampled from Roman, medieval and early modern buildings in Styria. The historical lime mortar and plaster consist of calcite formed in the matrix during setting and various aggregates. The stable C and O isotopic composition of the calcite matrix was analyzed to get knowledge about the environmental conditions during calcite formation. The δ13Cmatrix and δ18Omatrix values range from −31 to 0‰ and −26 to −3‰(VPDB), respectively. Obviously, such a range of isotope values does not represent the local natural limestone assumed to be used for producing the mortar and plaster. In an ideal case, the calcite matrix in lime mortar and plaster is isotopically lighter in the exterior vs. the interior mortar layer according to the relationship δ18Omatrix = 0.61 · δ13Cmatrix − 3.3 (VPDB). Calcite precipitation by uptake of gaseous CO2 into alkaline Ca(OH)2 solutions shows a similar relationship, δ18Ocalcite = 0.67 · δ13Ccalcite − 6.4 (VPDB). Both relationships indicate that the 13C/12C and 18O/16O values of the calcite reflect the setting behaviour of the lime mortar and plaster. Initially, CO2 from the atmosphere is fixed as calcite, which is accompanied by kinetic isotope fractionation mostly due to the hydroxylation of CO2 (δ13Cmatrix ≈  −25‰ and δ18Omatrix ≈ −20‰). As calcite formation continued the remaining gaseous CO2 is subsequently enriched in 13C and 18O causing later formed calcite to be isotopically heavier along the setting path in the matrix. Deviations from such an ideal isotopic behaviour may be due to the evolution of H2O, e.g. evaporation, the source of CO2, e.g. from biogenic origin, relicts of the natural limestone, and secondary effects, such as recrystallization of calcite. The results of the field and experimental study suggest that isotope values can be used as overall proxies to decipher the origin of carbonate and the formation conditions of calcite in the matrix of ancient and recent lime mortar and plaster. Moreover, these proxies can be used to select calcite matrix from historical lime mortar and plaster for 14C dating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号