首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 437 毫秒
1.
采用海水盐度由25突降至21、17和13胁迫大黄鱼(Pseudosciaena crocea)的方法,研究了48h内血清生理生化和鳃丝Na+/K+-ATP酶活性的变化。结果表明,实验过程中三个盐度突降组的血清Na+、Ca2+离子浓度均未发生显著变化(P>0.05),血清K+浓度均显著升高(P<0.05),且升高幅度与盐度突降幅度呈正相关,最大值达14.03mmol/L(盐度13组,48h);血清Cl浓度在盐度21组未发生显著变化(P>0.05),17和13组则在48h时显著降低(P<0.05);三个盐度突降组的血清酶ALT、AST、LDH、CK-MB活性均显著高于对照组(P<0.05),随胁迫时间的延长呈先升后降的趋势,且变化幅度均与盐度突降幅度呈正相关;三个盐度突降组的鳃丝Na+/K+-ATP酶活力均呈先升后降的变化趋势,除盐度21组在12h时高于对照组外,活力均显著低于对照组(P<0.05),且降低幅度与盐度突降幅度呈正相关;到实验15天时,死亡率随盐度突降幅度增大而升高。  相似文献   

2.
研究了半滑舌鳎(Cynoglossus semilaevis)由盐度30突变至0、1O、20、35和40盐度后血浆渗透压和鳃丝Na+/K+-ATP酶活性的变化.结果表明,盐度对半滑舌鳎血液渗透压和鳃丝Na+/K+-ATP酶活性均有显著影响(P<0.05).盐度突变后,各处理组的血液渗透压和鳃丝Na+/K+-ATP酶活性...  相似文献   

3.
为研究不同盐度对文蛤呼吸代谢的影响,本实验设置5个盐度(‰)梯度(11、18、25、32、39),检测不同盐度对文蛤(Meretrixmeretrix)耗氧和排氨的影响,以及文蛤的外套膜、鳃、肝胰腺三种组织中乳酸脱氢酶和Na+/K+-ATP酶活性的变化。结果表明:随着盐度的不断升高,文蛤耗氧率先升后降再升,在盐度18时达到最大值;排氨率先升后降,在盐度32时达到最大值。随着盐度不断升高和胁迫时间延长,文蛤的肝胰腺中乳酸脱氢酶活力总体呈先升高后下降再升高的趋势(P0.05),酶活力在盐度39时为最高;随着盐度不断升高和胁迫时间延长,文蛤的外套膜中Na+/K+-ATP酶活力总体呈先下降再升高后下降的趋势(P0.05),在盐度32时为最高;文蛤的外套膜和鳃中乳酸脱氢酶活力以及鳃和肝胰腺中Na+/K+-ATP酶活力受盐度影响不显著(P0.05),酶活力变化也多呈现"W"形的变化趋势。研究结果为文蛤的人工养殖提供参考。  相似文献   

4.
研究了盐度(6、13、20、27和33)对拟穴青蟹(Scylla paramamosain)幼蟹生长发育和Na+/K+-ATP酶活性的影响。结果表明,盐度对拟穴青蟹幼蟹甲宽和体质量特定生长率、C3蜕壳间期、甲宽增量(C1至C2和C2至C3)及Na+/K+-ATP酶活性有显著影响(P<0.05),但对幼蟹存活率、C2蜕壳间期及C3至C4甲宽增量无显著影响(P>0.05)。盐度13处理组特定生长率最高、蜕壳间期最短,盐度6处理组特定生长率最低,但与盐度20、27和33处理组无显著差异(P>0.05),而盐度33处理组蜕壳间期最长;第一次蜕壳后盐度20处理组甲宽增量最大,后两次蜕壳盐度13处理组均是最大;盐度处理0.5、4、7和11 d时,Na+/K+-ATP酶活性分别表现为盐度6>13>20>27>33、6>13>27>20>33、6>13>20>27>33和6>13>33>20>27的趋势,低盐环境下Na+/K+-ATP酶活性的升高有助于拟穴青蟹幼蟹对低渗环境的适应。  相似文献   

5.
通过传统形态学数据和框架结构数据相结合,应用方差、聚类、判别和主成分等4种多元分析方法,分析了太平洋双色鳗鲡与日本鳗鲡、美洲鳗鲡和花鳗鲡的形态差异。结果表明:(1)太平洋双色鳗鲡背鳍前端与臀鳍前端之间的垂线距离占全长的1.4%,属短鳍型鳗鲡。(2)太平洋双色鳗鲡与其它3种鳗鲡形态差异显著。在可数性状中,太平洋双色鳗鲡的总脊椎骨数显著小于日本鳗鲡,显著大于美洲鳗鲡和花鳗鲡,背鳍前脊椎骨数显著大于其它3种鳗鲡;在可量性状中,太平洋双色鳗鲡的吻长显著小于美洲鳗鲡和花鳗鲡,显著大于日本鳗鲡;在框架结构性状中,太平洋双色鳗鲡有6项性状与其它3种鳗鲡差异显著。(3)太平洋双色鳗鲡的背鳍起点与其它3种鳗鲡相比最靠后,背鳍起点在鳗鲡分类研究中可作为重要的框架结构定位点。本研究可为太平洋双色鳗鲡的合理引进和种质保护提供资料。  相似文献   

6.
为模拟夏季水分蒸发水体盐度快速升高对凡纳滨对虾(Litopenaeusvannamei)生长性能及理化调节的影响,试验设置盐度从30突变至35、40、45、50、55及60,以盐度30为对照,突变盐度下养殖28d,每7d检测凡纳滨对虾的存活率、相对增重率、体长增长率,试验结束时检测血清Na+/K+-ATP酶、总ATP酶、碱性磷酸酶(AKP)、酸性磷酸酶(ACP)和超氧化物歧化酶(SOD)活力。结果表明,高盐突变显著抑制凡纳滨对虾的存活率和相对增重率(P0.05),随着突变盐度的升高,凡纳滨对虾的相对增重率逐渐降低,60盐度组仅为对照组的15.53%。盐度突变至50后,凡纳滨对虾存活率显著下降。随着高盐突变幅度的增加,Na+/K+-ATP酶和ACP酶活力受到显著影响(P0.05),其中Na+/K+-ATP酶活力逐渐上升,在突变60盐度时表现为最高;ACP酶表现为先上升再下降的单峰变化趋势。总ATP酶、SOD酶、AKP酶受影响不显著(P0.05)。结果表明,高盐突变幅度越大,凡纳滨对虾存活率越低、生长越缓慢,Na+/K+-ATP酶活力升高,渗透调节能力增强,ACP酶活力升高,说明高盐突变激发凡纳滨对虾机体代谢活力。  相似文献   

7.
研究了急性盐度胁迫对斜带石斑鱼幼鱼Epinephelus coioides鳃丝Na+/K+-ATP酶活性和血清应激指标的影响,将养殖于自然海水(盐度34%o)中,体重为(19.59±0.25)g的斜带石斑鱼幼鱼直接转移至盐度24‰、14‰、4‰和0‰的水体中,于转移后1、3、6、12和24h分别检测鳃丝Na+/K+-ATP酶活性和血清中血糖、天门冬氨酸氨基转移酶(AST)、溶菌酶的变化.试验表明:试验组Na+/K+-ATP酶活性变化基本一致,均在1h时达到最高值,随后下降,至6h达到稳定且均显著高于对照组(P<0.05);血糖在24‰和14‰盐度组呈下降趋势,在4‰和0‰盐度组3h时出现最低值,在6h时达到峰值,随后逐渐下降;AST水平在24‰和14‰盐度组与对照组无显著差异(P>0.05),在4‰和0‰盐度组均呈现先上升后下降的趋势,于6和12h时达到各自峰值;溶菌酶含量在试验24h时,在24‰、14‰和4‰盐度组间差异显著(P<0.05),在0‰盐度组呈现先上升后下降的趋势,至6h时达到峰值.试验显示,斜带石斑鱼幼鱼由盐度34‰的水体转移至盐度24‰和14‰的水体后,其应激强度较弱;由盐度34‰的水体转移至盐度4‰和0‰的水体后,其应激反应较大,适应盐度变化需时也较长.根据本试验结果,在对斜带石斑鱼进行应激性淡化转运时,可将其直接从34‰高盐度自然海水中转移至14‰盐度的水体后,再缓慢降至预定盐度,从而减少淡化时间.  相似文献   

8.
为了研究不同盐度对小黄鱼生理的影响,以人工养殖的4月龄小黄鱼(体质量为(12.6 ±3.1)g)为实验对象,将在自然海水(对照组盐度为22.1)中养殖的小黄鱼转入到盐度为5(低盐组)和34.5(高盐组)的海水中进行急性盐度胁迫处理10 d,测定并分析肝脏中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、碱性磷酸酶(AKP)和酸性磷酸酶(ACP)活力以及鳃和肾脏中的Na+/K+-ATP酶活力的变化情况。结果显示,在急性盐度胁迫下,小黄鱼肝脏抗氧化酶(SOD和CAT)活力均上升,其中,低盐组的SOD和高盐组的CAT活力均显著高于对照组(p<0.05);在不同盐度条件下,AKP和ACP表现出相反的变化趋势,即AKP活力随着盐度上升不断增强,而ACP活力则逐渐降低;鳃中Na+/K+-ATP酶活力在低盐组最低,而肾脏中高盐组的活力显著高于对照组(p<0.05)。上述研究结果表明,小黄鱼幼鱼在盐度下降到5时仍可正常存活;不同盐度胁迫可导致小黄鱼肝脏中的非特异性免疫酶以及鳃和肾脏中的Na+/K+-ATP酶活性发生显著变化,表明小黄鱼在适应盐度变化过程中肝脏、鳃和肾脏均发挥着一定的调节作用。研究结果对小黄鱼在高盐或者咸淡水区域养殖提供了一定参考作用。  相似文献   

9.
盐度、pH变化对凡纳滨对虾鳃丝Na+-K+-ATPase活力的影响   总被引:9,自引:1,他引:9  
本文研究了盐度、pH变化对凡纳滨对虾(Litopenaeus vannamei)鳃丝Na -K -ATPase活力的影响.结果表明:盐度、pH变化对凡纳滨对虾鳃丝Na -K -ATPase活力的影响显著(F》F0.01).在盐度变化(30→5)3d内,各处理组鳃丝Na -K -ATPase活力随着处理时间的增加逐渐升高;至3~15d时,不同盐度下鳃丝Na -K -ATPase活力趋于稳定,与对照组相比酶活力明显升高(F》F0.05),而且盐度越低酶活力越大.在pH变化(7.0←8.0→9.5)3d内,各处理组鳃丝Na -K -ATPase活力随着处理时间的增加呈峰值变化,表现为向低pH和向高pH变化分别于9h和12h达到最大值,至3d时均恢复正常;在pH变化3~12d内,不同pH环境下鳃丝Na -K -ATPase活力无明显差异(F《F0.05).  相似文献   

10.
为了解盐度渐变对黄条鰤(Seriola aureovittata)渗透调节的影响,设置自然海水(对照组盐度为29),5,10,15,20,35六个盐度梯度,并对不同盐度下幼鱼鳃丝Na~+/K~+-ATP酶活力、离子浓度、渗透压进行了检测和分析。结果显示:在盐度5~35,黄条鰤尿、血清、血浆的渗透压均随盐度升高而升高,盐度为35时渗透压均为最高,其中尿的渗透压显著高于血清和血浆渗透压。在盐度从29下降的过程中,鳃丝Na~+/K~+-ATP酶活力、离子浓度、渗透压呈现相似的变化规律,都随着盐度的降低而呈现总体下降的趋势;盐度从29升高到35时,各检测指标中仅有尿和血浆的K~+含量无显著变化(P0.05),其余均显著升高(P0.05)。实验结果表明,黄条鰤生存和繁衍的自然海水盐度29是幼鱼存活的适宜盐度,在略低的盐度20~29均能较快适应,说明在盐度渐变过程中,黄条鰤幼鱼对外界盐度变化有较强的调节能力。  相似文献   

11.
胃质子泵(H+/K+ATPase)是胃酸分泌的关键酶。本试验采用RACE和PCR方法从大菱鲆的胃组织中提取RNA克隆得到了H+/K+ATPaseα亚基cDNA全长序列。结果表明:大菱鲆H+/K+ATPaseα亚基序列全长3467 bp,开放阅读框为2964 bp,编码988个氨基酸。与GenBank上其它物种比对发现,大菱鲆H+/K+ATPaseα亚基与斑鳜同源性最高,为89%。进化树分析发现,H+/K+ATPase在进化上具有物种特异性。经RT-PCR和荧光定量PCR检测,大菱鲆H+/K+ATPase在胚胎孵化后22d开始表达,晚于大菱鲆胃腺出现的时间(16 d),说明大菱鲆胃腺的发育完成并不代表胃功能的完善。另外,大菱鲆H+/K+ATPase除了在胃中大量表达之外,在食道中的表达量也很高。结合组织学观察,作者认为,大菱鲆H+/K+ATPase在食道中大量表达是因为在发育上食道是胃的前体,因此保留了分泌H+/K+ATPase的能力。同时通过整体原位杂交试验表明:大菱鲆H+/K+ATPase会首先在食道的末端和胃的贲门处表达。本研究为进一步了解海水鱼类的消化机制提供了理论基础。  相似文献   

12.
采用实验生态学方法,开展了汞胁迫下拟穴青蟹(Scylla paramamosain)的消化和免疫因子变动的研究。在实验室条件下,测定了0.00、0.005、0.01、0.02、0.04、0.08mg/L浓度Hg2+在1d、3d、5d、7d、9d胁迫时间下的消化和免疫因子变化。结果表明,汞胁迫下拟穴青蟹AMS活性快速升高,但激活效应随胁迫时间延长而逐渐下降,后期表现为抑制效应。汞胁迫能激发Pepsin活性,短期内Pepsin活性和胁迫浓度、胁迫时间呈正相关;长期高浓度胁迫(0.04、0.08mg/L),则激发效应减弱。汞胁迫对LPS活性的影响主要表现为抑制作用。免疫因子的研究结果表明,汞胁迫对AKP有激发作用,可迅速刺激机体AKP活力上升。低浓度汞胁迫对AKP活性提升最显著(0.005、0.01、0.02mg/L),高浓度组AKP活性先升后降。汞胁迫对ACP活性有激发作用,且存在显著的时间效应和浓度效应。汞胁迫下SOD活性短期内即显著升高,且SOD活力随胁迫时间延长而持续升高。汞胁迫对LZM活性有激活作用,且激活效应存在时间效应和浓度效应。汞胁迫对PO活力快速产生抑制作用,抑制作用存在时间效应而无显著的浓度效应。汞胁迫对拟穴青蟹消化和免疫因子能产生胁迫效应,对Pepsin、AMS、AKP、ACP、SOD、LZM表现为激发,而对LPS、PO表现为抑制。  相似文献   

13.
为筛查和验证缢蛏(Sinonovacula constricta)耐氨氮相关单核苷酸多态性(SNP)和基因, 为分子标记辅助育种提供参考, 通过竞争性等位基因特异性PCR (KASP)对位于缢蛏NKA基因(Sc-NKA)下游的SNP (g.21062868T>A)进行验证, 采用实时荧光定量PCR (qRT-PCR)和蛋白免疫印迹(WB)检测高氨氮胁迫下Sc-NKA基因的表达水平, 用免疫荧光技术对Sc-NKA蛋白进行组织细胞定位, 通过RNA干扰探究Sc-NKA基因在氨氮排泄中的作用。结果显示, SNP位点(g.21062868T>A)与氨氮耐受性状显著相关(P<0.05); Sc-NKA基因在氨氮胁迫后的mRNA和蛋白表达量均显著增加(P<0.05); 缢蛏鳃中的柱状细胞和扁平细胞是Sc-NKA蛋白分泌的主要部位, 且在氨氮胁迫后细胞中的蛋白丰度增加; 干扰Sc-NKA基因6~48 h后, 缢蛏血淋巴中氨含量显著升高(P<0.05),且Na+-K+-2Cl共转运蛋白1 (NKCC1)的mRNA表达水平显著降低(P<0.05)。这些研究结果表明, Sc-NKA参与氨氮的排泄过程, 且与NKCC1在氨氮转运中具有协同作用。  相似文献   

14.
Cd2+和Cu2+对泥蚶的急性毒性和联合毒性试验   总被引:1,自引:0,他引:1  
为了解重金属Cd2+和Cu2+对泥蚶的毒害程度和泥蚶对重金属Cd2+和Cu2+的解毒能力,用毒理学实验方法研究了Cd2+和Cu2+对泥蚶(Tegillarca granosa)的急性毒性和联合毒性效应。结果表明:Cd2+、Cu2+对泥蚶的96 h半致死质量浓度分别为6.189、0.460 mg/L;安全质量浓度分别为0.062、0.005 mg/L;相对毒性Cu2+Cd2+。在1︰1毒性单位的联合作用下,Cd2+和Cu2+对泥蚶96 h的半致死质量浓度分别为1.984、0.147 mg/L;安全质量浓度分别为0.020、0.001 mg/L。2种重金属离子的联合毒性大于任一重金属离子的毒性,联合毒性表现为协同作用。  相似文献   

15.
利用彗星电泳技术,研究了不同胁迫浓度和胁迫时间下,Cd2+和Hg2+对四角蛤蜊(Mactra veneriformis)血细胞DNA损伤的情况.研究结果显示,50、100和200μg/L Cd2+胁迫14天不能造成四角蛤蜊血细胞DNA损伤.10、20和40μg/L Hg2+胁迫均能明显损伤血细胞DNA,并且DNA损伤程...  相似文献   

16.
为探讨Ca2+、Mg2+、盐度对凡纳滨对虾体内代谢酶的相对独立作用和相互影响,进而为提高凡纳滨对虾生长力和免疫力提供理论依据,本实验采取L49(78)安排7水平Ca2+、Mg2+、盐度,L8(27)安排2水平Ca2+、Mg2+、盐度,开展60 d凡纳滨对虾(Litopenaeus vannamei)养殖试验,通过比较对虾体内消化酶、ATP酶及免疫类酶的活性以分析Ca2+、Mg2+、盐度对凡纳滨对虾生长力和免疫力的影响。结果表明:水体中Ca2+、Mg2+、盐度对消化酶具有显著影响(P<0.05),其中与对虾消化吸收联系最紧密的蛋白酶中,盐度对胃蛋白酶影响显著,盐度为10时酶活最高,Ca2+、盐度对类胰蛋白酶影响显著,Ca2+为200 mg/L,盐度为20时,酶活最高;Ca2+、Mg2+、盐度对ATP酶具有显著影响(P<0.05),其中对Na+-K+-ATP酶都有显著影响,Ca2+为300 mg/L,Mg2+为500 mg/L,盐度为30时酶活最高,Ca2+、Mg2+对Mg2+-ATP酶具有显著影响,Ca2+为200 mg/L,Mg2+为500 mg/L时酶活最高,Ca2+对Ca2+-ATP酶具有显著影响,Ca2+为200、300 mg/L时酶活最高;Ca2+、Mg2+、盐度对凡纳滨对虾体内免疫酶具有显著影响(P<0.05),Ca2+、Mg2+、盐度对ACP都有显著影响,Ca2+为100 mg/L,Mg2+为150 mg/L,盐度为30时酶活最高,Mg2+对AKP具有显著影响,在150 mg/L时酶活最高,Ca2+、盐度对SOD酶活具有显著影响,Ca2+为100 mg/L,盐度为35时酶活最高;Ca2+、Mg2+、盐度间的交互作用对体内代谢酶也有一定影响。  相似文献   

17.
采用中心组合设计和响应曲面法在实验室条件下研究了Cd2+与Zn2+对马氏珠母贝受精率的影响。Cd2+、Zn2+的浓度范围分别为0.030—20mg/L、0.100—20mg/L。结果表明:Cd2+与Zn2+两因子对马氏珠母贝受精率的一次效应极显著(P<0.01);Cd2+与Zn2+两因子一次互作效应极显著(P<0.01)。经响应曲面法分析,随着Cd2+与Zn2+浓度的增加受精率呈下降趋势,当Zn2+浓度在最低浓度(0.100mg/L)时,受精率随着Cd2+浓度的上升而下降;当Cd2+浓度在最低浓度(0.030mg/L)时,受精率随Zn2+浓度的上升而先下降后升高。本实验建立了马氏珠母贝受精率与Cd2+、Zn2+间关系的模型方程(R2=0.996,Adj.R2=0.987,Pred.R2=0.887,P<0.01)并可用于预测Cd2+、Zn2+对马氏珠母贝受精率的影响。  相似文献   

18.
为研究青蛤(Cyclina sinensis)对重金属Cu~(2+)的蓄积作用及免疫机能的影响,开展了Cu~(2+)对青蛤的急性毒性实验,观察青蛤在96 h Cu~(2+)半致死浓度和安全浓度胁迫下,不同组织的蓄积趋势,及血淋巴液中SOD、CAT和ACP活性的变化。结果显示:Cu~(2+)的半致死浓度为0.807 mg/L,安全浓度为0.00807 mg/L。鳃和内脏团组织中蓄积的Cu~(2+)浓度与处理时间呈正相关;在半致死和安全浓度胁迫下,鳃组织中Cu~(2+)蓄积速度均快于内脏团;在半致死浓度胁迫下血淋巴液中SOD、CAT和ACP活性呈现先诱导再抑制的趋势,安全浓度下无明显变化,但均高于对照组水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号