首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 930 毫秒
1.
We present the analysis of a large solar near-relativistic electron event observed by the Ulysses and the ACE spacecraft on 8 November 2000, when Ulysses was located at a heliocentric distance of 2.4 AU and at a heliographic latitude of ??80° S. We use a particle propagation model to infer the local interplanetary transport conditions and the injection histories of the near-relativistic electrons observed by both spacecraft. We find different local transport conditions for each set of observations. The inferred injection profiles for both spacecraft extend for several hours; but the injection at Ulysses was smaller and started later. The association with type II radio emission suggests that the heliospheric electrons were provided by coronal shock acceleration. An analysis of the in situ magnetic field and plasma measurements indicates that the global configuration of the heliosphere (disturbed by transient structures) could play a role in shaping the characteristics of solar energetic particle events observed from different locations.  相似文献   

2.
The series of nine impulsive, highly collimated beams of near-relativistic electrons seen by ACE/EPAM on 26 and 27 June 2004 occurred at a quiet time with respect to solar flare and CME production. However, they were accompanied by decametric type III radio bursts observed by WIND/WAVES, which had progressively higher starting frequencies, suggestive of coronal acceleration. There were no CMEs seen by SOHO/LASCO in association with any of the type III bursts except possibly the first. The energy spectrum of the electrons was soft, typically E−4.5 but extended up to at least ∼200 keV. We suggest that the source region for these events is in the high corona. We discuss this result in the context of solar electron acceleration at other times.  相似文献   

3.
Smith  C.W.  Ness  N.F.  Burlaga  L.F.  Skoug  R.M.  McComas  D.J.  Zurbuchen  T.H.  Gloeckler  G.  Haggerty  D.K.  Gold  R.E.  Desai  M.I.  Mason  G.M.  Mazur  J.E.  Dwyer  J.R.  Popecki  M.A.  Möbius  E.  Cohen  C.M.S.  Leske  R.A. 《Solar physics》2001,204(1-2):227-252
We present ACE observations for the six-day period encompassing the Bastille Day 2000 solar activity. A high level of transient activity at 1 AU, including ICME-driven shocks, magnetic clouds, shock-accelerated energetic particle populations, and solar energetic ions and electrons, are described. We present thermal ion composition signatures for ICMEs and magnetic clouds from which we derive electron temperatures at the source of the disturbances and we describe additional enhancements in some ion species that are clearly related to the transient source. We describe shock acceleration of 0.3–2.0 MeV nucl−1 protons and minor ions and the relative inability of some of the shocks to accelerate significant energetic ion populations near 1 AU. We report the characteristics of < 20 MeV nucl−1 solar energetic ions and < 0.32 MeV electrons and attempt to relate the release of energetic electrons to particular source regions.  相似文献   

4.
The effect of an interplanetary atomic hydrogen gas on solar wind proton, electron and α-particle temperatures beyond 1 AU is considered. It is shown that the proton temperature (and probably also the α-particle temperature) reaches a minimum between 2 AU and 4 AU, depending on values chosen for solar wind and interstellar gas parameters. Heating of the electron gas depends primarily on the thermal coupling of the protons and electrons. For strong coupling (whenT p ≳T e ), the electron temperature reaches a minimum between 4 AU and 8 AU, but for weak coupling (Coulomb collisions only), the electron temperature continues to decrease throughout the inner solar system. A spacecraft travelling to Jupiter should be able to observe the heating effect of the solar wind-interplanetary hydrogen interaction, and from such observations it may be possible of infer some properties of the interstellar neutral gas. Currently a National Research Council Resident Research Associate.  相似文献   

5.
On 17 January 2005 two fast coronal mass ejections were recorded in close succession during two distinct episodes of a 3B/X3.8 flare. Both were accompanied by metre-to-kilometre type-III groups tracing energetic electrons that escape into the interplanetary space and by decametre-to-hectometre type-II bursts attributed to CME-driven shock waves. A peculiar type-III burst group was observed below 600 kHz 1.5 hours after the second type-III group. It occurred without any simultaneous activity at higher frequencies, around the time when the two CMEs were expected to interact. We associate this emission with the interaction of the CMEs at heliocentric distances of about 25 R . Near-relativistic electrons observed by the EPAM experiment onboard ACE near 1 AU revealed successive particle releases that can be associated with the two flare/CME events and the low-frequency type-III burst at the time of CME interaction. We compare the pros and cons of shock acceleration and acceleration in the course of magnetic reconnection for the escaping electron beams revealed by the type-III bursts and for the electrons measured in situ.  相似文献   

6.
The spatial and spectral behaviors of two solar flares observed by the Nobeyama Radioheliograph (NoRH) on 24 August 2002 and 22 August 2005 are explored. They were observed with a single loop-top source and double footpoint sources at the beginning, then with looplike structures for the rest of the event. NoRH has high spatial and temporal resolution at the two frequencies of 17 and 34 GHz where a nonthermal radio source is often optically thin. Such capabilities give us an opportunity to study the spatial and spectral behaviors of different microwave sources. The 24 August 2002 flare displayed a soft – hard – soft (SHS) spectral pattern in the rising – peak – decay phases at 34 GHz, which was also observed for the spectral behavior of both loop-top and footpoint sources. In contrast, the 22 August 2005 flare showed a soft – hard – harder (SHH) spectral pattern for its both loop-top and footpoint sources. It is interesting that this event showed a harder spectrum in the early rising phase. We found a positive correlation between the spectral index and microwave flux in both the loop-top source and the footpoint sources in both events. The conclusions drawn from the flux index could apply to the electron index as well, because of their simple linear relationship under the assumption of nonthermal gyrosynchrotron mechanism. Such a property of spatial and spectral behaviors of microwave sources gives an observational constraint on the electron acceleration mechanism and electron propagation.  相似文献   

7.
We explore the link between solar energetic particles (SEPs) observed at 1 AU and large-scale disturbances propagating in the solar corona, named after the Extreme ultraviolet Imaging Telescope (EIT) as EIT waves, which trace the lateral expansion of a coronal mass ejection (CME). A comprehensive search for SOHO/EIT waves was carried out for 179 SEP events during Solar Cycle 23 (1997?–?2006). 87 % of the SEP events were found to be accompanied by EIT waves. In order to test if the EIT waves play a role in the SEP acceleration, we compared their extrapolated arrival time at the footpoint of the Parker spiral with the particle onset in the 26 eastern SEP events that had no direct magnetic connection to the Earth. We find that the onset of proton events was generally consistent with this scenario. However, in a number of cases the first near-relativistic electrons were detected too early. Furthermore, the electrons had in general only weakly anisotropic pitch-angle distributions. This poses a problem for the idea that the SEPs were accelerated by the EIT wave or in any other spatially confined region in the low corona. The presence of weak electron anisotropies in SEP events from the eastern hemisphere suggests that transport processes in interplanetary space, including cross-field diffusion, play a role in giving the SEPs access to a broad range of helio-longitudes.  相似文献   

8.
The Reuven Ramaty High Energy Spectroscopic Imager (RHESSI) X-ray data base (February 2002 – May 2006) has been searched to find solar flares with weak thermal components and flat photon spectra. Using a regularized inversion technique, we determine the mean electron flux distribution from count spectra for a selection of events with flat photon spectra in the 15 – 20 keV energy range. Such spectral behavior is expected for photon spectra either affected by photospheric albedo or produced by electron spectra with an absence of electrons in a given energy range (e.g., a low-energy cutoff in the mean electron spectra of nonthemal particles). We have found 18 cases that exhibit a statistically significant local minimum (a dip) in the range of 13 – 19 keV. The positions and spectral indices of events with low-energy cutoff indicate that such features are likely to be the result of photospheric albedo. It is shown that if the isotropic albedo correction is applied, all low-energy cutoffs in the mean electron spectrum are removed, and hence the low-energy cutoffs in the mean electron spectrum of solar flares above ∼ 12 keV cannot be viewed as real features. If low-energy cutoffs exist in the mean electron spectra, their energies should be less than ∼ 12 keV.  相似文献   

9.
A series of solar cm-radio bursts are analyzed by a new inverse method estimating spatial changes of the superthermal electron distribution in solar cm-radio burst sources. It is found that the measure of the spatial change of superthermal electrons in the radio source ν n is always greater than that for the magnetic field ν B and it is linearly dependent on the spectral index of the electrons δ as ν n ≈0.5δ. This relation is explained in the simplified flare-loop model integrating the analytical solutions of the Fokker – Planck equation. The mean value of ν B is found to be 0.36±0.04, which is very close to the value of ν B =0.38±0.02 derived from the dependence of the magnetic field strength on the height in the active region measured by RATAN-600.  相似文献   

10.
Arbitrary amplitude dust-acoustic double-layers (DA-DLs) in a plasma with suprathermal electrons, two-temperature thermal ions, and warm drifting dust grains are investigated. Our results reveal that the spatial patterns of the DA-DLs are affected by the degree of the electron suprathermality. The electron thermalization involves a decrease of the cold ion component density, for the existence of localized DA-DLs. An increase of the dust drift velocity requires a decrease of κ (the electron spectral index), for the onset of dust-acoustic double-layers. An increase of the Mach number M leads to an increase of the DL amplitude as well as the corresponding electron spectral index for which the DL occurs.  相似文献   

11.
According to the solar proton data observed by Geostationary Operational Environmental Satellites(GOES), ground-based neutron monitors on Earth and near-relativistic electron data measured by the ACE spacecraft, the onset times of protons with different energies and near-relativistic electrons have been estimated and compared with the time of solar soft and hard X-ray and radio burst data.The results show that first arriving relativistic and non-relativistic protons and electrons may have been accelerated by the concurrent flare. The results also suggest that release times of protons with different energies may be different, and the protons with lower energy may have been released earlier than those with higher energy. Some protons accelerated by concurrent flares may be further accelerated by the shock driven by the associated CME.  相似文献   

12.
Data are presented from the IMP-4 satellite of 0.3–12 MeV electrons from the Sun between May 24, 1967 and May 2, 1969. Correlations with contemporary proton intensity increases at energies above 1 MeV are studied. Classical solar flare events such as those frequently observed from 30°W–60°W in solar longitude are not discussed. Categories of unusual events are defined and examples of each type are given. Discussion of these events centers around the emission and propagation of energetic particles from the point of origin on the Sun to the Earth. The results of this study are the following: (1) The differential electron energy spectrum (0.3–12 keV) from solar flares appears to be a constant of the flare process, with the spectral index = (-)3.0 ± 0.2. (2) Particle emission from solar flares contains a prompt component, which is injected into the interplanetary medium beyond the Sun and which is responsible for the diffusion characteristics of solar particle events, and a delayed component which is effectively contained in the lower solar atmosphere where it diffuses typically ± 100° in longitude and gradually escapes into interplanetary space. The delayed component gives rise to the corotating features commonly observed after the impulsive and diffusive onset from the prompt component. This is not the same as the two component model discussed by Lin (1970a) in which 40 keV electrons are often observed as a separate phenomenon and frequently precede higher energy particles observed at 1 AU. (3) Storage of electrons > 300 keV and protons > 1 MeV is essential to explain emission and propagation characteristics of solar particle events. In some rare cases the storage mechanism appears to be very efficient, culminating in a catastrophic decay of the trapping region. (4) The events with low proton/electron ratios all occur at least three weeks after the previous relativistic electron producing flare.  相似文献   

13.
We study the influence of the large-scale interplanetary magnetic field configuration on the solar energetic particles (SEPs) as detected at different satellites near Earth and on the correlation of their peak intensities with the parent solar activity. We selected SEP events associated with X- and M-class flares at western longitudes, in order to ensure good magnetic connection to Earth. These events were classified into two categories according to the global interplanetary magnetic field (IMF) configuration present during the SEP propagation to 1 AU: standard solar wind or interplanetary coronal mass ejections (ICMEs). Our analysis shows that around 20 % of all particle events are detected when the spacecraft is immersed in an ICME. The correlation of the peak particle intensity with the projected speed of the SEP-associated coronal mass ejection is similar in the two IMF categories of proton and electron events, ≈?0.6. The SEP events within ICMEs show stronger correlation between the peak proton intensity and the soft X-ray flux of the associated solar flare, with correlation coefficient r=0.67±0.13, compared to the SEP events propagating in the standard solar wind, r=0.36±0.13. The difference is more pronounced for near-relativistic electrons. The main reason for the different correlation behavior seems to be the larger spread of the flare longitude in the SEP sample detected in the solar wind as compared to SEP events within ICMEs. We discuss to what extent observational bias, different physical processes (particle injection, transport, etc.), and the IMF configuration can influence the relationship between SEPs and coronal activity.  相似文献   

14.
This paper presents general relations for the intensity of the resonant transition radiation (RTR) and their detailed analysis. This analysis shows that the spectrum amplitude of the x-mode at some frequencies for high-energy electrons can grow with the magnetic field increase in some interval from zero value; it can even dominate over that for the o-mode. With further magnetic field increase, the intensity of the RTR x-mode decreases in comparison with the intensity of the o-mode and this decrease is higher for higher velocities of energetic electrons. The polarization of the RTR depends on the velocity of energetic electrons, too. For velocities lower than some velocity limit v<v i the RTR emission is unpolarized in a broad interval of magnetic field intensities in the radio source. For reasonable values of indices of the power-law distribution functions of energetic electrons, the RTR is broadband in frequencies (df/f≈0.2−0.4). Furthermore, we show various dependencies of the RTR and its spectral characteristics. Assuming the same radio flux of the transition radiation and the gyro-synchrotron one at the Razin frequency, we estimate the limit magnetic field in the radio source of the transition radiation. Then, we analyze possible sources of small-scale inhomogeneities (thermal density fluctuations, Langmuir and ion-sound waves), which are necessary for the transition radiation. Although the small-scale inhomogeneities connected with the Langmuir waves lead to the plasma radiation, which is essentially stronger than RTR, the inhomogeneities of the ion-sound waves are suitable for the RTR without any other radiation. We present the relations describing the RTR for anisotropic distribution functions of fast electrons. We consider the distribution functions of fast electrons in the form of the Legendre polynomials which depend on the pitch-angle. We analyze the influence of the degree of the anisotropy (an increase of the number of terms in the Legendre polynomial) on spectral characteristics of the RTR. A comparison with previous studies is made. As an example of the use of the derived formulas for the RTR, the 24 December 1991 event is studied. It is shown that the observed decimetric burst can be generated by the RTR in the plasma with the density inhomogeneities at the level 〈ΔN 2〉/N 2=2.5⋅10−5.  相似文献   

15.
We study 27 increases of the flux of 300–800 keV electrons on board HELIOS A or B, associated with intense type III radio bursts close to perihelion passages of the two spacecraft, during the solar minimum. Electrons can be detected inside cones with an angular width between 30° and 60°. Though only intense type III bursts are associated with recognizable electron events in space, such an association does not exist for all of them; this fact and great differences in fluxes of the individual events indicate that, apart from the intensity, also some other charactefistic of the type III burst acceleration or propagation process determines the resulting flux of electrons in space; the energy spectrum of the accelerated electrons is one of the likely candidates. A comparison of the electron flux in these events with the flux of 1.7–3.7 MeV nucl–1 helium reveals very large variations of the helium/electron flux ratio, by a factor of at least 15 and possibly much higher. We demonstrate that these variations are not caused by propagation effects in interplanetary space. Therefore, they must be due either to propagation effects in the solar corona or, more likely, to intrinsic variations in the relative production of electrons and nuclei in the type III burst process. An extrapolation of the observed fluxes to 1 AU shows that in only 7 of the 27 electron events studied might a marginal > 1.7 MeV helium flux be recognized ar the Earth distance.  相似文献   

16.
This paper explores the time evolution of microwave and hard X-ray spectral indexes in the solar flare observed by Nobeyama Radio Polarimeters (NoRP) and the Ramaty High Energy Solar Spectroscopy Imager (RHESSI) on 13 December 2006. The microwave spectral index, γ MW, is derived from the emissions at two frequencies, 17 and 35 GHz, and hard X-ray spectral index, γ HXR, is derived from RHESSI spectra. Fifteen subpeaks are detected at the microwave and hard X-ray emissions. The microwave spectral indexes tend to be harder than hard X-ray spectral indexes during the flare, which is consistent with previous findings. All detected subpeaks follow the soft-hard-soft spectral behaviours in the hard X-ray rise-peak-decay phases. However, the corresponding microwave subpeaks display different spectral behaviour, such as soft-hard-soft, soft-hard-harder, soft-hard-soft + hard or irregular patterns. These contradictions reveal the complicated acceleration mechanism for low- and high-energy electrons during this event. It is also interesting that the microwave interpeak spectral indexes are much more consistent with one another.  相似文献   

17.
We present calculations, made for the first time, of the gyrosynchrotron emission by mildly relativistic electrons with anisotropic pitch-angle distribution using a realistic magnetic loop model in three dimensions. We investigated the intensity, spectral index of the optically thin region of the spectrum, the spatial morphology and the dependency on the source position on the solar disk. The method to describe a three-dimensional source and the procedure to perform the calculations are presented. We have modified the Ramaty’s gyrosynchrotron code to allow the evaluation of anisotropic pitch-angle electron distributions, as described in the complete formalism. We found that anisotropic electron distributions affect the intensity of the radiation, spatial morphology and spectrum of spatially resolved sources. However, the spatially integrated spectrum of the emission seems to be insensitive to the electron pitch-angle distribution, as the magnetic field inhomogeneity smooths out the effects of the anisotropic distribution in the produced radiation, in contrast to homogeneous sources.  相似文献   

18.
We have performed a survey of the characteristics of two types of large spatial-scale solar-wind structures, stream interaction regions (SIRs), and interplanetary coronal mass ejections (ICMEs), near 5.3 AU, using solar-wind observations from Ulysses. Our study is confined to the three aphelion passes of Ulysses, and also within ± 10° of the solar ecliptic plane, covering a part of 1992, 1997 – 1998, and 2003 – 2005, representing three slices of different phases of the solar activity cycle. Overall, there are 54 SIRs and 60 ICMEs in the survey. Many are merged in hybrid events, suggesting that they have undergone multiple interactions prior to reaching Jovian orbit. About 91% of SIRs occur with shocks, with 47% of such shocks being forward – reverse shock pairs. The solar-wind velocity sometimes stays constant or even decreases within the interaction region near 5.3 AU, in contrast with the gradual velocity increase during SIRs at 1 AU. Shocks are driven by 58% of ICMEs, with 94% of them being forward shocks. Some ICMEs seem to have multiple small flux ropes with different scales and properties. We quantitatively compare various properties of SIRs and ICMEs at 5.3 AU, and study their statistical distributions and variations with solar activity. The width, maximum dynamic pressure, and peak perpendicular pressure of SIRs all become larger than ICMEs. Dynamic pressure (P dyn) is expected to be important for Jovian magnetospheric activity. We have examined the distributions of P dyn of SIRs, ICMEs, and general solar wind, but these cannot explain the observed bimodal distribution of the location of the Jovian magnetopause. By comparing the properties of SIRs and ICMEs at 0.72, 1, and 5.3 AU, we find that the ICME expansion slows down significantly between 1 and 5.3 AU. Some transient and small streams in the inner heliosphere have merged into a single interaction region. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

19.
We present an analysis of small-scale, periodic, solar-wind density enhancements (length scales as small as ≈ 1000 Mm) observed in images from the Heliospheric Imager (HI) aboard STEREO-A. We discuss their possible relationship to periodic fluctuations of the proton density that have been identified at 1 AU using in-situ plasma measurements. Specifically, Viall, Kepko, and Spence (J. Geophys. Res. 113, A07101, 2008) examined 11 years of in-situ solar-wind density measurements at 1 AU and demonstrated that not only turbulent structures, but also nonturbulent, periodic density structures exist in the solar wind with scale sizes of hundreds to one thousand Mm. In a subsequent paper, Viall, Spence, and Kasper (Geophys. Res. Lett. 36, L23102, 2009) analyzed the α-to-proton solar-wind abundance ratio measured during one such event of periodic density structures, demonstrating that the plasma behavior was highly suggestive that either temporally or spatially varying coronal source plasma created those density structures. Large periodic density structures observed at 1 AU, which were generated in the corona, can be observable in coronal and heliospheric white-light images if they possess sufficiently high density contrast. Indeed, we identify such periodic density structures as they enter the HI field of view and follow them as they advect with the solar wind through the images. The smaller, periodic density structures that we identify in the images are comparable in size to the larger structures analyzed in-situ at 1 AU, yielding further evidence that periodic density enhancements are a consequence of coronal activity as the solar wind is formed.  相似文献   

20.
Type III radio bursts observed at kilometric wavelengths ( 0.35 MHz) by the OGO-5 spacecraft are compared with > 45 keV solar electron events observed near 1 AU by the IMP-5 and Explorer 35 spacecraft for the period March 1968–November 1969.Fifty-six distinct type III bursts extending to 0.35 MHz ( 50 R equivalent height above the photosphere) were observed above the threshold of the OGO-5 detector; all but two were associated with solar flares. Twenty-six of the bursts were followed 40 min later by > 45 keV solar electron events observed at 1 AU. All of these 26 bursts were identified with flares located west of W 09 solar longitude. Of the bursts not associated with electron events only three were identified with flares west of W 09, 18 were located east of W 09 and 7 occurred during times when electron events would be obscured by high background particle fluxes.Thus almost all type III bursts from the western half of the solar disk observed by OGO-5 above a detection flux density threshold of the order of 10–13 Wm–2 Hz–1 at 0.35 MHz are followed by > 45 keV electrons at 1 AU with a maximum flux of 10 cm–2 s–1 ster–1. If particle propagation effects are taken into account it is possible to account for lack of electron events with the type III bursts from flares east of the central meridian. We conclude that streams of 10–100 keV electrons are the exciting agent for type III bursts and that these same electrons escape into the interplanetary medium where they are observed at 1 AU. The total number of > 45 keV electrons emitted in association with a strong kilometer wavelength type III burst is estimated to be 5 × 1032.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号