首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-resolution lithostratigraphy, mineral magnetic, carbon, pollen, and macrofossil analyses, and accelerator mass spectrometry 14C measurements were performed in the study of a sediment sequence from Lake Tambichozero, southeastern Russian Karelia, to reconstruct late-glacial and early Holocene aquatic and terrestrial environmental changes. The lake formed ca. 14,000 cal yr B.P. and the area around the lake was subsequently colonized by arctic plants, forming patches of pioneer communities surrounded by areas of exposed soil. A minor rise in lake productivity and the immigration of Betula pubescens occurred ca. 11,500 cal yr B.P. The rise in summer temperatures probably led to increased melting of remnant ice and enhanced erosion. The distinct increase in lake productivity and the development of open Betula-Populus forests, which are reconstructed based on plant macrofossil remains, indicate stable soils from 10,600 cal yr B.P. onward. Pinus and Picea probably became established ca. 9900 cal yr B.P.  相似文献   

2.
Archaeological investigations in Camels Back Cave, western Utah, recovered a series of small-mammal bone assemblages from stratified deposits dating between ca. 12,000 and 500 14C yr B.P. The cave's early Holocene fauna includes a number of species adapted to montane or mesic habitats containing grasses and/or sagebrush (e.g., Lepus townsendii, Marmota flaviventris, Reithrodontomys megalotis, and Brachylagus idahoensis) which suggest that the region was relatively cool and moist until after 8800 14C yr B.P. Between ca. 8600 and 8100 14C yr B.P. these mammals became locally extinct, taxonomic diversity declined, and there was an increase in species well-adapted to xeric, low-elevation habitats, including ground squirrels, Lepus californicus and Neotoma lepida. The early small-mammal record from Camels Back Cave is similar to the 11,300–6000 14C yr B.P. mammalian sequence from Homestead Cave, northwestern Utah, and provides corroborative data on Bonneville Basin paleoenvironments and mammalian responses to middle Holocene desertification.  相似文献   

3.
Pollen analysis on a 9.54-m sediment core from lake Chignahuapan in the upper Lerma basin, the highest intermontane basin in Central Mexico (2570 m asl), documents vegetation and limnological changes over the past ∼23,000 14C yr. The core was drilled near the archaeological site of Santa Cruz Atizapán, a site with a long history of human occupation, abandoned at the end of the Epiclassic period (ca. 900 AD). Six radiocarbon AMS dates and two well-dated volcanic events, the Upper Toluca Pumice with an age of 11,600 14C yr B.P. and the Tres Cruces Tephra of 8500 14C yr B.P., provide the chronological framework for the lacustrine sequence. From ca. 23,000 14C yr B.P. to ca. 11,600 14C yr B.P. the plant communities were woodlands and grasslands based on the pollen data. The glacial advances MII-1 and MII-2 correlate with abundant non-arboreal pollen, mainly grasses, from ca. 21,000 to 16,000 14C yr B.P., and at ca. 12,600 14C yr B.P. During the late Pleistocene, lake Chignahuapan was a shallow freshwater lake with a phase of lower level between 19,000 and 16,000 14C yr B.P. After 10,000 14C yr B.P., tree cover in the area increased, and a more variable lake level is documented. Late Holocene (ca. 3100 14C yr B.P.) deforestation was concurrent with human population expansion at the beginning of the Formative period (1500 B.C.). Agriculture and manipulation of the lacustrine environment by human lakeshore populations appear at 1200 14C yr B.P. (550 A.D.) with the appearance of Zea mays pollen and abundant charcoal particles.  相似文献   

4.
Preliminary phytolith analysis of ephemeral lake fill sediment at Long Pocket, near Toomba, northeast Queensland, Australia, indicates that a C4-dominated grassland with a minor woody component has been present in the region since ca. 8000 cal yr B.P. Based on the modern distribution of C4 and C3 native grasses in Australia, this suggests that mean summer temperatures of at least 14°C (ca. 10°C cooler than present) were maintained since the early Holocene. This interpretation is comparable with previous studies, which together imply that the establishment of C4-dominated grasses in central and northeast Australia occurred between the last glacial maximum (most likely after ca. 16,000 14C yr B.P.) and ca. 7200 14C yr B.P. (ca. 8000 cal yr B.P.). Taxonomic composition of the grassland appears relatively consistent since the early Holocene at Long Pocket and includes phytoliths comparable with those from modern Arundinoideae, Panicoideae, and Chloridoideae. Rare non-grass phytoliths are also present. A gradual decrease in abundance of saddle phytolith forms (attributed to Chloridoideae grasses) from the base of the record at ca. 6500-7000 cal yr B.P. suggests decreasing aridity throughout the Holocene. This trend could reflect a locally drawn out effect of the end of the postglacial arid period due to the well-drained basalt flow catchment maintaining a local arid habitat for the Chloridoideae grasses.  相似文献   

5.
Pollen in Quaternary deposits from the subtropical Hanjiang Delta records three major phases in the local vegetation and climate history during the last 55,000 yr: (1) a prevalent cool-to-temperate and humid climate at ca. 24,000 14C yr B.P. is indicated by abundant pollen of temperate trees including conifers; (2) between 20,000 and 15,000 14C yr B.P., a cold, dry environment was associated with low sea level during the last glaciation, leading to subaerial exposure, weathering, and interruption of sedimentation, as well as departure from the region of Dacrydium and Sonneratia; (3) a short-term expansion of grassland at ca. 10,300 14C yr B.P. reduced the predominant Lauraceae-Fagaceae evergreen forest, possibly corresponding to the Younger Dryas cooling. The combined data indicate a maximum sea-level rise in the mid-Holocene (7500–4000 14C yr B.P.) and a marine influence in the late Pleistocene at 45,000–20,000 14C yr B.P. The Holocene warming, however, did not bring back moisture-sensitive taxa, indicating high seasonal aridity probably caused by renewed monsoon conditions.  相似文献   

6.
Uranium-series dating of dense tufa deposited in a small cave, at former lake margins, and in large tufa mounds clarifies the timing of lake-level variation during the past 400,000 yr in the Pyramid Lake basin. A moderate-sized lake occasionally overflowed the Emerson Pass sill at elevation of 1207 m between ca. 400,000 and 170,000 and from ca. 60,000 to 20,000 yr B.P., as shown by230Th/234U ages of the cave samples,230Th-excess ages of tubular tufas, and average isochron-plot ages of shoreline-deposited tufas. (By comparison, modern Pyramid Lake is 50 m below this sill). There is a lack of tufa record during the intervening period from ca. 170,000 to 60,000 yr B.P. After ca. 20,000 yr, Pyramid Lake underwent abrupt changes in level and, based on previous14C ages, reached its highest elevation (ca 1335 m) at ca. 14,000 yr B.P. The youngest uranium-series ages are comparable with previously reported14C ages.  相似文献   

7.
A high-resolution pollen record from a 5-m-long sediment core from the closed-lake basin Laguna Piusbi in the southern Colombian Pacific lowlands of Chocó, dated by 11 AMS14C dates that range from ca. 7670 to 22014C yr B.P., represents the first Holocene record from the Chocó rain forest area. The interval between 7600 and 610014C yr B.P. (500–265 cm), composed of sandy clays that accumulated during the initial phase of lake formation, is almost barren of pollen. Fungal spores and the presence of herbs and disturbance taxa suggest the basin was at least temporarily inundated and the vegetation was open. The closed lake basin might have formed during an earthquake, probably about 440014C yr B.P. From the interval of about 600014C yr B.P. onwards, 200 different pollen and spore types were identified in the core, illustrating a diverse floristic composition of the local rain forest. Main taxa are Moraceae/Urticaceae,Cecropia,Melastomataceae/Combretaceae,Acalypha, Alchornea,Fabaceae,Mimosa, Piper, Protium, Sloanea, Euterpe/Geonoma, Socratea,andWettinia.Little change took place during that time interval. Compared to the pollen records from the rain forests of the Colombian Amazon basin and adjacent savannas, the Chocó rain forest ecosystem has been very stable during the late Holocene. Paleoindians probably lived there at least since 346014C yr B.P. Evidence of agricultural activity, shown by cultivation ofZea maissurrounding the lake, spans the last 1710 yr. Past and present very moist climate and little human influence are important factors in maintaining the stable ecosystem and high biodiversity of the Chocó rain forest.  相似文献   

8.
Lithology, pollen, macrofossils, and stable carbon isotopes from an intermontane basin bog site in southern New Zealand provide a detailed late-glacial and early Holocene vegetation and climate record. Glacial retreat occurred before 17,000 cal yr B.P., and tundra-like grassland–shrubland occupied the basin shortly after. Between 16,500 and 14,600 cal yr B.P., a minor regional expansion of forest patches occurred in response to warming, but the basin remained in shrubland. Forest retreated between 14,600 and 13,600 cal yr B.P., at about the time of the Antarctic Cold Reversal. At 13,600 cal yr B.P., a steady progression from shrubland to tall podocarp forest began as the climate ameliorated. Tall, temperate podocarp trees replaced stress-tolerant shrubs and trees between 12,800 and 11,300 cal yr B.P., indicating sustained warming during the Younger Dryas Chronozone (YDC). Stable isotopes suggest increasing atmospheric humidity from 11,800 to 9300 cal yr B.P. Mild (annual temperatures at least 1°C higher than present), and moist conditions prevailed from 11,000 to 10,350 cal yr B.P. Cooler, more variable conditions followed, and podocarp forest was completely replaced by montane Nothofagus forest at around 7500 cal yr B.P. with the onset of the modern climate regime. The Cass Basin late-glacial climate record closely matches the Antarctic ice core records and is in approximate antiphase with the North Atlantic.  相似文献   

9.
Sediments from Rapid Lake document glacial and vegetation history in the Temple Lake valley of the Wind River Range, Wyoming over the past 11,000 to 12,000 yr. Radiocarbon age determinations on basal detrital organic matter from Rapid Lake (11,770 ± 710 yr B.P.) and Temple Lake (11,400 ± 630 yr B.P.) bracket the age of the Temple Lake moraine, suggesting that the moraine formed in the late Pleistocene. This terminal Pleistocene readvance may be represented at lower elevations by the expansion of forest into intermontane basins 12,000 to 10,000 yr B.P. Vegetation in the Wind River Range responded to changing environmental conditions at the end of the Pleistocene. Following deglaciation, alpine tundra in the Temple Lake valley was replaced by a Pinus albicaulis parkland by about 11,300 14C yr B.P. Picea and Abies, established by 10,600 14C yr B.P., grew with Pinus albicaulis in a mixed conifer forest at and up to 100 m above Rapid Lake for most of the Holocene. Middle Holocene summer temperatures were about 1.5°C warmer than today. By about 5400 14C yr B.P. Pinus albicaulis and Abies became less prominent at upper treeline because of decreased winter snowpack and higher maximum summer temperatures. The position of the modern treeline was established by 3000 14 C yr B.P. when Picea retreated downslope in response to Neoglacial cooling.  相似文献   

10.
In order to establish paleoenvironmental conditions during the late Quaternary, four cores from the Basin of Mexico (central Mexico) were drilled in Chalco Lake, located in the southeastern part of the basin. The upper 8 m of two parallel cores were studied, using paleomagnetic, loss-on-ignition, pollen, and diatom analyses. Based on 11 14C ages, the analyzed record spans the last 19,000 14C yr B.P. Volcanic activity has affected microfossil abundances, both directly and indirectly, resulting in absence or reduction of pollen and diatom assemblages. Important volcanic activity took place between 19,000 and 15,000 yr B.P. when the lake was a shallow alkaline marsh and an increase of grassland pollen suggests a dry, cold climate. During this interval, abrupt environmental changes with increasing moisture occurred. From 15,000 until 12,500 yr B.P. the lake level increased and the pollen indicates wetter conditions. The highest lake level is registered from 12,500 to ca. 9000 yr B.P. The end of the Pleistocene is characterized by an increase in humidity. From 9000 until ca. 3000 yr B.P. Chalco Lake was a saline marsh and the pollen record indicates warmer conditions. After 3000 yr B.P. the lake level increased and human disturbance dominates the lacustrine record.  相似文献   

11.
A late Quaternary ichthyofauna from Homestead Cave, Utah, provides a new source of information on lake history in the Bonneville basin. The fish, represented by 11 freshwater species, were accumulated between 11,200 and 1000 14C yr B.P. by scavenging owls. The 87Sr/86Sr ratio of Lake Bonneville varied with its elevation; 87Sr/86Sr values of fish from the lowest stratum of the cave suggest they grew in a lake near the terminal Pleistocene Gilbert shoreline. In the lowest deposits, a decrease in fish size and an increase in species tolerant of higher salinities or temperatures suggest multiple die-offs associated with declining lake levels. An initial, catastrophic, post-Provo die-off occurred at 11,300–11,200 14C yr B.P. and was followed by at least one rebound or recolonization of fish populations, but fish were gone from Lake Bonneville sometime before 10,400 14C yr B.P. This evidence is inconsistent with previous inferences of a near desiccation of Lake Bonneville between 13,000 and 12,000 14C yr B.P. Peaks in Gila atraria frequencies in the upper strata suggest the Great Salt Lake had highstands at 3400 and 1000 14C yr B.P.  相似文献   

12.
Palynological analysis of a core from the Atlantic rain forest region in Brazil provides unprecedented insight into late Quaternary vegetational and climate dynamics within this southern tropical lowland. The 576-cm-long sediment core is from a former beach-ridge “valley,” located 3 km inland from the Atlantic Ocean. Radio-carbon dates suggest that sediment deposition began prior to 35,000 14C yr B.P. Between ca. 37,500 and ca. 27,500 14C yr B.P. and during the last glacial maximum (LGM; ca. 27,500 to ca. 14,500 14C yr B.P.), the coastal rain forest was replaced by grassland and patches of cold-adapted forest. Tropical trees, such as Alchornea, Moraceae/Urticaceae, and Arecaceae, were almost completely absent during the LGM. Furthermore, their distributions were shifted at least 750 km further north, suggesting a cooling between 3°C and 7°C and a strengthening of Antarctic cold fronts during full-glacial times. A depauperate tropical rain forest developed as part of a successional sequence after ca. 12,300 14C yr B.P. There is no evidence that Araucaria trees occurred in the Atlantic lowland during glacial times. The rain forest was disturbed by marine incursions during the early Holocene period until ca. 6100 14C yr B.P., as indicated by the presence of microforaminifera. A closed Atlantic rain forest then developed at the study site.  相似文献   

13.
Pollen analysis of a sediment core from Zagoskin Lake on St. Michael Island, northeast Bering Sea, provides a history of vegetation and climate for the central Bering land bridge and adjacent western Alaska for the past ≥30,000 14C yr B.P. During the late middle Wisconsin interstadial (≥30,000-26,000 14C yr B.P.) vegetation was dominated by graminoid-herb tundra with willows (Salix) and minor dwarf birch (Betula nana) and Ericales. During the late Wisconsin glacial interval (26,000-15,000 14C yr B.P.) vegetation was graminoid-herb tundra with willows, but with fewer dwarf birch and Ericales, and more herb types associated with dry habitats and disturbed soils. Grasses (Poaceae) dominated during the peak of this glacial interval. Graminoid-herb tundra suggests that central Beringia had a cold, arid climate from ≥30,000 to 15,000 14C yr B.P. Between 15,000 and 13,000 14C yr B.P., birch shrub-Ericales-sedge-moss tundra began to spread rapidly across the land bridge and Alaska. This major vegetation change suggests moister, warmer summer climates and deeper winter snows. A brief invasion of Populus (poplar, aspen) occurred ca.11,000-9500 14C yr B.P., overlapping with the Younger Dryas interval of dry, cooler(?) climate. During the latest Wisconsin to middle Holocene the Bering land bridge was flooded by rising seas. Alder shrubs (Alnus crispa) colonized the St. Michael Island area ca. 8000 14C yr B.P. Boreal forests dominated by spruce (Picea) spread from interior Alaska into the eastern Norton Sound area in middle Holocene time, but have not spread as far west as St. Michael Island.  相似文献   

14.
Major Holocene monsoon changes in continental Southeast Asia are reconstructed from analysis of 14C-dated changes in pollen and organic/inorganic carbon in sediment cores taken from permanent, closed-basin, volcanic lakes in Ratanakiri Province, northeastern Cambodia. Analysis focuses on the nature and timing of monsoon changes, inferred from changes in vegetation and lake conditions. These data provide the first well-dated palynological record, covering most of the Holocene and continuous up to the present, from a terrestrial site in mainland Southeast Asia. The record from a 15-m core retrieved from Kara Lake, representing the last 9300 years, shows that the late Glacial conditions ended about 8500 14C yr B.P., more than 1000 years later than sites in southwest China. Summer monsoon intensity increased over the period ca. 8400–5300 14C yr B.P., similar to most other sites in the Asian monsoon region. A subsequent expansion of secondary forests at the expense of dense semievergreen forests suggest a drier climate leading to more frequent fire disturbance. After ca. 3500 14C yr B.P. disturbance frequency may have increased further with increasing seasonality. From ca. 2500 14C yr B.P. to the present, dense forest has recovered in a mosaic with annually burned dry forest, but climate may not be the main control on local vegetation dynamics in the late Holocene.  相似文献   

15.
A sediment core from Smorodinovoye Lake (SML), northeastern Siberia (area to the east of the Verkhoyansk Range) spanning the last 24,000 14C yr indicates that vegetational and climatic changes in the upper Indigirka basin resemble those in eastern Siberia (Lena basin and westward). For example, maximum postglacial summer temperatures at SML probably occurred 6000–4000 14C yr B.P., an age more in accordance with eastern than northeastern records. Larix arrived near the lake by 9600 14C yr B.P., approximately when forests expanded in the east but ca. 1500 14C yr later than forests were established in the neighboring upper Kolyma basin. Paleobotanical data further suggest that Larix possibly migrated southward from populations in the arctic lowlands of eastern Siberia and did not originate from interior refugia of the upper Kolyma basin. Although a Younger Dryas cooling has been noted in eastern Siberia, SML provides the first evidence from the northeast for a similar climatic reversal. Climatic variations seemingly have persisted between the Indigirka and Kolyma basins over at least the last 11,000 14C yr, despite the proximity of the two drainages and the occurrence of major changes in boundary conditions (e.g., seasonal insolation, sea levels) that have influenced other regional climatic patterns.  相似文献   

16.
The late‐glacial Bølling period was first identified by Johs. Iversen on the basis of pollen results from Lake Bølling Sø in Denmark. Because there were no radiocarbon dates from the sequence the Bølling Chronozone (12 000–13 000 14C yr BP) was later established on the basis of dates from other sites. A new project is reinvestigating the sediments from the Bølling Sø sequence with AMS radiocarbon dating and multiproxy analyses. Here we present results of AMS radiocarbon dating, macrofossil analyses, cladoceran analyses (Cladocera concentrations and chydorid ephippia) and Pediastrum analyses (concentrations). The AMS dates on land plant remains show that the lower part of the sequence is around 12 500 14C yr BP, and thus clearly pre‐dates the Allerød chronozone. However, construction of a chronology for the sequence was problematic, partly because of reworking of macroscopic plant remains. The climate ameliorated after glacial conditions to such an extent that growth of plants could begin at ca. 12 500 14C yr BP, but the results of multiproxy analyses show little evidence for a further warming period during the pre‐Allerød part of the sequence. Lake productivity was low, and tree birch rare or maybe absent. This may reflect widespread occurrence of dead ice, unstable soils, heavy in‐wash of minerogenic matter to the lake, resulting in turbid water and rapid sedimentation. The early pioneer vegetation was characterised by Salix polaris and Dryas octopetala, and by herbs. The Allerød Chronozone, and especially its initial part, appears to have been relatively warm but reduced cladoceran concentrations and increased proportion of chydorid ephippia suggest that climate cooled in the middle Allerød and that the late Allerød was colder than the early part. The early Younger Dryas was probably colder than the late Younger Dryas. Clear warming is apparent at the beginning of the Holocene, where the first macrofossil evidence of trees (Betula pubescens, Populus tremula) is found. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
This article presents a combined pollen and phytolith record of a 1.70-m sediment core from the wetlands of India Muerta (33° 42′ S, 53° 57′ W) in the lowland Pampa (grasslands) of southeastern Uruguay. Six 14C dates and the pollen and phytolith content of the samples permitted the recognition of four distinct climatic periods between 14,850 14C yr B.P. and the present. The Late Pleistocene period (between ca. 14,810 and ca. 10,000 14C yr B.P.) was characterized by drier and cooler conditions indicated by the presence of a C3-dominated grassland. These conditions prevailed until the onset of the warmer and more humid climate of the Holocene around 9450 14C yr B.P. The early Holocene (between around 10,000 and 6620 14C yr B.P.) was characterized by the establishment of wetlands in the region as evidenced by the formation of black peat, the increase in wetland taxa, and the replacement of C3 Pooideae by C4 Panicoideae grasses. During the mid-Holocene, around 6620 14C yr B.P., began a period of environmental change characterized by drier climatic conditions, which resulted in the expansion of halophytic communities in the flat, low-lying areas of the wetlands of India Muerta. About 4020 14C yr B.P. a massive spike of Amaranthaceae/Chenopodiaceae coupled with a radical drop in wetland species indicates another major and more severe period of dryness. After ca. 4000 14C yr B.P., a decrease of halophytic species indicates the onset of more humid and stable climatic conditions, which characterized the late Holocene.The findings reported in this article substantially improve our knowledge of the late Glacial and Holocene climate and vegetation in the region. The data provide a detailed record of the timing and severity of mid-Holocene environmental changes in southeastern South America. Significantly, the mid-Holocene drying trend coincided with major organizational changes in settlement, subsistence, and technology of the pre-Hispanic populations in the region, which gave rise to early Formative societies. This study also represents the first combined pollen and phytolith record for southeastern South America reinforcing the utility of phytoliths as significant indicators of long-term grassland dynamics.  相似文献   

18.
A new packrat midden chronology from Playas Valley, southwestern New Mexico, is the first installment of an ongoing effort to reconstruct paleovegetation and paleoclimate in the U.S.A.–Mexico Borderlands. Playas Valley and neighboring basins supported pluvial lakes during full and/or late glacial times. Plant macrofossil and pollen assemblages from nine middens in the Playas Valley allow comparisons of two time intervals: 16,000–10,000 and 4000–0 14C yr B.P. Vegetation along pluvial lake margins consisted of open pinyon–juniper communities dominated by Pinus edulis, Juniperus scopulorum, Juniperus cf. coahuilensis, and a rich understory of C4 annuals and grasses. This summer-flowering understory is also characteristic of modern desert grassland in the Borderlands and indicates at least moderate summer precipitation. P. edulis and J. scopulorum disappeared or were rare in the midden record by 10,670 14C yr B.P. The late Holocene is marked by the arrival of Chihuahuan desert scrub elements and few departures as the vegetation gradually became modern in character. Larrea tridentata appears as late as 2190 14C yr B.P. based on macrofossils, but may have been present as early as 4095 14C yr B.P. based on pollen. Fouquieria splendens, one of the dominant desert species present at the site today, makes its first appearance only in the last millennium. The midden pollen assemblages are difficult to interpret; they lack modern analogs in surface pollen assemblages from stock tanks at different elevations in the Borderlands.  相似文献   

19.
Late Weichselian lake sediments from a site in southern Sweden, were analysed for stable carbon and oxygen isotopes, as well as plant macrofossils and insect remains. By comparison of independent data sets, general climatic changes were demonstrated. Lithological, chemical and stable isotope data reveal two significant climatic oscillations at ca. 12 200–12 000 and ca. 11 000–10 200 yr BP respectively. Continental climatic conditions, indicated by evaporative enrichment of 18O in lake marl, characterise parts of the early lake history, including the Older Dryas Stadial. Distinct variations of δ13C in organic material is discussed in terms of climatically induced changes in lake-water chemistry. Different types of photosynthetic assimilation of dissolved inorganic carbon is proposed as a contributing factor influencing lake marl δ13C. The universal application of a positive correlation between lake marl δ18O and mean annual air temperature is questioned. Quantifications of mean summer and winter temperatures based on beetle analysis show a climatic optimum around 12 000 yr BP, a marked cooling around 11 000 yr BP and a strong amelioration at ca. 10 200 yr BP. These climatic events were accompanied by distinct changes in aquatic vegetation. Plant macrofossil and insect analyses indicate an open vegetation during the entire period studied. Biostratigraphical data reflecting local limnic and terrestrial vegetation and regional climate facilitate the interpretation of stable isotope data.  相似文献   

20.
Pollen data from two sites provide information on the postglacial vegetation and climate history of the Cascade Range. Indian Prairie in the western Cascade Range was colonized by subalpine forests of Pinus, Picea, and Tsuga and open meadows prior to ca. 12,400 14C yr B.P. The treeline lay 500 to 1000 m below its modern elevation and conditions were cooler than at present. From ca. 12,400 to ca. 9950 14C yr B.P. Abies became important and the forest resembled that presently found at middle elevations in the western Cascade Range. The pollen record implies a rise in treeline and warmer conditions than before. From ca. 10,000 to 4000-4500 14C yr B.P., conditions that were warmer and effectively drier than today led to the establishment of a closed forest composed of Pseudotsuga , Abies, and, at lower elevations, Quercus and Corylus . During this period, Gold Lake Bog in the High Cascades was surrounded by closed forest of Pinus and Abies. The early-Holocene pollen assemblages at both Indian Prairie and Gold Lake Bog lack modern analogues, and it is likely that greater-than-present summer radiation fostered unique climatic conditions and vegetation associations at middle and high elevations. In the late Holocene, beginning ca. 4000-4500 14C yr B.P., cooler and more humid conditions prevailed and the modern vegetation was established. A comparison of these sites with others in the Pacific Northwest suggests that major patterns of vegetational change at individual sites were a response to large-scale changes in the climate system that affected the entire region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号