首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of radiolarian assemblages identified by Q-mode factor analysis of radiolarian microfossils in surface sediments from low latitudes in the Pacific Ocean reflects their associations with surface water masses. Downcore fluctuations of these radiolarian assemblages at two sites, RC10-65 and V19–29, indicate changes in circulation in the eastern equatorial Pacific during the past 500,000 yr. Surface-water radiolarian assemblages characteristic of zonal flow have dominated siliceous sedimentation in the eastern equatorial Pacific, except during times of intense upwelling which can occur along the coast of Peru and in the Equatorial Undercurrent. Fluctuations in the importance of this upwelling have not been consistent with glacial/interglacial changes in ice volume throughout the late Quaternary. Intensification of upwelling in the equatorial divergence, however, has consistently coincided with increases in ice volume in the past 500,000 yr. The times at which changes in the nature of the relationship between upwelling and ice volume occur (approximately 240,000 and 380,000 yr B.P.) roughly coincide with times of observed changes in other proxy indicators of oceanographic conditions in the Pacific and Indian oceans.  相似文献   

2.
Arabian Sea sediments record changes in the upwelling system off Arabia, which is driven by the monsoon circulation system over the NW Indian Ocean. In accordance with climate models, and differing from other large upwelling areas of the tropical ocean, a 500,000-yr record of productivity at ODP Site 723 shows consistently stronger upwelling during interglaciations than during glaciations. Sea-surface temperatures (SSTs) reconstructed from the alkenone unsaturation index (UK′37) are high (up to 27°C) during interglaciations and low (22-24°C) during glaciations, indicating a glacial-interglacial temperature change of >3°C in spite of the dampening effect of enhanced or weakened upwelling. The increased productivity is attributed to stronger monsoon winds during interglacial times relative to glacial times, whereas the difference in SSTs must be unrelated to upwelling and to the summer monsoon intensity. The winter (NE) monsoon was more effective in cooling the Arabian Sea during glaciations then it is now.  相似文献   

3.
The spatial and temporal variation of major ions (Ca2+, Mg2+, Na+, K+, , , and Cl) in Himalayan snow and ice is investigated by using two snow pits from the East Rongbuk glacier (28°01′N, 86°58′E, 6500 m a.s.l.), one snow pit from the Nangpai Gosum glacier (28°03′N, 86°39′E, 5700 m a.s.l.), one snow pit from the Gyabrag glacier (28°11′N, 86°38′E, 6303 m a.s.l.), and three ice cores from the Sentik (35°59′N, 75°58′E, 4908 m a.s.l.), Dasuopu (28°33′N, 85°44′E, 7000 m a.s.l.), and East Rongbuk (27°59′N, 86°55′E, 6450 m a.s.l.) glaciers, respectively. In general, the major ions show a significant seasonal variation, with high concentrations during the non-monsoon (pre-monsoon and post-monsoon) season and relatively low concentrations during the monsoon season. Monsoon precipitation with high local/regional dust loading related to summer circulation is possibly responsible for the high concentrations occurring sporadically during the monsoon season. The crest of the Himalayas is an effective barrier to the spatial distribution of Na+, Cl and concentrations, but not to the major ions associated with dust influx (e.g. Ca2+ and Mg2+). Atmospheric backward trajectories from the HYSPLIT_4 model used in identifying chemical species sourcing suggest that the major ions in the Himalayan snow and ice come mainly from the Thar Desert located in the North India, as well as West Asia, or even the distant Sahara Desert in the North Africa during the winter and spring seasons. This is different from the conventionally assumed arid and semi-arid regions of the central Asia. Factors, such as different vapor sources due to atmospheric circulation patterns and geographical features (e.g. altitude, topography), may contribute to the differences in major ionic concentrations between the western and eastern Himalayas.  相似文献   

4.
Interhemispheric anti-phasing of rainfall during the last glacial period   总被引:1,自引:0,他引:1  
We have obtained a high-resolution oxygen isotopic record of cave calcite from Caverna Botuverá (27°13′S, 49°09′W), southern Brazil, which covers most of the last 36 thousand years (ka), with an average resolution of a few to several decades. The chronology was determined with 46 U/Th ages from two stalagmites. Tests for equilibrium conditions show that oxygen isotopic variations are primarily caused by climate change. We interpret our record in terms of meteoric precipitation changes, hence the variability of South American Monsoon (SAM) intensity. The oxygen isotopic profile broadly follows local insolation changes and shows clear millennial-scale variations during the last glacial period with amplitudes as large as 3‰ but with smaller centennial-scale shifts (<1‰) during the Holocene. The overall record is strikingly similar to, but strongly anti-correlated with, a number of records from the Northern Hemisphere.We compared our record to other precisely dated contemporaneous records from Hulu Cave eastern China. Minima in δ18O (wet periods, intense SAM) at our site are synchronous with maxima in δ18O (dry periods, weak East Asian Monsoon, EAM) in eastern China (within precise dating errors) and vice versa. This anti-phased precipitation relationship between two low-latitude locations may be interhemispheric in extent, based on comparison with records from other sites. Precipitation anti-phasing may be related to north–south shifts in the mean position of the intertropical convergence zone (ITCZ) and asymmetry in Hadley circulation in two hemispheres, associated not with seasonal changes as observed today, but with millennial-scale climate shifts. The millennial-scale atmospheric see-saw patterns that we observe could have important controls and feedbacks on climate within hemispheres because of water vapor's greenhouse properties.  相似文献   

5.
The presence of oil shows associated with fractures provides a significant opportunity to a) unravel the type, origin and evolution of fluids involved in fracture-fills, and b) examine how they relate to oil migration. Two stages of calcite cement (C1 and C2) were distinguished in the fractures of the Eocene Armàncies platform carbonates; C1 is characterised by fence-like crystals, exhibits dull red luminescence and contains abundant twin planes, inclusions and δ18O values that range from − 6.2‰ to − 4.8‰ VPDB. C2 consists of blocky clean crystals, is characterized by dark brown-red luminescence that alternates with yellow bands, and contains hydrocarbon fluid inclusions with homogenisation temperatures of approximately 120 °C. δ18O values range from − 9.6‰ to − 8.9‰ VPDB. The remaining porosity after C2 precipitation is filled with liquid oil that reached 115 °C. This would seem to indicate that free oil and fluid inclusions oil probably come from the same migration pulse. Oil migration timing was coeval with C2 and continued after calcite cementation was completed.  相似文献   

6.
Two large ice fields between 46°30′ and 51°30′S cover the Patagonian Andes. The North and South Patagonian Ice Fields are separated by the transandine depth line at 47°45′ to 48°15′S. Canal and Río Baker run through this depression. The two ice fields are generally considered relics of a continuous ice cap, which covered the entire Patagonian Andes from 39° to 52°S and extended far into the eastern foreland of the Andes. This assumption is not correct for the 200-km-long section of the Andes between Lago Pueyrredón (Lago Cochrane in Chile) (47°15′S) and Lago San Martín (Lago O'Higgins in Chile) (48°45′S). The lack of a continuous ice cap extending far into the east is caused by the transandine depth line, playing a crucial role in the fluvial erosion and the glacial scouring of this tectonic zone. This depression formed a river system (e.g. Río Baker, Río Bravo and Río Mayer) that drains towards the west. Reconstruction of the maximum glacial advance of the last ice age shows that the eastern outlet glaciers of the two ice fields between Lago San Martín and Lago Pueyrredón did not drain towards the east, but rather followed the general gradient of the transandine depth line. In this area the eastern flank of the Andes between Monte San Lorenzo (3770 m) and Sa. de Sangra (2155 m) supported valley glaciers, which were independent of the expanding ice fields. Only a few valley glaciers advanced towards the Patagonian Meseta. The terminal moraines of these glaciers were erroneously interpreted as the eastern edge of a continuous ice cap. North of 47°30′S the outlet glaciers of the NPI advanced 200 km during the LGM and the late glacial advances nearly reached to 71°W. In contrast, south of 49°S glacier expansion was comparatively less: The LGM is situated only 85–115 km east of the present margins of the large outlet glaciers (O'Higgins, Viedma, and Upsala), and no late glacial advance reached 72°W. These considerable differences of glacier expansion were influenced by the northward migration of the westerly precipitation belt during glacial cycles. There is tentative evidence that the glaciers advanced three times in the period from 14 000 to 9 500 14C years BP.  相似文献   

7.
The crustal structure of the Dabie orogen was reconstructed by a combined study of U–Pb ages, Hf and O isotope compositions of zircons from granitic gneiss from North Dabie, the largest lithotectonic unit in the orogen. The results were deciphered from metamorphic history to protolith origin with respect to continental subduction and exhumation. Zircon U–Pb dating provides consistent ages of 751 ± 7 Ma for protolith crystallization, and two group ages of 213 ± 4 to 245 ± 17 Ma and 126 ± 4 to 131 ± 36 Ma for regional metamorphism. Majority of zircon Hf isotope analyses displays negative εHf(t) values of − 5.1 to − 2.9 with crust Hf model ages of 1.84 to 1.99 Ga, indicating protolith origin from reworking of middle Paleoproterozoic crust. The remaining analyses exhibit positive εHf(t) values of 5.3 to 14.5 with mantle Hf model ages of 0.74 to 1.11 Ga, suggesting prompt reworking of Late Mesoproterozoic to Early Neoproterozoic juvenile crust. Zircon O isotope analyses yield δ18O values of − 3.26 to 2.79‰, indicating differential involvement of meteoric water in protolith magma by remelting of hydrothermally altered low δ18O rocks. North Dabie shares the same age of Neoproterozoic low δ18O protolith with Central Dabie experiencing the Triassic UHP metamorphism, but it was significantly reworked at Early Cretaceous in association with contemporaneous magma emplacement. The Rodinia breakup at about 750 Ma would lead to not only the reworking of juvenile crust in an active rift zone for bimodal protolith of Central Dabie, but also reworking of ancient crust in an arc-continent collision zone for the North Dabie protolith. The spatial difference in the metamorphic age (Triassic vs. Cretaceous) between the northern and southern parts of North Dabie suggests intra-crustal detachment during the continental subduction. Furthermore, the Dabie orogen would have a three-layer structure prior to the Early Cretaceous magmatism: Central Dabie in the upper, North Dabie in the middle, and the source region of Cretaceous magmas in the lower.  相似文献   

8.
The morphotectonic features of the Central Indian Ocean Basin (CIOB) provide information regarding the development of the basin. Multibeam mapping of the CIOB reveals presence of abundant isolated seamounts and seamount chains sub-parallel to each other and major fracture zones along 73° E, 79° E and 75°45′ E. Morphological analyses were carried out for 200 seamounts that occur either as isolated edifies or along eight sub-parallel chains. The identified eight parallel seamount chains that trend almost north–south and reflecting the absolute motion of the Indian plate, probably originated from the ancient propagative fractures. Inspite of the differences in their height, the seamounts of these eight chains are morphologically correlatable. In the study area the seamounts are clustered north and south of 12° S latitude. Interestingly, in the area north of 12° S (area II: 9°–12° S) the seamounts are distinctly smaller (≤ 400 m height) whereas, the area south of 12° S (area I: 12°–15° S) has a mixed population of seamounts. The normalized abundance of the CIOB seamount is 976 seamounts/106 km2 but on a finer scale this value varies from 500 to 1600 seamounts/106 km2, which is less than the seamount concentrations of the Pacific and Atlantic oceans (9000 to 16,000 seamounts/106 km2). Three categories of seamounts are present in the CIOB e.g. (1) single-peaked (2) multi-peaked and (3) composite. The study indicate that single-peaked seamounts are dominant (89%) while multi-peaked is less (8%) and composite ones are rare (3%) in the CIOB.The progressive northward movement of the Indian continent caused collision between India and Asia at around 62 Ma ago. A majority of the near-axis originated seamounts in the CIOB seemed to have formed as a consequence of the temporally widespread (Cretaceous  65 Ma to late Eocene < 49 Ma) collision between India and Eurasia. The regional stress patterns in the Indian plate vary N to NE in the continent and N to NW in Indian Ocean areas. The combined effect of the regional stress patterns maintained the orientation of the seamount chains and the local stress regime helped in the upwelling of magma and formation of seamounts. The low heat flow, morphological features and geochemical signature indicate that the morphotectonic structures formed contemporaneously with the oceanic crust.  相似文献   

9.
The 1.27 Ga old Ivigtut (Ivittuut) intrusion in South Greenland is world-famous for its hydrothermal cryolite deposit [Na3AlF6] situated within a strongly metasomatised A-type granite stock. This detailed fluid inclusion study characterises the fluid present during the formation of the cryolite deposit and thermodynamic modelling allows to constrain its formation conditions.Microthermometry revealed three different types of inclusions: (1) pure CO2, (2) aqueous-carbonic and (3) saline-aqueous inclusions. Melting temperatures range between − 23 and − 15 °C for type 2 and from − 15 to − 10 °C for type 3 inclusions. Most inclusions homogenise between 110 and 150 °C into the liquid.Stable isotope compositions of CO2 and H2O were measured from crushed inclusions in quartz, cryolite, fluorite and siderite. The δ13C values of about − 5‰ PDB are typical of mantle-derived magmas. The differences between δ18O of CO2 (+ 21 to + 42‰ VSMOW) and δ18O of H2O (− 1 to − 21.7‰ VSMOW) suggest low-temperature isotope exchange. δD (H2O) ranges from − 19 to − 144‰ VSMOW. The isotopic composition of inclusion water closely follows the meteoric water line and is comparable to Canadian Shield brines. Ion chromatography revealed the fluid's predominance in Na, Cl and F. Cl/Br ratios range between 56 and 110 and may imply intensive fluid–rock interaction with the host granite.Isochores deduced from microthermometry in conjunction with estimates for the solidification of the Ivigtut granite suggest a formation pressure of approximately 1–1.5 kbar for the fluid inclusions. Formation temperatures of different types of fluid inclusions vary between 100 and 400 °C. Thermodynamic modelling of phase assemblages and the extraordinary high concentration in F (and Na) may indicate that the cryolite body and its associated fluid inclusions could have formed during the continuous transition from a volatile-rich melt to a solute-rich fluid.  相似文献   

10.
The Changkeng Au and Fuwang Ag deposits represent an economically significant and distinct member of the Au–Ag deposit association in China. The two deposits are immediately adjacent, but the Au and Ag orebodies separated from each other. Ores in the Au deposit, located at the upper stratigraphic section and in the southern parts of the orefield, contain low Ag contents (< 11 ppm); the Ag orebodies, in the lower stratigraphic section, are Au-poor (< 0.2 ppm). Changkeng is hosted in brecciated cherts and jasperoidal quartz and is characterized by disseminated ore minerals. Fuwang, hosted in the Lower Carboniferous Zimenqiao group bioclastic limestone, has vein and veinlet mineralization associated with alteration comprised of quartz, carbonate, sericite, and sulfides. Homogenization temperatures of fluid inclusions from quartz veinlets in the Changkeng and Fuwang deposits are in the range of 210 ± 80 °C and 230 ± 50 °C, respectively. Salinities of fluid inclusions from the two deposits range from 1.6 to 7.3 wt.% and 1.6 to 2.6 wt.% equiv. NaCl, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of the fluid inclusions from the Changkeng deposit range from − 80‰ to − 30‰, − 7.8‰ to − 3.0‰, − 16.6‰ to − 17.0‰ and 0.0100 to 0.0054 Ra, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of fluid inclusions from the Fuwang deposit range from − 59‰ to − 45‰, − 0.9‰ to 4.1‰, − 6.7‰ to − 0.6‰ and 0.5930 to 0.8357 Ra, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of the fluid inclusions suggest the ore fluids of the Changkeng Au-ore come from the meteoric water and the ore fluids of the Fuwang Ag-ore are derived from mixing of magmatic water and meteoric water. The two deposits also show different Pb-isotopic signatures. The Changkeng deposit has Pb isotope ratios (206Pb/204Pb: 18.580 to 19.251, 207Pb/204Pb: 15.672 to 15.801, 208Pb/204Pb: 38.700 to 39.104) similar to those (206Pb/204Pb: 18.578 to 19.433, 207Pb/204Pb: 15.640 to 15.775, 208Pb/204Pb: 38.925 to 39.920) of its host rocks and different from those (206Pb/204Pb: 18.820 to 18.891, 207Pb/204Pb: 15.848 to 15.914, 208Pb/204Pb: 39.579 to 39.786) of the Fuwang deposit. The different signatures indicate different sources of ore-forming material. Rb–Sr isochron age (68 ± 6 Ma) and 40Ar–39Ar age (64.3 ± 0.1 Ma) of the ore-related quartz veins from the Ag deposit indicate that the Fuwang deposit formed during the Cenozoic Himalayan tectonomagmatic event. Crosscutting relationships suggests that Au-ore predates Ag-ore. The adjacent Changkeng and Fuwang deposits could, however, represent a single evolved hydrothermal system. The ore fluids initially deposited Au in the brecciated siliceous rocks, and then mixing with the magmatic water resulted in Ag deposition within fracture zones in the limestone. The deposits are alternatively the product of the superposition of two different geological events. Age evidence for the Fuwang deposit, together with the Xiqiaoshan Tertiary volcanic-hosted Ag deposit in the same area, indicates that the Pacific Coastal Volcanic Belt in the South China Fold Belt has greater potential for Himalayan precious metal mineralization than previous realized.  相似文献   

11.
Many speleothems show evidence for calcite precipitation under disequilibrium conditions. To improve the understanding of these kinetic processes, several laboratory experiments were performed to study the fractionation of stable oxygen and carbon isotopes during the precipitation of calcite. Carbonate was precipitated under controlled conditions from both a body of standing water (beaker experiments) and a solution flowing along a channel (channel experiments) at a relative humidity of 100%. Slow degassing of CO2, simulated by the beaker experiments, results in δ18O values in equilibrium with the solution. In contrast, the δ13C values show a significant enrichment, inversely proportional to the height of the solution in the beakers. Fast degassing of CO2, simulated by the channel experiments, showed an enrichment of both δ13C and δ18O and a slope of Δδ13C/Δδ18O of 1.4±0.6. These results represent experimental evidence for the Hendy effect, which is manifested in (i) a progressive increase in δ18O and δ13C away from the growth axis and (ii) a positive correlation between δ18O and δ13C along a single growth layer of a stalagmite.  相似文献   

12.
A general feedback between volcanism and climate at times of transition in the Quaternary climate record is suggested, exemplified by events accompanying the Toba eruption (74,000 yr ago), the largest known late Quaternary explosive volcanic eruption. The Toba paroxysm occurred during the δ18O stage 5a-4 transition, a period of rapid ice growth and falling global sea level, which may have been a factor in creating stresses that triggered the volcanic event. Toba is estimated to have produced between 1015 and 1016 g of fine ash and sulfur gases lofted in co-ignimbrite ash clouds to heights of at least 32 ± 5 km, which may have led to dense stratospheric dust and sulfuric acid aerosol clouds. These conditions could have created a brief, dramatic cooling or "volcanic winter," followed by estimated annual Northern Hemisphere surface-temperature decreases of 3° to 5°C caused by the longer-lived aerosols. Summer temperature decreases of 10°C at high northern latitudes, adjacent to regions already covered by snow and ice, might have increased snow cover and sea-ice extent, accelerating the global cooling already in progress. Evidence for such climate-volcanic feedback, following Milankovitch periodicities, is found at several climatic transitions.  相似文献   

13.
We compare alkenone unsaturation ratios measured on recent sediments from the Indian Ocean (20°N–45°S) with modern sea oceanographic parameters. For each of the core sites we estimated average seasonal cycles of sea surface temperature (SST) and salinity, which we then weighted with the seasonal productivity cycle derived from chlorophyll satellite imagery. The unsaturation index (U37K′) ranges from 0.2 to 1 and correlates with water temperature but not with salinity. TheU37K′versus SST relationship for Indian Ocean sediments (U37K′= 0.033 SST + 0.05) is similar to what has been observed for core tops from the Pacific and Atlantic oceans and the Black Sea. A global compilation for core tops givesU37K′= 0.031 T + 0.084 (R= 0.98), which is close to a previously reported calibration based on particulate organic matter from the water column. For temperatures between 24° and 29°C, however, the slope seems to decrease to about 0.02U37K′unit/°C. For Indian Ocean core tops, the ratios of total C37alkenones/total C38alkenones and the slope of theU37K′-SST relationship are similar to those previously observed for cultures ofEmiliania huxleyibut different from those previously published forGephyrocapsa oceanica.EitherE. huxleyiis a major producer of alkenones in the Indian Ocean or strains ofG. oceanicaliving in the northern Indian Ocean behave differently from the one cultured. In contrast with coccolithophorid assemblages, the ratios of C37alkenones to total C38alkenones lack clear geographic pattern in the Indian Ocean.  相似文献   

14.
A number of thermal springs with temperature up to 64°C are found in the Western Cape Province of South Africa. The average δ13C value of gas (CO2+CH4) released at three springs is −22, which is consistent with an entirely biogenic origin for the C and supports previous investigations which showed that the springs are not associated with recent or nascent volcanic activity. Most springs issue from rocks of the Table Mountain Group, where faulted and highly jointed quartzites and sandstones of the Cape Fold Belt act as the main deep aquifer. The δD and δ18O values of the springs range from −46 to −18 and from −7.3 to −3.9, respectively. Although the thermal springs have isotope compositions that plot close to the local meteoric water line, their δD and δ18O values are significantly lower than ambient meteoric water or groundwater. It is, therefore, suggested that the recharge of most of the thermal springs is at a significantly higher altitude than the spring itself. The isotope ratios decrease wuth increasing distance from the west coast of South Africa, which is in part related to the continental effect. However, a negative correlation between the spring water temperature and the δ18O value in the thermal springs closest to the west coast indicates a progressive in increase in the average altitude of recharge away from the coast.  相似文献   

15.
A note on fault reactivation   总被引:2,自引:0,他引:2  
Reactivation of existing faults whose normal lies in the σ1σ3 plane of a stress field with effective principal compressive stresses σ1 >σ2 >σ3 is considered for the simplest frictional failure criterion, τ = μσn = μ(σnP), where τ and σn are respectively the shear and normal stresses to the existing fault, P is the fluid pressure and μ is the static friction. For a plane oriented at θ to σ1, the stress ratio for reactivation is (σ1/σ3) = (1 + μ cot θ)/(1 − μ tan θ). This ratio has a minimum positive value at the optimum angle for reactivation given by (1/μ) but reaches infinity when θ = 2θ*, beyond which σ3 < 0 is a necessary condition for reactivation. An important consequence is that for typical rock friction coefficients, it is unlikely that normal faults will be reactivated as high-angle reverse faults or thrusts as low-angle normal faults, unless the effective least principal stress is tensile.  相似文献   

16.
Despite growing evidence for environmental oscillations during the last glacial–interglacial transition from high latitude, terrestrial sites of the North Pacific rim, oxygen-isotopic records of these oscillations remain sparse. The lack of data is due partially to the paucity of lakes that contain carbonate sediment suitable for oxygen-isotopic analysis. We report here the first record of oxygen-isotopic composition in diatom silica (δ18OSi) from a lake in that region. δ18OSi increases gradually from 19.0 to 23.5‰ between 12,340 and 11,000 14C yr B.P., reflecting marked climatic warming at the end of the last glaciation. Around 11,000 14C yr B.P., δ18OSi decreases by 1.7‰, suggesting a temperature decrease of 3.5–8.9 °C at the onset of the Younger Dryas (YD) in southwestern Alaska. Climatic recovery began ca. 10,740 14C yr B.P., as inferred from the increase of δ18OSi to a maximum of 23.9‰ near the end of the YD. Our data reveal that a YD climatic reversal in southwestern coastal areas of Alaska occurred, but the YD climate did not return to full-glacial conditions.  相似文献   

17.
The primary occurrence of ruby in the Mogok area, northern Myanmar is exclusively found in marble along with spinel–forsterite-bearing marble and phlogopite–graphite marble. These marble units are enclosed within banded biotite–garnet–sillimanite–oligoclase gneisses. Samples of these marbles collected for C–O stable isotope analysis show two trends of δ13C–δ18O variation resulting most likely from fluid–rock interactions. Ruby-bearing marble and phlogopite–graphite marble follow a trend with coupled C–O depletion, whereas spinel–forsterite-bearing marble follows a δ18O depletion trend with relatively constant δ13C values. Ruby formation might have resulted from CO2-rich fluid–rock interaction, while spinel–forsterite-bearing marble was genetically related to CO2-poor fluid–rock interaction. Both fluids may have arisen from external sources. Based on graphite Raman spectral thermometry, the estimated temperature for phlogopite–graphite marble, and probably ruby-bearing marble, was lower than 607 °C, and for spinel–forsterite-bearing marble, lower than 710 °C. Contrasting C/O diffusion between graphite/ruby/spinel/forsterite and calcite, local variations of isotopic compositions of newly formed minerals as a result of non-pervasive fluid infiltration, and open-system isotopic disturbance during cooling may have affected C-/O-isotopic fractionations between minerals. The estimated high formation temperatures for ruby and spinel/forsterite imply that the parental fluids may have been related to nearby igneous intrusions and/or metamorphic processes. Whether these two types of fluid were genetically related is unclear based on the present data.  相似文献   

18.
Coastal sea-surface temperature (SST) and sea-surface salinity (SSS), including seasonality, in northwest (NW) Europe during the early phase of the Eemian interglacial ca. 125 ka ago were reconstructed from Littorina littorea (common periwinkle) gastropods. The results were based on intra-annual δ18O analyses in recent and fossil shells, mainly originating from the sea of Kattegat (Sweden) and the English Channel (United Kingdom), and confined to intertidal settings. The Eemian L. littorea shells indicated annual SSTs in the range 8–18°C for the English Channel and 8–26°C for Kattegat. All specimens from the Eemian sites experienced summer SSTs of ca. 1–3°C above recent conditions. The estimated winter SST in the English Channel during the Eemian was comparable to modern measurements of ca. 8°C. However, the Kattegat region displayed Eemian winter SST approximately 8°C warmer than today, and similar to conditions in the western English Channel. The recent-fossil isotope analogue approach indicated high SSS above 35 practical salinity units (psu) for a channel south of England in full contact with the North Atlantic Ocean during the last interglacial. In addition, the Kattegat shells indicated a SSS of ca. 29 psu, which points out a North Sea affinity for this region during the Eemian.  相似文献   

19.
The composition of Hippidion diet, and possible changes that could relate to its extinction, were evaluated in the Argentinean-Chilean Central Andes, a Neotropical environment characterized by arid to semiarid conditions (Andean hot and cold deserts). Microhistological analyses were made on feces of Hippidion found at Los Morrillos (31°43′S–68°42′W, 3000 m a.s.l.) and Gruta del Indio (34°35′S, 68°22′W, 660 m a.s.l.). At Gruta del Indio the diet of Hippidion was based mainly on woody species. At Los Morrillos, it was based on herbaceous species.This flexibility in diet composition could be a relative adaptive advantage allowing a longer permanence of this species in comparison to others recorded in the region (such as Megatheriumand Mylodon). Nevertheless, this advantage was not enough to guarantee its survival during the Holocene. Extinction could have been affected by diverse agents, such as growing aridification of the area, increasing competition with other species (mainly Lama guanicoe), and human presence, along with a relatively low population density (as expected from the limited presence of Hippidion at the archaeological and palaeontological sites of South America. At Gruta del Indio significant changes in the diet of Hippidion corresponding to different intervals of the period 31,000–9000 14C BP are not evident. Given this evidence for similar diets for Hippidion throughout the late Quaternary, other factors need to be considered to explain the extinction of this horse.  相似文献   

20.
We quantified Δ14C, δ18O, and δ13C cycles along ontogeny within four bay scallop (Argopecten purpuratus) shells collected from Callao Bay, Salaverry, and Sechura Bay, Peru following the 1907–1908 non-El Niño years and the 1925–1926 El Niño. Δ14C and δ13C generally covary; Δ14C and δ18O vary inversely. Simultaneous decreases in Δ14C and increases in δ18O in non-El Niño shells are followed by constant Δ14C and gradually decreasing δ18O, which we interpret as evidence for discrete marine upwelling events followed by warming of the initially cold upwelled water. Upwelling changes from El Niño events are detectable with difficulty in mollusk shell Δ14C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号