首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oldest igneous rocks in the Paleoproterozoic (~1.88–1.85 Ga) North Baikal postcollisional volcanoplutonic belt of the Siberian craton are the basaltoids of the Malaya Kosa Formation (Akitkan Group). The youngest are the composite (dolerite–rhyolite) and doleritic dikes cutting the granitoids of the Irel’ complex and the felsic volcanic rocks of the Khibelen Formation (Akitkan Group). The position of Malaya Kosa basaltoids in the Akitkan Group section and published geochronological data on the felsic volcanic rocks overlying Malaya Kosa rocks suggest that their age is ~1878 Ma. The rhyolites from the center of a composite dike were dated by the U–Pb zircon method at 1844 ± 11 Ma, and the dolerites in the dikes are assumed to be coeval with them. Malaya Kosa basaltoids correspond to high-Mg tholeiites and calc-alkaline andesites, whereas the dolerites in the dikes correspond to high-Fe tholeiites. Geochemically, these basaltoids and dolerites are both similar and different. As compared with the dolerites, the basaltoids are poorer in TiO2 (an average of 0.89 vs. 1.94 wt.%), Fe2O31 (9.54 vs. 14.71 wt.%), and P2O5 (0.25 vs. 0.41 wt.%). However, these rocks are both poor in Nb but rich in Th and LREE, εNd(T) being negative. According to petrographic and geochemical data, they derived from compositionally different sources. It is assumed that the basaltoids originated from subduction-enriched lithospheric mantle, whereas the dolerites originated from refractory lithospheric mantle metasomatized by subduction fluids. The isotopic and geochemical features of mafic rocks in the North Baikal belt are well explained by their formation during crustal extension which followed subduction and collision in the region. The early stages of postcollisional extension evidenced the melting of subduction-enriched lithospheric mantle with the formation of parent melts for Malaya Kosa basaltoids. At the final stages of the formation of the North Baikal belt, during the maximum crustal extension, Fe-enriched melts rose to the surface and generated the dolerites of the dikes.  相似文献   

2.
This investigation describes five Mesozoic dolerite dikes which intrude Paleozoic metamorphic and igneous rocks of the Inner Piedmont of western South Carolina. The dikes are vertical or nearly so and strike approximately N40° W. Three major northeast-trending faults also occur in the study area. Left lateral displacement of one dolerite is documented at a locality near Cleveland, South Carolina. Elsewhere, several of the dolerite dikes appear to terminate at or near the faults. — The dolerite dikes have subophitic to microporphyritic textures and consist principally of plagioclase (generally An70–80), olivine (dominantly Fo80–90) and augite with subordinate pigeonite, titanomagnetite, chromite and brown, partly glassy mesostasis. In one dike pyroxene compositions trend from augite to ferroaugite in contrast to an augitesubcalcic augitepigeonite trend characteristic of the other dolerites. The contrasting trends primarily result from differences in SiO2 abundance in the dolerite magmas. — Major and trace element analyses indicate the presence of two different olivine-normative dolerite magma types. The two magma types are not related by near surface crystal fractionation. Models for genesis of the olivine-normative dolerite magmas by partial melting of a plagioclase peridotite upper mantle source region are presented. The models require that the source region be enriched in LREE and incompatible elements such as Rb, Ba, Hf and Th relative to Cl chondritic abundances. One magma type appears to represent a primary dolerite magma that ascended from the source region with little subsequent compositional change. The second magma type most likely experienced assimilation of clinopyroxene-garnet (eclogite) during ascent, thereby acquiring a REE pattern with a less steep negative slope for the LREE and a slight positive slope in the HREE.  相似文献   

3.
The basalts and dolerites from Saint-Paul island, located on the east section of the Indian ridge, are reinvestigated. New chemical rock analysis show that they are caracterized by high Fe, low Mg, and various Al contents; they belong to quartz tholeiites and olivine tholeiites of Yoder and Tilley's classification. Two clinopyroxene analysis allow to confirm this tholeiitic relationship. Compared with abyssal tholeiites, those of Saint-Paul are dissimilar in respect to Al2O3/CaO and FeO/MgO ratios, Sr and Rb contents (231–308 ppm and 6 to 29 ppm respectively) and 87 Sr/86 Sr values (0,7041–0,7065). Bearing in mind the structural position of the island, this differences are discussed in light of experimental data. Saint-Paul's basalts and dolerites are products a magma fractionated according to a Fernner trend and probably issued from deeper part of the upper mantle than abyssal tholeiites.  相似文献   

4.
A 100–4000 m wide and 15 km long dike swarm, consisting of basalt and dolerite, occurs at the base of the Thelichi Formation in the Kohistan paleo-island arc terrane, north Pakistan. The dikes contain hornblende (altered from diopsidic-augite), diopsidic-augite (relics; ophitic to subophitic texture), chlorite, epidote, sphene, apatite, zircon, ilmenite, titanomagnetite and magnetite. The geochemistry reveals two groups of dikes: (1) Higher TiO2 (2.74–3.50 wt%), Na2O, Fe2O3 and lower Al2O3 (12.65–14.16 wt%) and MgO (3.73–5.04 wt%); (2) Lower TiO2 (1.24–2.05 wt%), Na2O, Fe2O3 and higher Al2O3 (14.02–16.52 wt%) and MgO (3.98–7.52 wt%). The MgO contents (3.73–7.52-wt%) show a variation in the dikes from relatively primitive to more evolved compositions. The dikes contain high amounts of both LILE and HFSE. The major, trace and rare-earth elements data confirm the MORB affinity and the back-arc basin origin of the dike swarm. The NW–SE orientation of the dike swarm and its 134 ± 3 Ma K–Ar age suggest the spreading axis of the back-arc basin in the Early Cretaceous.  相似文献   

5.
Major and trace element analyses of over one hundred Mesozoic dolerite dikes from eastern North America have established three main chemical types: 1) olivine-normative; 2) high-TiO2 quartz-normative; and 3) low-TiO2 quartz-normative; and a less common high-Fe2 O3 * ( Fe as Fe2O3) quartz-normative type. Quartz-normative dikes predominate from Nova Scotia to Maryland whereas olivine-normative dikes predominate in North and South Carolina. In Virginia and Georgia these types occur in approximately equal abundance.The high-Fe2O3 * quartz-normative type may be a result of local differentiation. The other quartz-normative types are chemically distinct from each other and probably evolved from different parental magmas. The olivine-normative type may be representative of these parental magmas, and either the parental magmas overlap in composition or only one magma is represented by analyzed olivine-normative dikes.Simple crystal fractionation models coupled with constraints on liquidus phases imposed by recent experimental studies reveal that 1) all three quartz-normative types can be derived from the olivine-normative type by the removal of slightly different cumulate assemblages, but not by contamination with any common crustal composition, and 2) the two-main quartz-normative types are related to each other by neither crystal fractionation nor contamination processes. According to the models, any of the quartz-normative types can be derived from the olivine-normative type by 60–70% accumulation, with the cumulate consisting primarily of 50% plagioclase, 25–30% olivine, and 15% clinopyroxene.The concept of vertical inhomogeniety with respect to incompatible elements in the upper mantle source areas is invoked as a possible explanation for the chemically distinct parental magmas. The spatial distribution of the chemical types and the gross outcrop pattern of the dike swarm clearly indicate that the tectonic environment of the northern Appalachian region differed from that of the southern part during the early Mesozoic.  相似文献   

6.
In this article we summarize the petrological, geochemical and tectonic processes involved in the evolution of the Proterozoic intracratonic Cuddapah basin. We use new and available ages of Cuddapah igneous rocks, together with field, stratigraphic, geophysical and other criteria, to arrive at a plausible model for the timing of these processes during basin evolution. We present petrological and geochronological evidence of dike emplacement along preferred lineament directions around the basin in response to stresses, which may have been responsible for the evolution of the basin itself. Basaltic dike intrusion started on the south Indian shield around 2400 Ma and continued throughout the Cuddapah basin evolution and sedimentation. A deep mantle perturbation, currently manifested by a lopolithic cupola-like intrusion under the southwestern part of the basin, may have occurred at the onset of basin evolution and played an important role in its development. Paleomagnetic, gravity and geochronological evidence indicates that it was a constant thermal source responsible for dike and sill emplacement between 1500 and 1200 Ma both inside and out-side the basin. Lineament reactivation in the NW-SE and NE-SW directions, in response to the mantle perturbation, intensified between 1400 and 1200 Ma, leading to the emplacement of several cross cutting dikes. Fe-Mg partition coefficients of olivine and augite and Ca-Na partition coefficient of plagioclase, calculated from the composition of these minerals and bulk composition of their host rocks, indicate that the dikes outside the Cuddapah basin are cumulates. The contemporary dikes may be related by fractional crystallization as indicated by a positive correlation between their plagioclase Ca# (atomic Ca/[Ca+Na]) and augite Mg# (atomic Mg/[Mg+Fe]). A few NW-SE and NE-SW cross cutting dikes of the period between 1400 and 1200 Ma, preserve petrographic evidence of episodic magmatic intrusive activity along preferred directions. Petrological reasoning indicates that a magmatic liquid reacted with a set of cross cutting dikes, intruding into one that was already solidified and altering the composition of the magma that produced the other dike. The Cuddapah basin tholeiites may be related by fractional crystallization at 5 kb and 1019-1154‡ C, which occurred in the lopolithic cupola near the southwestern margin of the basin. Xenolith bearing picrites, which occur near the periphery of the cupola, originated by the accumulation of xenoliths in the tholeiites. This is indicated by the composition of the olivine in the xenoliths (Fo78.7-81.9), which are closely similar to calculated olivine compositions (Fo77.8-78.3) in equilibrium with the tholeiites under the sameP-T conditions. It is inferred that fractionation in the cupola resulted in crystals settling on its walls. Hence, the xenolith-bearing sills occur at the periphery of the lopolithic body. The tholeiites both inside and outside the basin are enriched in incompatible elements compared to mid oceanic ridge basalts. The Ba, Rb and K contents of the Cuddapah and other Proterozoic Gondwana tholeiites indicate that a widespread metasomatic enrichment of the mantle source may have occurred between R∼2.9 and R∼2.7Ga. There may be local heterogeneity in the source of the Cuddapah tholeiites as indicated by different Ba/Rb, Ti/Zr, Ti/Y, Zr/Nb and Y/Nb in samples inside and outside the basin. Large-scale differences such as the low P2O5-TiO2 and high P2O5-TiO2 basaltic domains of the Jurassic Gondwana basalts, however, did not exist during the Proterozoic time period under consideration. Although we are beginning to understand the tectono-magmatic processes involved in the evolution of the Cuddapah basin, much work remains to be done to obtain a complete picture. Future research in the Cuddapah basin should focus on obtaining accurate ages of the igneous rocks associated with the evolution of the basin.  相似文献   

7.
The Precambrian basement rocks exposed along Qift–Quseir asphaltic road, central Eastern Desert of Egypt, exhibit two contrasted tectonic units, each of which has its own lithology structural style and grade of metamorphism. They are intruded by dolerite and diorite dykes. The alkali (Na2O+K2O) and TiO2 contents increase whereas Al2O3, FeO, MgO, CaO and MnO decrease with increasing SiO2 from dolerites to diorites. The trace elements Ti, Zr, Cr, Y and Ni indicate that the dolerites are tholeiitic with slight tendency toward calc-alkaline and formed from basaltic magma in an active continental margin, while diorites are calc-alkaline and were formed by fractional crystallisation of high-alumina basaltic magma in an island arc and active continental margin tectonic environment where they probably represent the forerunner of G1 granites. The molecular ratios Mg values (MgO×100/MgO+FeO) of dolerites range from 47 to 49 while those of diorite range from 51 to 59, indicating that the dolerite and diorite have suffered mild fractionation. Mineral chemistry for the diorites shows that the amphiboles are classified as magnesiohornblende and the plagioclase composition is An39–42 (i.e. the narrow range indicate that the pluton has not suffered extensive fractional crystallisation). The Al content of amphibole displays significant variation with pressure and temperature, also the change of the Ca/(Ca+Na) ratio of plagioclase is dependent on temperature. The amphibole–plagioclase geothermobarometer suggested the P-T formation conditions of studied dykes as 2 kbar and 600 °C.  相似文献   

8.
宋晨  苏尚国  伍月  蔡楠  刘美玉 《岩石学报》2014,30(11):3375-3382
位于华北板块西缘赋存于超镁铁质岩中的金川矿床,是目前世界第三大镍硫化物矿床.金川铜镍硫化物矿床的原生岩浆问题一直存在着较大的争议,前人通过研究金川铜镍硫化物矿体中的堆晶橄榄岩中橄榄石的成分,从而推导原生岩浆的成分.而作者通过对金川铜镍硫化物矿体内部的基性岩脉深入研究,从另一个角度探究金川铜镍硫化物矿床的原生岩浆成分.通过对岩脉岩相学、主量元素的研究表明金川铜镍硫化物矿体中的岩脉主要是辉绿岩,因其MgO的含量的不同可以划分为高镁辉绿岩和低镁辉绿岩.辉绿岩脉的主量元素和微量元素显示这两类岩脉发生过分离结晶作用.PGE元素特征显示辉绿岩脉和金川矿床是同一期次产物,Pmelts的模拟演化得出本文中辉绿岩脉的液相线矿物橄榄石的牌号为Fo86,与金川矿床发现最高牌号Fo86一致.同时Ol-CATS-Q相图表明JC100925-5样品形成的源区在3GPa以上.多种因素显示这种高镁的岩浆是金川矿区的原生岩浆.  相似文献   

9.
Dolerites of the Obudu Plateau of south-eastern Nigeria occur predominantly as dykes cutting Precambrian basement gneisses. Minor dolerite sills have also been mapped. The dolerites are dominantly olivine tholeiites and are geochemically of the oceanic basalt type. They were emplaced in a within-plate tectonic setting and yield a 40Ar/39Ar plateau age of 140.5 ± 0.7 Ma, which is interpreted as the age of their emplacement. This age indicates that the Obudu dolerites are the products of basic magmatism related to the early stages of rifting along the Benue Trough of Nigeria. The Obudu dolerites are comparable with Mesozoic tholeiitic dykes of the northern Amazon craton, whose intrusion preceded the break-up of Africa and South America.  相似文献   

10.
The Singhbhum Orissa craton, eastern India contains rocks as old as 3.6 Ga. The Newer Dolerites occur in two distinct orientations (NE/SW and NW/SE) in the Singhbhum Granitoid Complex (SBGC). These dikes are mostly tholeiites and quartz-normative dolerites associated with subordinate norites. We recognize three geochemical groups of the Newer Dolerites that were emplaced in the SBGC. Group I dikes contain lower SiO2 ( < 53.29%) and higher Mg #, Ni and Cr than group II dikes. Group III dikes have higher SiO2 than groups I and II. A few investigated samples show boninitic geochemical features. They have high-MgO (>8%), high-SiO2 (>52%) and low-TiO2 ( ≤ 0.5%) bulk-rock compositions. The main feature of the Newer Dolerite spidergrams is enrichment in the large-ion lithophile elements (LILE, e.g. Rb, K and Ba) relative to high field-strength elements (HFSE), resulting in high LILE/HFSE ratios. These geochemical characteristics suggest that the Newer Dolerites are subduction related. High La/Ta ratios (21–66) support a non-plume source. Therefore, we conclude that the Newer Dolerites show geochemical signatures similar to those of back-arc basalts.  相似文献   

11.
Dike rocks from the New England platform of Rhode Island and adjacent Massachusetts consist of premetamorphic and post-metamorphic suites. The older group includes metamorphosed dolerite, minette, and schistose dioritic rocks. Post-metamorphic dikes consist of dolerite and sparse monchiquite. The post-metamorphic dolerites are of comparable age to the Eastern North American dolerite suite associated with the Mesozoic basins along the eastern seaboard of North America. However, the southeastern New England dolerites exhibit mineralogy and chemistry more typical of a transitional alkalic suite compared to the more subalkalic tholeiitic dolerites of the Eastern North American suite. Both suites are compatible with a rift tectonic setting, but the more alkalic dolerites may represent a deeper source of small volume melts compared to the Eastern North American dolerites. These more alkaline melts may have concentrated at local centers, or they may be typical of flank dolerites as opposed to the less alkalic varieties that occur within the central axial rift.  相似文献   

12.
The Güneyocak chromite mineralization is hosted by the Upper Cretaceous Divrigi ophiolitic melange, which consists of serpentinite, serpentinized harzburgite and dunite, gabbro, diabase dikes, pyroxenite, blocks of limestone, and radiolarite. Serpentinites were intensely listwaenitized near the mineralization and in other locations in the study area. The Guneyocak chromite mineralization is of interest because of its internal structure and abundant, repeated chromitite bands, as well as for its chemistry. These features are unusual for ophiolite-hosted chromite. Major-element chemistry shows that the chromites have very high Fe2O3 and MgO and very low FeO. The Guneyocak chromites are classified as of Alpine type on the basis of host-rock lithology and Cr2O3, Al2O3, FeO(T), and Cr/Fe values. However, the very high Fe2O3 and MgO and very low FeO compositions of the chromites do not correspond to those of an Alpine-type chromite deposit. Repeated chromite banding and high Fe2O3 content of the chromite strongly suggest repeated oxygen fugacityf(O2) fluctuations and that the Guneyocak mineralization formed at relatively shallow depths. The Güneyocak chromite is characterized by a slightly boninitic character, which represents high partial melting under conditions of high oxygen fugacity. We conclude that the Guneyocak chromite mineralization formed in the uppermost part of the ultramafic rock series of the Divrigi ophiolitic melange.  相似文献   

13.
Lycian ophiolites located in the Western Taurides, are cut at all structural levels by dolerite and gabbro dikes. The dolerite dikes from this area are both pristine and metamorphosed. The non-metamorphosed dikes are observed both in the peridotites and in the metamorphic sole rocks. Accordingly, the non-metamorphosed dikes cutting the metamorphic sole were generated after cooling of the metamorphic sole rocks. The metamorphosed dolerite dikes are only observed in the peridotites. The physical conditions and timing of the metamorphism for the metamorphosed dolerite dikes are similar to those of the metamorphic sole rocks of the Lycian ophiolites suggesting that the metamorphosed dolerite dikes were metamorphosed together with the metamorphic sole rocks. Therefore, the dike injections in the western part of the Tauride Belt Ophiolites occurred before and after the generation of the metamorphic sole rocks. All metamorphosed and non-metamorphosed dikes are considered to have the same origin and all of them are subduction-related as inferred from whole-rock geochemistry and lead isotopes. Lead isotope compositions of whole rocks of both dike groups cluster in a narrow field in conventional Pb isotope diagrams (206Pb/204Pb = 18.40–18.64; 207Pb/204Pb = 15.56–15.58; 208Pb/204Pb = 38.23–38.56) indicating a derivation from an isotopically homogeneous source. On the 207Pb/204Pb versus 206Pb/204Pb diagram, isotope compositions of the dikes plot slightly below the orogen curve suggesting contributions from mantle reservoir enriched by subducted oceanic lithosphere. Such a signature is typical of island arc magmatic rocks and supports the formation of the investigated rocks in a subduction-related environment.  相似文献   

14.
Precambrian quartz dolerites and metadolerites of the central Bighorn Mountains form dikes that intrude a Precambrian metamorphic and igneous terrane typical of the Laramide uplifts of the middle Rocky Mountains. They have a restricted range of major- and trace-element compositions and are typical of basalts in the middle stages of tholeiitic fractionation. Fractionation in the direction of iron enrichment occurred by removal of plagioclase. Average element concentrations of the two groups are nearly identical to one another, are comparable to those in Archean metabasalts from numerous shield areas, and are intermediate between those of modern oceanic tholeiites and continental tholeiites. These average concentrations suggest a depth of magma generation and thickness of crust intermediate between those for the oceanic and continental environments.  相似文献   

15.
Mesozoic mafic dikes in the Gan-Hang tectonic belt (GHTB) provide an opportunity to explore both the nature of their mantle source(s) and the secular evolution of the underlying Mesozoic lithospheric mantle in the region. The geochronology and primary geochemical and Sr–Nd–Pb isotopic compositions of Group 1 (middle section of GHTB) and Group 2 (the rest of the section) dolerite dikes spanning the GHTB were investigated. K–Ar ages indicate that dikes of both groups were emplaced during the Cretaceous (131–69 Ma). The dikes are doleritic in composition and are enriched in both large ion lithophile elements (LILEs; e.g. Rb, Ba, and Pb) and light rare earth elements (LREEs), with a wide range of Eu anomalies, but are depleted in high field strength elements (HFSEs; e.g. Nb, Ta, and Ti) and heavy rare earth elements (HREEs). Dikes sampled in the middle section of the GHTB (Group 1) show more pronounced REE differentiation and a greater contribution from crustal material than those from the east and west sections (Group 2) and are similar to GHTB volcanic rocks in exhibiting a slight enrichment in LREEs. The dolerites are further characterized by a wide range in 87Sr/86Sr i ?=?0.7041–0.7110, 143Nd/144Nd i ?=?0.511951–0.512758, ?Nd t ?=?–10.4 to?+5.6, and Pb isotopic ratios (206Pb/204Pb i ?=?18.1–18.3, 207Pb/204Pb i ≈ 15.6, and 208Pb/204Pb i ?=?38.2–38.7). The dikes have undergone fractional crystallization of olivine, clinopyroxene, plagioclase, and Ti-bearing phases, except for dikes from the Anding area, which possibly experienced fractionation of plagioclase. Geochemically, all the dike samples originated from mantle sources ranging in composition from depleted to enriched that contained a component of foundered lower crust; crustal contamination during the ascent of these magmas was negligible. In the context of the late Mesozoic lithospheric extension across South China, mafic dike magmatism was likely triggered by the reactivation of deep faults, which promoted foundering of the lower crust and subsequent mantle upwelling in the GHTB.  相似文献   

16.
下庄矿田“交点”型铀矿床成矿机理研究及勘查思路探讨   总被引:1,自引:0,他引:1  
冯志军  赖中信  莫济海  胡飞  阳卫 《矿床地质》2016,35(5):1047-1061
文章通过岩石学、主微量地球化学、岩脉定年和实际勘查成果的对比研究,表明下庄矿田的中基性岩脉对铀成矿的控制作用在岩性上没有专属性。通过对中基性岩脉进行U_Pb锆石同位素测年,发现"交点"型铀矿床成矿时代与中基性岩脉成岩时代存在着巨大的矿岩时差,岩脉成岩过程中不能为铀成矿提供热源及矿化剂CO_2。对流体作用敏感的U/Th、Pb/Ce、Ba/La、Cs/Rb比值和对流体作用不敏感元素Ce/Yb比值研究为"交点"型铀成矿存在地幔流体作用提供了佐证;通过Fe~(3+)、Fe~(2+)、K_2O、Na_2O和Al_2O_3等与SiO_2线性关系的研究表明,矿化与硅化和碱交代关系密切,与其他常量元素的关系不明显。研究结果显示,中基性岩脉对铀成矿的控制作用通过对构造裂隙的控制实现,所谓的"交点"控矿本质是硅化带型铀矿化通过"界面效应"控矿的特殊表现形式,其本质是由于不同岩浆岩的产状和机械强度有所不同所致。  相似文献   

17.
Post-orogenic mafic rocks from Northeast China consist of swarms of dolerite dikes. We report a new U–Pb zircon age, as well as whole-rock geochemical and Sr–Nd–Hf isotopic data. Laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) U–Pb zircon analysis yielded an age of 210.3 ± 1.5 million years (i.e. Triassic) for these mafic dikes. Most Dalian mafic rocks exhibit low K2O + Na2O contents, and span the border between alkaline and calc-alkaline rock associations in the total alkali–silica diagram. The investigated dikes are also characterized by relatively high (87Sr/86Sr)i ratios (0.7061–0.7067) and negative ?Nd (t) (?4.7 to??4.3) and ?Hf (t) values (?4.1 to??1.1), implying that they were derived from an enriched lithospheric mantle source. The mafic dikes are characterized by relatively low MgO (4.65–5.44 wt.%), Mg# (41–44), and compatible element content [such as Cr (89.9–125 ppm) and Ni (56.7–72.2 ppm)], which are the features of an evolved mafic magma. No evidence supports the idea that the mafic rocks were affected by significant assimilation or crustal contamination during emplacement. We conclude that the dolerites formed in a post-orogenic extensional setting, related to lithospheric delamination or ‘collapse’ of the Central Asian Orogenic Belt (CAOB), also termed the Xingmeng Orogenic Belt in China.  相似文献   

18.
The Baer ophiolitic massif is located in the northern sub-belt of the western segment of the Yarlung Zangbo Suture Zone (YZSZ) and mainly consists of a lherzolite-dominant mantle suite, dolerite intrusions and limited crustal outcrops. The dolerites show sub-ophitic texture and light rare earth element-depleted chondrite-normalized rare earth element patterns similar to normal-mid-ocean ridge basalts (N-MORB); though, they display enrichments in fluid-mobile elements (Rb, Ba, and Sr) and marked depletions in Th and Nb. The U–Pb ages of several magmatic zircon grains recovered from two dolerite samples indicate that the intrusion of the dikes into the Baer lherzolitic mantle occurred at 125.6–126.3 Ma, consistent with the widespread mafic magmatism between 120 and 130 Ma in the Yarlung Zangbo ophiolites. The dolerites have slightly more radiogenic 87Sr/86Sr ratios (0.7043–0.7054) in comparison to N-MORB, whereas they show 143Nd/144Nd values (0.513067–0.513114) similar to N-MORB and high zircon Hf-isotope compositions. They have a limited range of Nd-isotope (εNd(t) values: +8.2 to +9.1) and juvenile Hf-isotope compositions (εHf(t) values: +8.4 to +14.2 and +10.0 to +15.1) indicating derivation from mantle melts. The moderate spread in the εHf (t) values of zircons indicates derivation of the dolerites parental magma from a weakly contaminated spinel-bearing mantle source. This is also corroborated by the geochemical signatures of the Baer dolerites (enrichment in LILE and depletion in HFSE) suggesting minor slab input to the mantle source of the dike-filling melt. We suggest that the genesis of the dolerite dike-forming melt happened at a stage of subduction initiation in a sub-oceanic mantle domain mildly affected by fluids emanating from the downgoing slab. Our data combined with literature data allow us to presume that the intrusion of the dolerites into the Baer mantle corresponds to an early phase of subduction initiation beneath a developing forearc basin.  相似文献   

19.
The Palaeo-Proterozoic Ghingee granite is an anatectic granite formed in high grade granulite terrain by ultrametamorphism. The compositional variations both in major and trace elements observed in this granite (SiO2 : 64.16-73.81; Fe2O3 : 0.12-2.19; FeO : 0.12-2.80; MgO : 0.10-2.19; CaO : 1.66-4.71; K2O : 1.09-5.09; Ba: 223-1883 ppm; Cr : 4-60 ppm) are attributed to a) source rock heterogeneity and b) the tectonic disturbances that might have abruptly ended the anatectic melting process. The granite is compositionally similar to Perur, Closepet and Hyderabad granites and is formed during Archaean-Proterozoic transition by anatectic and crustal remelting processes.  相似文献   

20.
Subsurface exploration for uranium in the northwestern part of Bundelkhand massif, near Khor area, Shivpuri dist., M.P., resulted in intercepting a substantial thickness of mafic rock within Bundelkhand granitoid. Intercepts of this mafic rock at various levels in the boreholes, indicate that the rock mainly occurs as dykelike intrusion and fracture-fills within Bundelkhand granite. It is essentially composed of hypersthene and plagioclase, with or without olivine, leading to the characterisation as hypersthene microdolerite, noritic dolerite and norite (±olivine), depending on the grainsize and variation from intergranular to ophitic texture. Chemically, the rock is characterised by av. 49.09% SiO2, 2.46%TiO2, 2.33 Fe2O3, 9.45% FeO, 5.75% MgO, 8.37% CaO and 0.96% K2O. The normative composition ranges from 3.53% quartz, 46.86% plagioclase, 12.58% diopside, 19.24% hypersthene. The olivine normative samples show av. 5.65% olivine. Geochemical plots indicate an intra-plate affinity along with oceanic signature, while presence of mineralogical and normative olivine, together with the REE pattern, point towards a lower crustal or mantle source. The mineralogical and normative presence of either quartz or olivine in these mafic rocks implies that it has an intermediate character between the tholeiitic dolerite dykes and the komatiite-type ultramafics reported from Bundelkhand craton. The complex geochemical signature of the rocks also reveals that both intra-continental as well as a mixture of oceanic- to upper mantle signatures are evident. The present study is a first time report of the occurrence of this hitherto unknown noritic body at depth within the Bundelkhand granite, which has no visible surface expression. The findings may strengthen the existing concept of a continuum between Rajasthan craton in the west and Bundelkhand craton in the east, as a single protocontinent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号