首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inner zone of the Bahía Blanca Estuary is shallow, nutrient-rich and turbid. Tidal energy and water turbulence strongly affect the water column resulting in a well-mixed structure and high concentrations of suspended sediment. The phytoplankton community is mostly dominated by diatoms and the annual pattern has been characterized by a recurrent winter-early spring bloom. Here, we investigated to what extent the temporal variations of suspended particulate matter (SPM) regulate the phytoplankton blooms in the head of the estuary by light-limitation. Sampling was done on a fortnightly basis (weekly during the blooming season) at a fixed station in the inner zone of the estuary from January 2007 to February 2008. SPM concentrations and light extinction coefficients (k) in the water column were significantly correlated and showed relatively lower values during the phytoplankton maximal biomass levels. During winter, SPM and k reached values of 23.6 mg l−1 and 0.17 m−1 which were significantly lower than the annual means of 77.6 mg l−1 and 2.94 m−1, respectively. The particulate organic matter (POM) concentration was significantly correlated with the calculated phytoplankton biomass although the contribution of the latter to the total POM was rather low. Both, POM and biomass, had maximal values during winter (21.8 mg l−1 and 393.5 μg C l−1) and mid summer (24.3 mg l−1 and 407.0 μg C l−1), with cell densities up to 8 × 106 cells l−1 and chlorophyll a up to 24.6 μg l−1. Our results suggest that the decrease of SPM concentrations in the water column with a concomitant increase in the penetration of solar radiation seems to be one of the main causes for the development of the phytoplankton winter bloom in the Bahía Blanca Estuary.  相似文献   

2.
The Wadden Sea, a shallow coastal area bordering the North Sea, is optically a complex area due to its shallowness, high turbidity and fast changes in concentrations of optically active substances. This study gathers information from the area on concentrations of suspended particulate matter (SPM), Chlorophyll-a (Chl-a), and Coloured Dissolved Organic Matter (CDOM), on total absorption and beam attenuation, and on reflectances from the whole area. It examines the processes responsible for variations in these. Sampling took place at 156 stations in 2006 and 2007. At 37 locations also the specific inherent optical properties (SIOPs) were determined. Results showed large concentration ranges of 2–450 (g m-3) for SPM, 2–67 (mg m-3) for Chl-a, and 0–2.5 m−1 for CDOM(440) absorption. Tides had a large influence on the SPM concentration, while Chl-a had a mainly seasonal pattern. Resuspension lead to a correlation between SPM and Chl-a. The absorption of CDOM had a spatial variability with extremely high values in the Dollard, although the slope of CDOM absorption spectra was comparable with that of the North Sea. The Chl-a specific pigment absorption proved to be influenced by phytoplankton species and specific absorption of non-algal particles at 440 nm was correlated with the mud content of the soil at the sample locations. SPM specific absorption was not found to correlate with any measured factor. As the concentrations of optically active substances changed, we also found spatial and temporal variability in the absorption, beam attenuation and reflectances. Reflectance spectra categorized in groups with decreasing station water depths and with extreme CDOM and SPM concentrations showed distinguishable shapes.  相似文献   

3.
Turbidity and sediment transport in a muddy sub-estuary   总被引:2,自引:0,他引:2  
Sub-estuaries, i.e. tidal creeks and also larger estuaries that branch off the stem of their main estuary, are commonplace in many estuarine systems. Their physical behaviour is affected not only by tributary inflows, winds and tides, but also by the properties and behaviour of their main estuary. Measurements extending over more than an annual cycle are presented for the Tavy Estuary, a sub-estuary of the Tamar Estuary, UK. Generally, waves are small in the Tavy because of the short wind fetch. A several-hour period of up-estuary winds, blowing at speeds of between 7 and 10 m s−1, generates waves with significant wave heights of 0.25 m and a wave periodicity of 1.7 s that are capable of eroding the bed over the shallow, ca. 1.5 m-deep mudflats. Waves also influence sedimentation within and near salt marsh areas. An estuarine turbidity maximum (ETM) occurs in the Tavy's main channel, close to the limit of salt intrusion at HW. Suspended particulate matter (SPM) concentrations typically are less than 40 mg l−1 at HW, although concentrations can exceed 80 mg l−1 when tides and winds are strong. Flood-tide SPM inputs to the Tavy from the Tamar are greater during high runoff events in the River Tamar and also at spring tides, when the Tamar has a high-concentration ETM. Higher SPM concentrations are experienced on the mudflats following initial inundation. Without wave resuspension, this is followed by a rapid decrease in SPM for most of the tide, indicating that the mudflats are depositional at those times. SPM concentrations on the mudflats again increase sharply prior to uncovering. Peak ebb tidal speeds at 0.15 m above the mudflat bed can exceed 0.26 m s−1 at spring tides and 0.4 m s−1 following high runoff events, which are sufficient to cause resuspension. Time-series measurements of sediment bed levels show strong seasonal variability. Higher and lower freshwater flows are associated with estimated, monthly-mean sediment transport that is directed out of, or into, the upper sub-estuary, respectively. Seasonal sediment transfers between the estuary and its sub-estuary are discussed.  相似文献   

4.
The annual total and organic mercury bioaccumulation pattern of Scrobicularia plana and Hediste diversicolor was assessed to evaluate the potential mercury transfer from contaminated sediments to estuarine food webs. S. plana was found to accumulate more total and organic mercury than H. diversicolor, up to 0.79 mg kg−1 and 0.15 mg kg−1 (wet weight) respectively, with a maximum annual uptake of 0.21 mg kg−1 y−1, while for methylmercury the annual accumulation was similar between species and never exceeded 0.045 mg kg−1 y−1. The higher organic mercury fraction in H. diversicolor is related to the omnivorous diet of this species. Both species increase methylmercury exposure by burrowing activities and uptake in anoxic, methylmercury rich sediment layers. Integration with the annual biological production of each species revealed mercury incorporation rates that reached 28 μg m−2 y−1, and to extract as much as 11.5 g Hg y−1 (of which 95% associated with S. plana) in the 0.4 km2 of the most contaminated area, that can be transferred to higher trophic levels. S. plana is therefore an essential vector in the mercury biomagnification processes, through uptake from contaminated sediments and, by predation, to transfer it to economically important and exploited estuarine species.  相似文献   

5.
The effects of chronic hypoxia and low salinity on anti-predatory responses of the green-lipped mussel Perna viridis were investigated. Dissolved oxygen concentrations ranged from hypoxic to normoxic (1.5 ± 0.3 mg l−1, 3.0 ± 0.3 mg l−1 and 6.0 ± 0.3 mg l−1), and salinities were selected within the variation during the wet season in Hong Kong coastal waters (15‰, 20‰, 25‰ and 30‰). The dissolved oxygen and salinity significantly affected some anti-predatory responses of mussel, including byssus production, shell thickness and shell weight, and the adductor diameter was only significantly affected by salinity. Besides, interactive effects of dissolved oxygen and salinity on the byssus production and shell thickness were also observed. In hypoxic and low salinity conditions, P. viridis produced fewer byssal threads, thinner shell and adductor muscle, indicating that hypoxia and low salinity are severe environmental stressors for self-defence of mussel, and their interactive effects further increase the predation risk.  相似文献   

6.
The influence of prolonged mouth closure on the population dynamics of the caridian shrimp, Palaemon peringueyi and the estuarine isopod, Exosphaeroma hylocoetes, in the littoral zone of temporarily open/closed Kasouga Estuary located on the south-eastern coastline of southern Africa was assessed monthly over the period October 2007 to September 2008. Prolonged mouth closure of the estuary contributed to hypersaline conditions (psu > 35) prevailing throughout the estuary for the last four months of the study. The high salinities coincided with a decrease in the areal extent (up to 80%) of the submerged macrophytes, mainly Ruppia maritima, within the littoral zone of the estuary. Total abundance and biomass values of the shrimp and isopod over the period of investigation ranged from 0 to 14.6 ind m−2, from 0 to 13.3 mg dwt m−2, from 12 to 1540 ind m−2 and from 0.1 to 2.16 mg dwt m−2, respectively. Maximum values of both the shrimp and isopod were recorded in the upper reaches of the estuary in close association with R. maritima. Over the course of the investigation, both the abundance and biomass values of the shrimp decreased significantly (P < 0.05 in both cases) which could be related to reduced habitat availability, R. maritima, that acts as a refuge against fish predation. Additionally, the decrease in abundance and biomass values could be attributed to reduced recruitment opportunities for the shrimp and the cessation of reproduction in the estuarine isopod. The establishment of a link to the marine environment following an overtopping event in September 2008 contributed to a decrease in salinity within the system although no recruitment of either the isopod or shrimp was recorded.  相似文献   

7.
Faunal communities at the deep-sea floor mainly rely on the downward transport of particulate organic material for energy, which can come in many forms, ranging from phytodetritus to whale carcasses. Recently, studies have shown that the deep-sea floor may also be subsidized by fluxes of gelatinous material to the benthos. The deep-sea scyphozoan medusa Periphylla periphylla is common in many deep-sea fjords in Norway and recent investigations in Lurefjorden in western Norway suggest that the biomass of this jellyfish currently exceeds 50000 t here. To quantify the presence of dead P. periphylla jellyfish falls (hereafter termed jelly-falls) at the deep seafloor and the standing stock of carbon (C) and nitrogen (N) deposited on the seafloor by this species, we made photographic transects of the seafloor, using a ‘Yo-Yo’ camera system during an opportunistic sampling campaign in March 2011. Of 218 seafloor photographs taken, jelly-falls were present in five, which resulted in a total jelly-fall abundance of 1×10-2 jelly-falls m−2 over the entire area surveyed. Summed over the entire area of seafloor photographed, 1×10-2 jelly-falls m−2 was equivalent to a C- and N-biomass of 13 mg C m−2 and 2 mg N m−2. The contribution of each jelly-fall to the C- and N-amount of the sediment in the immediate vicinity of each fall (i.e. to sediment in each 3.02 m2 image in which jelly-falls were observed) was estimated to be 568±84 mg C m−2 and 88±13 mg N m−2. The only megafaunal taxon observed around or on top of the jelly-falls was caridean shrimp (14±5 individuals jelly-fall−1), and shrimp abundance was significantly greater in photographs in which a jelly-fall was found (14±5 individuals image−1) compared to photographs in which no jelly-falls were observed (1.4±0.7 individuals image−1). These observations indicate that jelly-falls in this fjord can enhance the sedimentary C- and N-amount at the deep-sea floor and may provide nutrition to benthic and demersal faunas in this environment. However, organic enrichment from the jelly-falls found in this single sampling event and associated disturbance was highly localized.  相似文献   

8.
We estimated primary and bacterial production, mineral nutrients, suspended chlorophyll a (Chl), particulate organic carbon (POC) and nitrogen (PON), abundance of planktonic organisms, mesozooplankton fecal pellet production, and the vertical flux of organic particles of the central Arctic Ocean (Amundsen basin, 89-88° N) during a 3 week quasi-Lagrangian ice drift experiment at the peak of the productive season (August 2001). A visual estimate of ≈15% ice-free surface, plus numerous melt ponds on ice sheets, supported a planktonic particulate primary production of 50-150 mg C m−2 d−1 (mean 93 mg C m−2 d−1, n = 7), mostly confined to the upper 10 m of the nutrient replete water column. The surface mixed layer was separated from the rest of the water column by a strong halocline at 20 m depth. Phototrophic biomass was low, generally 0.03-0.3 mg Chl m−3 in the upper 20 m and <0.02 mg Chl m−3 below, dominated by various flagellates, dinoflagellates and diatoms. Bacterial abundance (typically 3.7-5.3 × 105, mean 4.1 × 105 cells ml−1 in the upper 20 m and 1.3-3.7 × 105, mean 1.9 × 105 cells ml−1 below) and Chl concentrations were closely correlated (r = 0.75). Mineral nutrients (3 μmol NO3 l−1, 0.45 μmol PO4 l−1, 4-5 μmol SiO4 l−1) were probably not limiting the primary production in the upper layer. Suspended POC concentration was ∼30-105 (mean 53) mg C m−3 and PON ∼5.4-14.9 (mean 8.2) mg N m−3 with no clear vertical trend. The vertical flux of POC in the upper 30-100 m water column was ∼37-92 (mean 55) mg C m−2 d−1 without clear decrease with depth, and was quite similar at the six investigated stations. The mesozooplankton biomass (≈2 g DW m−2, mostly in the upper 50 m water column) was dominated by adult females of the large calanoid copepods Calanus hyperboreus and Calanus glacialis (≈1.6 g DW m−2). The grazing of these copepods (estimated via fecal pellet production rates) was ≈15 mg C m−2 d−1, being on the order of 3% and 20% of the expected food-saturated ingestion rates of C. hyperboreus and C. glacialis, respectively. The stage structure of these copepods, dominated by adult females, and their unsatisfied grazing capacity during peak productive period suggest allochthonous origin of these species from productive shelf areas, supported by their long life span and the prevailing surface currents in the Arctic Ocean. We propose that the grazing capacity of the expatriated mesozooplankton population would match the potential seasonal increase of primary production in the future decreased ice perspective, diminishing the likelihood of algal blooms.  相似文献   

9.
The concentration of suspended particulate matter (SPM), sedimentation flux, and various forms of phosphorus and silica in turbidity maximum zone (TMZ) in the Changjiang (Yangtze) estuary was studied. Based on the budget of P and Si, their mass balances in the TMZ were calculated. Results show that the variation in concentration of dissolved inorganic silicon (DISi) was mainly controlled by seawater dilution, while that of dissolved inorganic phosphorus (DIP) was considerably affected by the buffering of suspended matter and sediment. Our experiments showed that the sedimentation fluxes of SPM and particulate inorganic phosphorus (PIP), total particulate phosphorus (TPP), particulate inorganic silicon (PISi), and biological silicon (BSi) in the TMZ were 238.4 g m−2 d−1 and 28.3, 43.1, 79.0, 63.0 mg m−2 d−1, respectively. In addition, a simple method to estimate the ratio of resuspension of sediment in the TMZ was established, with which the rate in surface and bottom waters of the TMZ accounted for 55.7 and 66.1% of the total SPM, respectively, indicating that the sediment resuspension in the TMZ influenced significantly the mass balances of P and Si. Particulate adsorbed P (60.8%) and 35.5% of total particulate P discharged from the river were filtered and then deposited in the TMZ. The input flux of PIP from the river mouth was 55.9% of that of DIP, being important as biologically available P, while that of PISi was only 3.5% of DISi, showing that particulate adsorbed Si was much less important than particulate adsorbed P.  相似文献   

10.
To examine the influence of river discharge on plankton metabolic balance in a monsoon driven tropical estuary, daily variations in physico-chemical and nutrients characteristics were studied over a period of 15 months (September 2007 to November 2008) at a fixed location (Yanam) in the Godavari estuary, India. River discharge was at its peak during July to September with a sharp decrease in the middle of December and complete cessation thereafter. Significant amount of dissolved inorganic nitrogen (DIN, of 22–26 μmol l−1) and dissolved inorganic phosphate (DIP, of 3–4 μmol l−1) along with suspended materials (0.2–0.5 g l−1) were found at the study region during the peak discharge period. A net heterotrophy with low gross primary production (GPP) occurred during the peak discharge period. The Chlorophyll a (Chl a) varied between 4 and 18 mg m−3 that reached maximum levels when river discharge and suspended loads decreased by >75% compared to that during peak period. High productivity was sustained for about one and half months during October to November when net community production (NCP) turned from net heterotrophy to autotrophy in the photic zone. Rapid decrease in nutrients (DIN and DIP by ∼15 and 1.4 μmol l−1, respectively) was observed during the peak Chl a period of two weeks. Chl a in the post monsoon (October–November) was negatively related to river discharge. Another peak in Chl a in January to February was associated with higher nutrient concentrations and high DIN:DIP ratios suggest possible external supply of nitrogen into the system. The mean photic zone productivity to respiration ratio (P:R) was 2.38 ± 0.24 for the entire study period (September 2007–November 2008). Nevertheless, the ratio of GPP to the entire water column respiration was only 0.14 ± 0.02 revealing that primary production was not enough to support water column heterotrophic activity. The excess carbon demand by the heterotrophs could be met from the allochthonous inputs of mainly terrestrial origin. Assuming that the entire phytoplankton produced organic material was utilized, the additional terrestrial organic carbon supported the total bacterial activity (97–99%) during peak discharge period and 40–75% during dry period. Therefore, large amount of terrestrial organic carbon is getting decomposed in the Godavari estuarine system.  相似文献   

11.
A time-series sediment trap was operated from July 2003 to July 2008 at a station located in the 10°N thermocline ridge of the northeastern equatorial Pacific (10°30′N, 131°20′W), with the aim of understanding variations in natural background sinking-particle flux and the influence on such fluxes of ENSO (El Niño-Southern Oscillation). Each one of weak El Niño, moderate El Niño and moderate La Niña were observed during the monitoring period. During non-ENSO periods, total mass fluxes varied from 4.1 to 36.9 mg m−2 d−1, with a distinct seasonal variation, ranging from an average flux of 14.0 mg m−2 d−1 in the warm season (June-November) to 25.3 mg m−2 d−1 in the cold season (December-May). This seasonal fluctuation was characterized by a distinct difference in CaCO3 flux between the two seasons. The enhanced particle fluxes during the cold season are attributed to the supply of nutrient-enriched subsurface water by wind-driven vertical mixing, supported by a simultaneous reduction in sea surface temperature and enhanced trade winds. The weak El Niño event occurred in the monitoring period had no recognizable effect on particle fluxes in the study area, but the moderate El Niño event was accompanied by a significant reduction in particle fluxes to 60% of the average background value in the warm season. In contrast, particle fluxes during the moderate La Niña increased to a maximum value of 129.9 mg m−2 d−1, almost three times the average background value. Organic carbon and biogenic silica fluxes were most sensitive to the El Niño and La Niña conditions. The observed variations of particle fluxes are synchronized with those of chlorophyll-a, suggesting primary productivity for the main cause of flux change. The present data indicate that marked seasonal variability in background fluxes commonly exceeds the variability associated with ENSO and post-ENSO signals, which should be taken into account when evaluating the influence of ENSO on sinking particle fluxes in the 10°N thermocline ridge area.  相似文献   

12.
The levels of 19 kinds of organochlorine pesticides (OCPs) in the aqueous phase, suspended particulate matter (SPM), pore water and sediments from Daliao River estuary of Liaodong Bay (Bohai Sea) in northeast China were investigated to evaluate their potential pollution risks. The total OCPs concentrations in the aqueous phase, SPM, pore water and sediments were 3.7–30.1 ng l−1, 4.6–52.6 ng l−1, 157–830 ng l−1 and 2.1–21.3 ng g−1 dry weight, respectively. The concentrations of OCPs, in the Daliao River estuary, are in the mid-range, as compared to those reported in other estuaries worldwide. The distribution of HCHs and DDTs were different indicating different contamination sources. Lindane is the main type of HCH and continuing use in northeast China of ‘pure’ HCH (lindane) rather than technical HCH accounts for the source. The ratios of (DDE + DDD)/DDT in the samples indicate no recent inputs of these chemicals to the estuary.  相似文献   

13.
Marine sponges are key players in the transfer of carbon from the pelagic microbial food web into the benthos. Selective uptake of prokaryotic picoplankton (<2 μm) by a demosponge (Callyspongia sp.), and carbon flux through this process, were examined for the first time in the oligotrophic coastal waters of southwestern Australia, where sponge abundance and biodiversity ranks among the highest in the world. Water sampling and flow rate measurements were conducted over five sampling occasions following the InEx method of Yahel et al. (2005), with heterotrophic bacteria and autotrophic Synechococcus cyanobacteria identified and enumerated by flow cytometry. Callyspongia sp. demonstrated high filtration efficiencies, particularly for high DNA (HDNA) bacteria (up to 85.3% in summer 2008) and Synechococcus (up to 91.1% in autumn 2007), however efficiency varied non-uniformly with time and food type (p < 0.01). Overall filtration efficiency for Synechococcus (86.6 ± 6.3%; mean ± s.d.) was always significantly higher (p < 0.05) than for low DNA (LDNA) bacteria (40 ± 17.2%), except during winter 2007 (p = 0.14) when ambient Synechococcus concentrations were lowest. When compared to ambient abundances of the different food types, Callyspongia sp. exhibited consistently negative selectivity for LDNA bacteria and positive selectivity for Synechococcus, while HDNA bacteria was generally a neutral or positive selection. The total carbon removal rate (sum of all prokaryotic picoplankton cells), calculated on a per unit area basis, varied significantly with time (p < 0.01), with lowest rates recorded during the winter (0.5 ± 0.4–0.6 ± 0.8 mg C m−2 d−1) and highest values recorded in summer (3.5 ± 1.9 mg C m−2 d−1). These flux estimates quantify the role of a demosponge species in the ultimate fate of prokaryotic picoplankton within the nearshore food webs of southwestern Australia, and support the conclusion that sponges actively select food particles that optimise their nutritional intake.  相似文献   

14.
This study was carried out at the Bahía Blanca Estuary, Argentina, at the seaward edge of a saltmarsh. The saltmarsh-mudflat boundary in the study area shows sediment deposits at a higher elevation immediately seaward of the saltmarsh edge. We compared field determinations of water velocity, bed shear stress, wind wave conditions and variations of the bed elevation in the mudflat and within the Spartina alterniflora canopy at the seaward edge of a saltmarsh, and we evaluated the relative role of vegetation in the observed morphology. A mud deposition event that raised bed elevation in more than 5 cm occurred during the study period, with TSS concentrations > 500 mg l−1, but simultaneous measurements performed on the bed levels confirmed that the sediments deposited did not originate from local resuspension within the edge of the canopy. In similar tidal cycles in terms of local wave activity and bed shear stresses at the sampling site, deposition occurred only with winds aligned with the azimuth of the Canal Principal, reaching a maximum fetch of more than 20 km in front of the sampling site.  相似文献   

15.
The relationship between sedimentary Fe inputs and net seagrass population growth across a range of Posidonia oceanica meadows growing in carbonate Mediterranean sediments (Balearic Islands, Spain; SE Iberian Peninsula, Spain; Limassol, Cyprus; Sounion, Greece) was examined using comparative analysis. Sedimentary Fe inputs were measured using benthic sediment traps and the net population growth of P. oceanica meadows was assessed using direct census of tagged plants. The meadows examined ranged from meadows undergoing a severe decline to expanding meadows (specific net population growth, from −0.14 yr−1 to 0.05 yr−1). Similarly, Fe inputs to the meadows ranged almost an order of magnitude across meadows (8.6–69.1 mg Fe m−2 d−1). There was a significant, positive relationship between sedimentary iron inputs and seagrass net population growth, accounting for 36% of the variability in population growth across meadows. The relationship obtained suggested that seagrass meadows receiving Fe inputs below 43 mg Fe m−2 d−1 are vulnerable and in risk of decline, confirming the pivotal role of Fe in the control of growth and the stability of seagrass meadows in carbonate sediments.  相似文献   

16.
Telemetry methods were used to investigate the influence of selected environmental variables on the position and movement of an estuarine-dependent haemulid, the spotted grunter Pomadasys commersonnii (Lacepède 1801), in the Great Fish Estuary, South Africa. Forty individuals (263–698 mm TL) were surgically implanted with acoustic coded transmitters and manually tracked during two periods (7 February to 24 March 2003; n = 20 and 29 September to 15 November 2003; n = 20). Real-time data revealed that spotted grunter are euryhaline (0–37) and are able to tolerate large variations in turbidity (4–356 FTU) and temperature (16–30 °C). However, the fish altered their position in response to large fluctuations in salinity, temperature and turbidity, which are characteristic of tidal estuarine environments. Furthermore, tidal phase had a strong influence on the position of spotted grunter in the estuary.  相似文献   

17.
Based on field experiments and analysis, the study examined the spectral characteristic and spatial variability of turbidity in the Pearl River Estuary by using the EO-1 ALI satellite imagery collected on December 18, 2005. A negative regression model (turbidity = −439.52 × R (570) + 22.913, R2 = 0.9042, n = 11) between the in-situ turbidity and the reflectance at 570 nm (maximum correlation spectral band between 350 and 2500 nm), resulting from increasing of organic matters in suspended solids, was built and applied to ALI band 4 (0.525–0.605 nm). Simple in-water spectral pairs calibration method of bright and dark targets provided the good atmospheric correction of ALI with a root mean square error of 0.00061, and mean absolute percentage error of 2.04%. The study also found the seawater turbidity is a more accurate indicator of Chl_a concentration (R2 = 0.7442) than TSS (R2 = 0.7061). Also, there is a large correlation between TSS and the turbidity (R2 = 0.86, N = 22) for Modaomen watercourse. The model-deduced turbidity distribution from ALI band 4 exhibited distinctive spatial variability of turbidity in the dry season, accordant with seasonal in-situ investigation. The ALI data provides accurate estimates of the mean water clarity conditions in the PRE (RMSE = 1.878 and MAPE = 11.7%) and has potential importance for water quality monitoring of optical remote sensing in the similar estuaries and its future operation.  相似文献   

18.
Seasonal variations in diversity and biomass of diatoms, tintinnids, and dinoflagellates and the contribution of microplankton and faecal material to the vertical flux of particulates were investigated at one time series station T (station 18) between 2002 and 2005 and at a grid of stations during November 2004 in the coastal and oceanic area off Concepción (36°S), Chile. The variations were analysed in relation to water column temperature, dissolved oxygen, nutrient concentration, offshore Ekman transport, and chlorophyll-a concentration. Abundance was estimated as cell numbers per litre and biomass in terms of biovolume and carbon units.A sharp decrease with depth was observed in the abundance of both phytoplankton and microzooplankton during the whole annual cycle; over 70% of their abundance was concentrated in the upper 10 m of the water column. Also, a clear seasonality in microplankton distribution was observed at station T, with maxima for diatoms, tintinnids, and dinoflagellates every summer (centred on January) from 2002 to 2005.On the grid of stations, the maximum integrated (0-50 m) micro-phytoplankton abundances (>1 × 109 cells m−2) occurred at the coastal stations, an area directly influenced by upwelling. A similar spatial distribution was observed for the integrated (0-200 m) faecal carbon (with values up to 632 mg C m−2). Tintinnids were distributed in all the first 300 miles from the coast and dinoflagellates were more abundant in oceanic waters.At station T, the average POC export production (below 50 m depth) was 16.6% (SD = 17%; range 2-67%; n = 16). The biological-mediated fluxes of carbon between the upper productive layer and the sediments of the continental shelf off Concepción depend upon key groups of phytoplankton (Thalassiosira spp., Chaetoceros spp.) and zooplankton (euphausiids) through the export of either cells or faecal material, respectively.  相似文献   

19.
The oceanographic setting and the planktonic distribution in the coastal transition zone off Concepción (∼35-38°S, ∼73-77°W), an area characterized by its high biological production, were assessed during two different seasons: austral spring with equatorward upwelling favorable winds and austral winter with predominately northerly winds. Oceanographic and biological data (total chlorophyll-a, particulate organic carbon, microplankton, large mesozooplankton >500 μm as potential consumers of microplankton) were obtained during two cruises (October 1998, July 1999) together with satellite imagery for wind stress, geostrophic flow, surface temperature, and chlorophyll-a data. The physical environment during the spring sampling was typical of the upwelling period in this region, with a well-defined density front in the shelf-break area and high concentrations of surface chlorophyll-a (>5 mg m−3) on the shelf over the Itata terrace. During the winter sampling, highly variable though weakly upwelling-favorable winds were observed along with lower surface chlorophyll-a values (<2 mg m−3) on the shelf. In the oceanic area (>100 km from the coast), cyclonic and anti-cyclonic eddies were evident in the flow field during both periods, the former coinciding with higher chlorophyll-a contents (∼1 mg m−3) than in the surrounding waters. Also, a cold, chlorophyll-a rich filament was well defined during the spring sampling, extending from the shelf out to 350-400 km offshore. Along a cross-shelf transect, the micro- and meso-planktonic assemblages displayed higher coastal abundances during the spring cruise but secondary peaks appeared in the oceanic area during the winter cruise, coinciding with the distribution of the eddies. These results suggest that the mesoscale features in this region, in combination with upwelling, play a role in potentially increasing the biological productivity of the coastal transition zone off Concepción.  相似文献   

20.
In this study we examined the hypothesis that, under conditions of replete macronutrients and iron in the Southern Ocean, phytoplankton abundance and specific N uptake rates are influenced strongly by the processes of grazing and NH4 regeneration. NH4 and NO3 uptake rates by marine phytoplankton were measured to the northeast and northwest of the island of South Georgia during January-February 1998. Mean specific uptake rate for NO3 (vNO3) was 0.0026 h−1 (range 0.0013-0.0065 h−1) and for NH4 (vNH4) was 0.0097 h−1 (0.0014-0.0376 h−1). vNH4 was related positively with NH4 availability, which ranged from 0.1 to 1.5 mmol m−3 within the upper mixed layer. Ambient NH4 concentrations and vNH4 were both positively related to local krill biomass values, computed from mean values along acoustic transect segments within 2 km of the uptake measurement stations. These biomass values ranged from ∼1 g krill fresh mass m−2 in the northwest to >4 kg krill wet mass m−2 in the northeast. In contrast to the variability found with NH4 concentrations and uptake rates, vNO3 was more uniform across the sampling sites. Under these conditions, increasing NH4 concentration appeared to represent an additional N resource. However, high vNH4 tended to be found for stations with lower phytoplankton standing stocks, across a total range of 0.24-20 mg chlorophyll a m−3. These patterns suggest a coupling between phytoplankton biomass, vNH4 and krill in this region of variable but high krill biomass. Locally high concentrations of krill in parts of the study area appeared to have two opposing effects. On the one hand they could graze down phytoplankton stocks, but on the other hand, their NH4 excretion supported enhanced uptake rates by the remaining, ungrazed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号