首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used more than 25,000 nutrient samples to elucidate for the first time basin-scale distributions and seasonal changes of surface ammonium (NH4 +) and nitrite (NO2 ?) concentrations in the Pacific Ocean. The highest NH4 +, NO2 ?, and nitrate (NO3 ?) concentrations were observed north of 40°N, in the coastal upwelling region off the coast of Mexico, and in the Tasman Sea. NH4 + concentrations were elevated during May–October in the western subarctic North Pacific, May–December in the eastern subarctic North Pacific, and June–September in the subtropical South Pacific. NO2 ? concentrations were highest in winter in both hemispheres. The seasonal cycle of NH4 + was synchronous with NO2 ?, NO3 ?, and satellite chlorophyll a concentrations in the western subtropical South Pacific, whereas it was synchronous with chlorophyll-a but out of phase with NO2 ? and NO3 ? in the subarctic regions.  相似文献   

2.
The ecological consequences of ocean acidification are unclear due to varying physiological properties of macroalgae and species-specific responses. Therefore, in the present study, we used a laboratory culture experiment to analyse the eco-physiological responses of the Mediterranean subtidal red alga Peyssonnelia squamaria to CO2-induced lower pH. Our results showed an increase in the photosynthetic performance and growth rate of P. squamaria, despite the reduction in CaCO3 content in the low pH treatment. According to our results, we believe that samples exposed to elevated CO2 could be regulated own nitrogen metabolism to support increased growth rate and it may be down-regulated nitrate uptake. As a result, we hypothesize that P. squamaria may benefit from ocean acidification.  相似文献   

3.
为节约成本和样品,一些学者同时分析海洋沉积物中的碳、氮及其同位素(TOC、TN、δ13C和δ15N)。分析沉积物中的δ13C,需要对样品进行酸化去除无机碳,但是这一酸化过程会使TN和δ15N的分析结果产生偏差,且偏差范围与沉积物中无机碳含量(CaCO3)有关。本研究选取了低CaCO3含量(1-16%)和高CaCO3含量(20-40%)的海洋沉积物样品,比较了酸化过程对TN和δ15N的影响。研究结果表明,酸化过程对海洋沉积物中TN和δ15N的分析结果产生了显著影响。对于低CaCO3含量的样品,酸化导致样品中TN流失了约0-40%,δ15N偏移了约0-2‰;而对于高CaCO3含量的样品,酸化导致样品中TN流失了约10-60%,δ15N偏移了约1-14‰。表明酸化对TN和δ15N的影响已经超过了仪器的误差范围0.002%(TN)和0.08‰(δ15N),将影响TN和δ15N的环境指示意义。因此,即使海洋沉积物样品中CaCO3含量很低,也必须用原样分析TN和δ15N以避免酸化过程的影响。  相似文献   

4.
The paper presents a new model of electronic-vibrational kinetics of the products of ozone and molecular oxygen photodissociation in the terrestrial middle atmosphere. The model includes 45 excited states of the oxygen molecules O2(b 1, Σ g + ,v= 0−2), O2 (a 1Δ g , v= 0−5), and O2(X 3Σ g , v= 1−35) and of the metastable atom O (1 D) and over 100 aeronomic reactions. The model takes into account the dependence of quantum yields of the production of O2(a 1Δ g , v= 0−5) in a singlet channel of ozone photolysis in the Hartley band on the wavelength of photolytic emission. Taking account of the electronic-vibrational kinetics is important in retrieval of the vertical profiles of ozone concentration from measured intensities of the Atm and IR Atm emissions of the oxygen bands above 65 km and leads to an increase in the ozone concentration retrieved from the 1.27-μm emission, in contrast to the previous model of pure electronic kinetics. Sensitivity analysis of the new model is made for variations in the concentrations of atmospheric constituents ([O2], [N2], [O(3P)], [O3], [CO2]), the gas temperature, rate constants of the reactions, and quantum yields of the reaction products. A group of reactions that most strongly affect the uncertainty of ozone retrieval from measured intensities of atmospheric emissions of molecular oxygen O2(b 1Σ g + , v) and O2(a 1Δ g , v) has been determined. Original Russian Text ? V.A. Yankovsky, V.A. Kuleshov, R.O. Manuilova, A.O. Semenov, 2007, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2007, Vol. 43, No. 4, pp. 557–569.  相似文献   

5.
Increasing concentrations of atmospheric carbon dioxide are causing oceanic pH to decline worldwide, a phenomenon termed ocean acidification. Mounting experimental evidence indicates that near-future levels of CO2 will affect calcareous invertebrates such as corals, molluscs and gastropods, by reducing their scope for calcification. Despite extensive research into ocean acidification in recent years, the effects on non-calcifying anthozoans, such as sea anemones, remain little explored. In Western Europe, intertidal anemones such as Actinia equina are abundant, lower trophic-level organisms that function as important ecosystem engineers. Changes to behaviours of these simple predators could have implications for intertidal assemblages. This investigation identified the effects of reduced seawater pH on feeding and contest behaviour by A. equina. Video footage was recorded for A. equina feeding at current-day seawater (pH 8.1), and the least (pH 7.9) and most (pH 7.6) severe end-of-century predictions. Footage was also taken of contests over ownership of space between anemones exposed to reduced pH and those that were not. No statistically significant differences were identified in feeding duration or various aspects of contest behaviour including initiating, winning, inflating acrorhagi, inflicting acrorhagial peels and contest duration. Multivariate analyses showed no effect of pH on a combination of these variables. This provides contrast with other studies where anemones with symbiotic algae thrive in areas of natural increased acidity. Thus, novel experiments using intraspecific contests and resource-holding potential may prove an effective approach to understand sub-lethal consequences of ocean acidification for A. equina, other sea anemones and more broadly for marine ecosystems.  相似文献   

6.
The Arctic Ocean is connected to the Pacific by the Bering Sea and the Bering Strait. During the 4th Chinese National Arctic Research Expedition, measurements of carbon tetrachloride (CCl4) were used to estimate ventilation time-scales and anthropogenic CO2 (Cant) concentrations in the Arctic Ocean and Bering Sea based on the transit time distribution method. The profile distribution showed that there was a high-CCl4 tongue entering through the Canada Basin in the intermediate layer (27.6?<?σθ?<?28), at latitudes between 78 and 85°N, which may be related to the inflow of Atlantic water. Between stations B09 and B10, upwelling appeared to occur near the continental slope in the Bering Sea. The ventilation time scales (mean ages) for deep and bottom water in the Arctic Ocean (~?230–380 years) were shorter than in the Bering Sea (~?430–970 years). Higher mean ages show that ventilation processes are weaker in the intermediate water of the Bering Sea than in the Arctic Ocean. The mean Cant column inventory in the upper 4000 m was higher (60–82 mol m?2) in the Arctic Ocean compared to the Bering Sea (35–48 mol m?2).  相似文献   

7.
We investigated the effects of seawater acidification induced by ocean CO2 sequestration on bathypelagic prokaryotes. We simulated acidification conditions by bubbling high-CO2 air or adding chemical buffer solutions to seawater samples in order to examine changes in total cell counts, heterotrophic production rate, direct viable cell count, and relative abundance of Bacteria and Archaea. Considerable suppression of prokaryotic activities was observed at pH 7.0 or lower, especially in samples enriched with organic matter. The relative abundance of Archaea increased with increasing CO2 concentration. We found that seawater acidification can potentially alter heterotrophic activities and community structure of bathypelagic prokaryotes.  相似文献   

8.
To elucidate the sources and transformations of nitrogen in the South China Sea (SCS), the nitrogen isotopic composition of nitrate (\({\updelta }^{ 1 5} {\text{N}}_{{{\text{NO}}_{ 3} }}\)) was measured in seawater samples from the water column of this marginal sea and the adjacent western North Pacific Ocean (WNP). Comparison of the isotopic signatures from these two locations suggests that the main source of nitrogen into the SCS was nitrate that entered from the WNP through the Luzon Strait. Values of \({\updelta }^{ 1 5} {\text{N}}_{{{\text{NO}}_{ 3} }}\) were generally lower in the SCS than in the WNP, and the \({\updelta }^{ 1 5} {\text{N}}_{{{\text{NO}}_{ 3} }}\) maximum observed in the SCS intermediate water was lower than the corresponding WNP maximum. This pattern is attributed to mixing within the SCS in combination with the outflow of SCS intermediate water to the WNP. A mass balance model indicates that atmospherically derived N (a combined input of new nitrogen from marine N2 fixation and atmospheric deposition) supplied approximately 6% of the particulate nitrogen exported from the euphotic zone to the deep SCS. This supply of isotopically light nitrogen cannot, however, explain the low and downward-decreasing δ15N that has been previously observed in sinking particles of the deep SCS. We propose that an alternative explanation might be a downward-increasing ratio of isotopically light NH4 +-N to organic N due to the degradation of organic N within the sinking particles (i.e., relative enrichment of the NH4 +) and also particle incorporation of excreted ammonium from zooplankton.  相似文献   

9.
Feasibility studies recently suggest that sequestration of anthropogenic CO2 in the deep ocean could help reduce the atmospheric CO2 concentration. However, implementation of this strategy could have a significant environmental impact on marine organisms. This has highlighted the urgent need of further studies concerning the biological impact of CO2 ocean sequestration. In this paper we summarize the recent literature reporting on the biological impact of CO2 and discuss the research work required for the future. Although fundamental research of the effect of CO2 on marine organisms before the practical consideration of CO2 ocean sequestration was limited, laboratory and field studies concerning biological impacts have been increasing after the first international workshop in 1991 discussing CO2 ocean sequestration. Acute impacts of CO2 ocean sequestration could be determined by laboratory and field experiments and assessed by simulation models as described by the following papers in this section. On the other hand, chronic effects of CO2 ocean sequestration, those directly related to the marine ecosystem, would be difficult to verify by means of experiments and to assess using ecosystem models. One of the practical solutions for this issue implies field experiments starting with controlled small scale and eventually to a large scale of CO2 injection intended to determine ecosystem alteration. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Turbulent mixing of water masses of different temperatures and salinities is an important process for both coastal and large-scale ocean circulation. It is, however, difficult to capture computationally. One of the reasons is that mixing in the ocean occurs at a wide range of complexity, with the Reynolds number reaching , or even higher.In this study, we continue to investigate whether large eddy simulation (LES) can be a reliable computational tool for stratified mixing in turbulent oceanic flows. LES is attractive because it can be times faster than a direct numerical simulation (DNS) of stratified mixing in turbulent flows. Before using the LES methodology to compute mixing in realistic oceanic flows, however, a careful assessment of the LES sensitivity with respect to Re needs to be performed first. The main objectives of this study are: (i) to investigate the performance of different LES models at high Re, such as those encountered in oceanic flows; and (ii) to study how mixing varies as a function of Re. To this end, as a benchmark we use the lock-exchange problem, which is described by unambigous and simple initial and boundary conditions. The background potential energy, which accurately quantifies irreversible mixing in an enclosed system, is used as the main criterion in a posteriori testing of LES.This study has two main achievements. The first is that we investigate the accuracy of six combinations of two different classes of LES models, namely eddy-viscosity and approximate deconvolution types, for 3×103Re3×104, for which DNS data is computed. We find that all LES models almost always provide significantly more accurate results than cases without LES models. Nevertheless, no single LES model that is persistently superior to others over this Re range could be identified. Then, an ensemble of the four best performing LES models is selected in order to estimate mixing taking place in this system at Re=105 and 106, for which DNS is presently not feasible. Thus the second achievement of this study is to quantify mixing taking place in this system over an Re range that changes by three orders of magnitude. We find that the background potential energy increases by about 67% when Re is increased from Re=103 to Re=106, within the computation period, with the most significant increase taking place from Re=3×103 to Re=105.  相似文献   

11.
The uptake mechanism of anthropogenic CO2 in the Kuroshio Extension is examined by a Lagrangian approach using a biogeochemical model embedded in an ocean general circulation model. It is found that the uptake of anthropogenic CO2 is caused mainly by the increase of pCO2 dependency of seawater on temperature, which is caused by greater dissolved inorganic carbon concentration in the modern state than in the pre-industrial state. In contrast with the view of previous studies, the effect of the vertical entrainment, which brings waters that last contacted the atmosphere with the past lower CO2 concentration, is comparatively small. Winter uptake of anthropogenic CO2 increases with the rise of the atmospheric CO2 level, while summer uptake is relatively stable, resulting in a larger seasonal cycle of the uptake. This increase is significant, especially in the Kuroshio Extension region. It is newly suggested that this increase in the Kuroshio Extension region is largely caused by the combined effects of the increased pCO2 dependency of the sea water on the temperature and the seasonal difference in cooling.  相似文献   

12.
We have carried out a small-scale (∼20 l) CO2 sequestration experiment off northern California (684 m depth, ∼5°C, background ocean pH ∼7.7) designed as an initial investigation of the effects of physical forcing of the fluid, and the problem of sensing the formation of a low pH plume. The buoyant CO2 was contained in a square frame 1.2 m high, exposing 0.21 m2 to ocean flow. Two pH electrodes attached to the frame recorded the signal; a second frame placed 1.9 m south of the CO2 pool was also equipped with two recording pH electrodes. An additional pH electrode was held in the ROV robotic arm to probe the fluid interface. Local water velocities of up to 40 cm sec−1 were encountered, creating significant eddies within the CO2 box, and forcing wavelets at the fluid interface. This resulted in rapid CO2 dissolution, with all CO2 being depleted in a little more than 2 days. The pH record from the sensor closest (∼10 cm) to the CO2 showed many spikes of low pH water, the extreme value being ∼5.9. The sensor 1 m immediately below this showed no detectable response. The electrodes placed 1.9 m distant from the source also recorded very small perturbations. The results provide important clues for the design of future experiments for CO2 disposal and biogeochemical impact studies. These include the need for dealing with the slow CO2 hydration kinetics, better understanding of the fluid dynamics of the CO2-water interface, and non-point source release designs to provide more constant, controlled local CO2 enrichments within the experimental area. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
CO2-enriched seawater was far more toxic to eggs and larvae of a marine fish, silver seabream, Pagrus major, than HCl-acidified seawater when tested at the same seawater pH. Data on the effects of acidified seawater can therefore not be used to estimate the toxicity of CO2, as has been done in earlier studies. Ontogenetic changes in CO2 tolerance of two marine bony fishes (Pag. major and Japanese sillago, Sillago japonica) showed a similar, characteristic pattern: the cleavage and juvenile stages were most susceptible, whereas the preflexion and flexion stages were much more tolerant to CO2. Adult Japanese amberjack, Seriola quinqueradiata, and bastard halibut, Paralichthys olivaceus, died within 8 and 48 h, respectively, during exposure to seawater equilibrated with 5% CO2. Only 20% of a cartilaginous fish, starspotted smooth-hound, Mustelus manazo, died at 7% CO2 within 72 h. Arterial pH initially decreased but completely recovered within 1-24 h for Ser. quinqueradiata and Par. olivaceus at 1 and 3% CO2, but the recovery was slower and complete only at 1% for M. manazo. During exposure to 5% CO2, Par. olivaceus died after arterial pH had been completely restored. Exposure to 5% CO2 rapidly depressed the cardiac output of Ser. quinqueradiata, while 1% CO2 had no effect. Both levels of ambient CO2 had no effect on blood O2 levels. We tentatively conclude that cardiac failure is important in the mechanisms by which CO2 kills fish. High CO2 levels near injection points during CO2 ocean sequestration are likely to have acute deleterious effects on both larvae and adults of marine fishes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
A series of red tides were observed during 2015 in the Izmit Bay(the Marmara Sea) which is located in the most industrialized and populated region of Turkey. Six samplings were carried out in this area following the red tides.Nitrite-N, nitrate-N, ammonia, silica and orthophosphate concentrations were analyzed spectrophotometrically.Physicochemical conditions were measured by CTD probe. Plankton quantification was performed using counting chambers under microscopes. Prorocentrum micans was the most abundant species, except on May 14,2015, when Noctiluca scintillans was dominant. The abundance of P. micans reached average 18×10~6 ind./L on May 3, 2015 in the Karamürsel station, simultaneously with elevated levels of NH_3 and o-PO_4~(3–). The sample was also abundant in dead amphipods((72±12) ind./L) that had been covered by mucilage aggregates produced by P.micans. The highest biomass(calculated by carbon) was recorded as(268±26.0) mg/L on May 14 in the Hereke station. Beside the anthropogenic wastewater discharges, unknown sources and resuspensions caused increases in nutrient levels. After long term northeaster gusts(35 km/h for 5 d) an upwelling occurred on November 6, 2015 after wind-induced sediment resuspension. Although nutrient discharges remarkably decreased over 30 years through established wastewater treatment plants, harmful phytoplankton blooms still occur. Comparing the present results with other studies in nearby Mediterranean seas reveals that the most intense harmful dinoflagellate bloom in recent years occurred in the Izmit Bay. Therefore, additional protection measures necessary for a cleaner Izmit Bay. These incidents also demonstrate that contaminants, accumulated in sediment,may have long-lasting effects on enclosed marine ecosystems.  相似文献   

15.
Effects of CO<Subscript>2</Subscript> Enrichment on Marine Phytoplankton   总被引:1,自引:0,他引:1  
Rising atmospheric CO2 and deliberate CO2 sequestration in the ocean change seawater carbonate chemistry in a similar way, lowering seawater pH, carbonate ion concentration and carbonate saturation state and increasing dissolved CO2 concentration. These changes affect marine plankton in various ways. On the organismal level, a moderate increase in CO2 facilitates photosynthetic carbon fixation of some phytoplankton groups. It also enhances the release of dissolved carbohydrates, most notably during the decline of nutrient-limited phytoplankton blooms. A decrease in the carbonate saturation state represses biogenic calcification of the predominant marine calcifying organisms, foraminifera and coccolithophorids. On the ecosystem level these responses influence phytoplankton species composition and succession, favouring algal species which predominantly rely on CO2 utilization. Increased phytoplankton exudation promotes particle aggregation and marine snow formation, enhancing the vertical flux of biogenic material. A decrease in calcification may affect the competitive advantage of calcifying organisms, with possible impacts on their distribution and abundance. On the biogeochemical level, biological responses to CO2 enrichment and the related changes in carbonate chemistry can strongly alter the cycling of carbon and other bio-active elements in the ocean. Both decreasing calcification and enhanced carbon overproduction due to release of extracellular carbohydrates have the potential to increase the CO2 storage capacity of the ocean. Although the significance of such biological responses to CO2 enrichment becomes increasingly evident, our ability to make reliable predictions of their future developments and to quantify their potential ecological and biogeochemical impacts is still in its infancy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
To explore the effects of temperature changes on dinoflagellate bloom succession in the coastal waters of the East China Sea, changes in the growth, photophysiology, and Rubisco gene expression of Prorocentrum donghaiense and Karenia mikimotoi, two harmful algal species, were investigated at different temperatures (16 to 28°C). The maximal specific growth rate and the maximal mRNA expression of Rubisco gene in P. donghaiense and K. mikimotoi occurred at 20 and 24°C, respectively. The photosynthetic activity of P. donghaiense was generally stable, but K. mikimotoi photosynthesis increased when temperatures rose from 16 to 28°C. The effective photochemical efficiency (F q /F m ) and the maximal relative electron transfer rate (rETRmax) of K. mikimotoi increased significantly with increasing temperature, and the lowest and highest values occurred at 16 and 28°C, respectively. It seems that P. donghaiense has higher photosynthetic capacity than K. mikimotoi due to its higher F q /F m , rETRmax, and photosynthetic efficiency (α). However, K. mikimotoi has a higher growth rate than P. donghaiense. These results suggest that the photosynthetic activity and genetic responses of dinoflagellates are species-dependent. It is likely that temperature changes affect species composition during blooms, leading to the observed patterns of bloom succession.  相似文献   

17.
Severe red tides due toChattonella antiqua occur sporadically during summer in the Seto Inland Sea, Japan, and cause significant damage to the fishing industry. In order to assess the chemical environment with respect to the outbreak ofC. antiqua, environmental factors that affect the growth ofC. antiqua were monitored around the Ie-shima Islands, the Seto Inland Sea, in the summer of 1986. In addition, a growth bioassay of the seawater usingC. antiqua was conducted under a semicontinuous culture system. Although temperature, salinity and light intensity were optimum for the growth ofC. antiqua, red tides by this species did not occur. Concentrations of NH 4 + , NO 3 ? and PO 4 3? were low (<0.4, <0.2, <0.06 µM, respectively) above the thermocline (8–12 m) and high below it (0.6–2, 4–8, 0.4–0.8 µM, respectively). Vitamin B12 concentrations did not change significantly between the surface (0 m) and below the thermocline (25 m) in the level of 2–4 ng·l?1. The growth bioassay revealed that in the surface waters, concentrations of N- as well as P- nutrients were too low to support a rapid growth ofC. antiqua. At the depth of 25 m, neither N, P nor B12 limited the growth rate. In order to obtain more quantitative information on the growth rate as a function of the concentrations of N- and P- nutrients,C. antiqua was grown in a semicontinuous culture system by changing nutrient concentrations systematically. The observed growth rate (μ) can be approximated as follows: $$\mu = \mu _{\max } .\frac{{S_N }}{{K_g ^N + S_N }}.\frac{{S_{PO4} }}{{K_g ^P + S_{PO4} }},$$ whereS N is the concentration of NO 3 ? plus NH 4 + (0–6 µM),S PO, the concentration of PO 4 3? (0–0.6 µM), μmax (0.97 d?1) the maximal growth rate,K 0 N (1.0 µM) andK 0 P (0.11 µM) the half saturation constants for NO 3 ? and PO 4 3? , respectively. Using the above equation with nutrient concentrations measured, the rate at which seawater supports the growth ofC. antiqua can be estimated and this can be used for the assessment of chemical environments with respect to the outbreak ofC. antiqua.  相似文献   

18.
The measurements of the vertical transport of CO2 were carried out over the Sea of Japan using the specially designed pier of Kyoto University on September 20 to 22, 2000. CO2 fluxes were measured by the eddy correlation and aerodynamic techniques. Both techniques showed comparable CO2 fluxes during sea breeze conditions: −0.001 to −0.08 mg m−2s−1 with the mean of −0.05 mg m−2s−1. This means that the measuring site satisfies the fetch requirement for meteorological observations under sea breeze conditions. Moreover, the eddy diffusivity coefficient used in the aerodynamic technique is found to be consistent with the coefficient used in the eddy correlation technique. The present result leads us to conclude that the aerodynamic technique may be applicable to underway CO2 flux measurements over the ocean and may be used in place of the bulk technique. The important point is the need to maintain a measuring accuracy of CO2 concentration difference of the order of 0.1 ppmv on the research vessels or the buoys.  相似文献   

19.
We consider the resemblance between the ion composition of the fraction of soluble aerosols and gaseous admixtures in the atmospheric surface layer at the high-level Mondy station (East Sayan), those in the Listvyanka settlement south of Lake Baikal, in the city of Irkutsk, and at the Primorskaya station near the city of Ussuriysk (Primorskii krai). We use measurement data on the concentrations of the following ions: HCO 3 ? , SO 4 2? , NO 3 ? , Cl?, H+, Na+, K+, Mg2+, Ca2+ in the soluble fraction of aerosols and gases HNO3, HCl, NH3, and SO2 in air samples over a 10-year period conducted in the mode of online monitoring. We found the lognormal form of distributions of concentrations of each of the abovementioned components according to the number of samples. A versatile scheme of the distribution of mean geometric concentrations of atmospheric components was proposed for all four groups.  相似文献   

20.
The variability of the total alkalinity in the sea ice of the high-latitudinal Arctic from November 2005 to May 2006 is considered. For the bulk of the one- and two-year sea ice, the alkalinity dependence on the salinity is described as TA = k × Sal, where k is the salinity: alkalinity ratio in the under-ice water. The given relationship is valid within a wide salinity range from 0.1 psu in the desalinated fraction of two-year ice to 36 psu in the snow on the young ice surface. Geochemically significant deviations from the relationship noted were observed exclusively in the snow and the upper layer of one-year ice. In the upper layer of one-year ice, an alkalinity deficiency is observed (ΔTA ~ ?0.07 mequiv/kg, or ?15%). In the snow on the surface of the one-year ice, an alkalinity excess is formed under the desalination (ΔTA is as high as 1.3 mequiv/kg, 380%). The deviations registered are caused by the possibility of carbonate precipitation in the form of CaCO3 · 6H2O under the seawater freezing. It is shown that the ice formation and the following melting might cause a loss of the atmospheric CO2 of up to 3 × 1012 g C/year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号