首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ASTROD I is a planned interplanetary space mission with multiple goals. The primary aims are: to test General Relativity with an improvement in sensitivity of over 3 orders of magnitude, improving our understanding of gravity and aiding the development of a new quantum gravity theory; to measure key solar system parameters with increased accuracy, advancing solar physics and our knowledge of the solar system; and to measure the time rate of change of the gravitational constant with an order of magnitude improvement and the anomalous Pioneer acceleration, thereby probing dark matter and dark energy gravitationally. It is envisaged as the first in a series of ASTROD missions. ASTROD I will consist of one spacecraft carrying a telescope, four lasers, two event timers and a clock. Two-way, two-wavelength laser pulse ranging will be used between the spacecraft in a solar orbit and deep space laser stations on Earth, to achieve the ASTROD I goals.For this mission, accurate pulse timing with an ultra-stable clock, and a drag-free spacecraft with reliable inertial sensor are required. T2L2 has demonstrated the required accurate pulse timing; rubidium clock on board Galileo has mostly demonstrated the required clock stability; the accelerometer on board GOCE has paved the way for achieving the reliable inertial sensor; the demonstration of LISA Pathfinder will provide an excellent platform for the implementation of the ASTROD I drag-free spacecraft. These European activities comprise the pillars for building up the mission and make the technologies needed ready. A second mission, ASTROD or ASTROD-GW (depending on the results of ASTROD I), is envisaged as a three-spacecraft mission which, in the case of ASTROD, would test General Relativity to one part per billion, enable detection of solar g-modes, measure the solar Lense-Thirring effect to 10 parts per million, and probe gravitational waves at frequencies below the LISA bandwidth, or in the case of ASTROD-GW, would be dedicated to probe gravitational waves at frequencies below the LISA bandwidth to 100?nHz and to detect solar g-mode oscillations. In the third phase (Super-ASTROD), larger orbits could be implemented to map the outer solar system and to probe primordial gravitational-waves at frequencies below the ASTROD bandwidth. This paper on ASTROD I is based on our 2010 proposal submitted for the ESA call for class-M mission proposals, and is a sequel and an update to our previous paper (Appouchaux et al., Exp Astron 23:491?C527, 2009; designated as Paper I) which was based on our last proposal submitted for the 2007 ESA call. In this paper, we present our orbit selection with one Venus swing-by together with orbit simulation. In Paper I, our orbit choice is with two Venus swing-bys. The present choice takes shorter time (about 250?days) to reach the opposite side of the Sun. We also present a preliminary design of the optical bench, and elaborate on the solar physics goals with the radiation monitor payload. We discuss telescope size, trade-offs of drag-free sensitivities, thermal issues and present an outlook.  相似文献   

2.
ASTROD-GW(ASTROD[Astrodynamical Space Test of Relativity using Optical Devices] optimized for Gravitational Wave detection) is an optimization of ASTROD to focus on the detection of gravitational waves. Three spacecraft in the mission are positioned respectively in the vicinity of the Sun- Earth Lagrange points L3, L4 and L5. They form a nearly equilateral interferometerarray with the arm lengths of about 260 million kilometers. A set of optimized 20-yr mission orbits of the ASTROD-GW spacecraft are worked out by us. And with this, we have performed the numerical simulation of time-delay interferometry under the CGC2.7 (CGC: Center for Gravitation and Cosmology) ephemeris framework.  相似文献   

3.
ASTROD-GW (ASTROD [Astrodynamical Space Test of Relativity using Optical Devices] optimized for Gravitation Wave detection)是ASTROD专注于引力波探测的优化方案,组成任务的3个航天器分别位于日地拉格朗日点L3、L4和L5点附近,组成臂长为2.6× 108 km的干涉阵列.根据优化得到的ASTROD-GW 20 yr任务轨道,利用CGC2.7 (CGC:Center for Gravitation and Cosmology)星历,采用适当数值计算的方法,对引力波探测中所用到的时间迟延干涉路径进行分析和计算.  相似文献   

4.
ASTROD I is a planned interplanetary space mission with multiple goals. The primary aims are: to test general relativity with an improvement in sensitivity of over three orders of magnitude, improving our understanding of gravity and aiding the development of a new quantum gravity theory; to measure key solar system parameters with increased accuracy, advancing solar physics and our knowledge of the solar system; and to measure the time rate of change of the gravitational constant with an order of magnitude improvement and the anomalous Pioneer acceleration, thereby probing dark matter and dark energy gravitationally. It is an international project, with major contributions from Europe and China and is envisaged as the first in a series of ASTROD missions. ASTROD I will consist of one spacecraft carrying a telescope, four lasers, two event timers and a clock. Two-way, two-wavelength laser pulse ranging will be used between the spacecraft in a solar orbit and deep space laser stations on Earth, to achieve the ASTROD I goals. A second mission, ASTROD (ASTROD II) is envisaged as a three-spacecraft mission which would test General Relativity to 1 ppb, enable detection of solar g-modes, measure the solar Lense–Thirring effect to 10 ppm, and probe gravitational waves at frequencies below the LISA bandwidth. In the third phase (ASTROD III or Super-ASTROD), larger orbits could be implemented to map the outer solar system and to probe primordial gravitational-waves at frequencies below the ASTROD II bandwidth.
Wei-Tou NiEmail:
  相似文献   

5.
The success of LISA Pathfinder in demonstrating the LISA drag-free requirement paved the way for using space interferometers to detect low-frequency and middle-frequency gravitational waves(GWs). The TAIJI GW mission and the new LISA GW mission propose using an arm length of 3 Gm(1 Gm = 10~6 km) and an arm length of 2.5 Gm respectively. For a space laser-interferometric GW antenna,due to astrodynamical orbit variation, time delay interferometry(TDI) is needed to achieve nearly equivalent equal-arms for suppressing the laser frequency noise below the level of optical path noise, acceleration noise, etc in order to attain the requisite sensitivity. In this paper, we simulate TDI numerically for the TAIJI mission and the new LISA mission. To do this, we work out a set of 2200-day(6-year) optimized science orbits for each mission starting on 2028 March 22 using the CGC 2.7.1 ephemeris framework. Then we use the numerical method to calculate the residual optical path differences of the first-generation TDI configurations and the selected second-generation TDI configurations. The resulting optical path differences of the second-generation TDI configurations calculated for TAIJI, new LISA and eLISA are well below their respective requirements for laser frequency noise cancelation. However, for the first-generation TDI configurations, the original requirements need to be relaxed by 3 to 30 fold to be satisfied. For TAIJI and the new LISA, about one order of magnitude relaxation would be good and recommended; this could be borne on the laser stability requirement in view of recent progress in laser stability, or the GW detection sensitivities of the second-generation TDIs have to be used in the diagnosis of the observed data instead of the commonly used X, Y and Z TDIs.  相似文献   

6.
单航天器激光天文动力学空间计划ASTROD1是激光天文动力学ASTROD的第一步,通过发射绕太阳的无拖曳航天器,并且当航天器处于太阳背面附近时,与地面站进行深空激光测距,以执行科学任务。该文计算了ASTROD12015年的轨道、提出了判断轨道精度是否满足任务需要的方法、分析了地球和航天器的位置同望远镜前指量之间的关系并且给出了望远镜前指量的结果。  相似文献   

7.
引力波和引力波望远镜的发展   总被引:1,自引:1,他引:1  
简要回顾了广义相对论中相关的引力波理论,讨论了对引力波进行探测的重要意义和几种可能的途径;系统介绍了近50年来国际上对引力波进行探测的主要活动,以及当前几个具有代表性的引力波望远镜工程的进展。  相似文献   

8.
本文首先说明太空任务与轨道设计的关系 ,接着介绍轨道的基本性质。从地球重力势的观点看各种常用的绕地轨道 ,包括地球和太阳同步轨道及Molniya轨道。从扰动的观点看常用的星际轨道 ,包括LISA、ASTROD、SOHO轨道。最后对星际轨道设计 ,说明二点边界值问题的数值解法、飞掠星体的应用、最佳化的考虑 ,并用以设计 2 0 1 5年发射的ASTROD初步任务轨道。  相似文献   

9.
An analytical theory of lunar physical librations based on its two-layer model consisting of a non-spherical solid mantle and ellipsoidal liquid core is developed. The Moon moves on a high-precision orbit in the gravitational field of the Earth and other celestial bodies. The defined fourth mode of a free libration is caused by the influence of the liquid core, with a long period of 205.7 yr, with amplitude S = 0″0395 and with an initial phase Π0 = ?134° (for the initial epoch 2000.0). Estimates of dynamic (meridional) oblatenesses of a liquid core of the Moon have been estimated: ?D = 4.42 × 10?4, μD = 2.83 × 10?4 (?D + μD = 7.24 × 10?4). These results have been obtained as a result of comparison of the developed analytical theory of physical librations of the Moon with the empirical theory of librations of the Moon constructed on the basis of laser observations.  相似文献   

10.
The gravitational radiation of n = 1 polytropes undergoing quasiradial pulsations is examined. The intensity of the gravitational radiation and the gravitational wave amplitudes are calculated for polytropic models of white dwarfs and neutron stars when the energy of rotation of the object serves as the source of the radiated energy. Calculations of h0 show that objects with a polytropic equation of state can describe the expected gravitational radiation from white dwarfs and neutron stars. The gravitational radiation of polytropic models of galactic nuclei and quasars is also examined. These objects can create a high enough background of gravitational radiation at frequencies of 10-8–10-11 Hz for gravitational wave detectors operating in this frequency range. __________ Translated from Astrofizika, Vol. 48, No. 4, pp. 603–612 (November 2005).  相似文献   

11.
A novel formulation of the quadrupole equation for potential stellar gravitational‐wave power estimation is derived. The derivation commences with the classical Einstein quadrupole formalism and then utilizes Newton's second law to establish a simplified formulation involving the radius of gyration of a mass or system of masses involving a pair of massive stars either on orbit about one another, or otherwise separated, or a star with a dumbbell‐like or aspherical mass distribution and an impulsive force acting on the mass or masses in order to estimate the power of a gravitational wave that is generated. A numerical example, based upon the well‐known gravitational‐wave power observed to be generated by PSR 1913+16, is utilized to test the formulation. Potential applications to stellar jets, including stellar‐black‐hole produced jets, are cited as examples of the potential applications of the novel quadrupole formulation. It is suggested that the gravitational waves, generated by the applications suggested, might be detected by the proposed space‐based Laser Interferometer Space Antenna or LISA. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The Laser Interferometer Space Antenna (LISA) mission will use advanced technologies to achieve its science goals: the direct detection of gravitational waves, the observation of signals from compact (small and dense) stars as they spiral into black holes, the study of the role of massive black holes in galaxy evolution, the search for gravitational wave emission from the early Universe. The gravitational red-shift, the advance of the perihelion of Mercury, deflection of light and the time delay of radar signals are the classical tests in the first order of General Relativity (GR). However, LISA can possibly test Einstein’s theories in the second order and perhaps, it will show some particular feature of non-linearity of gravitational interaction. In the present work we are seeking a method to construct theoretical templates that limit in the first order the tensorial structure of some metric fields, thus the non-linear terms are given by exponential functions of gravitational strength. The Newtonian limit obtained here, in the first order, is equivalent to GR.  相似文献   

13.
The non-spherical gravitational potential of the planet Mars is sig- nificantly different from that of the Earth. The magnitudes of Mars’ tesseral harmonic coefficients are basically ten times larger than the corresponding val- ues of the Earth. Especially, the magnitude of its second degree and order tesseral harmonic coefficient J2,2 is nearly 40 times that of the Earth, and approaches to the one tenth of its second zonal harmonic coefficient J2. For a low-orbit Mars probe, if the required accuracy of orbit prediction of 1-day arc length is within 500 m (equivalent to the order of magnitude of 104 standard unit), then the coupled terms of J2 with the tesseral harmonics, and even those of the tesseral harmonics themselves, which are negligible for the Earth satellites, should be considered when the analytical perturbation solution of its orbit is built. In this paper, the analytical solutions of the coupled terms are presented. The anal- ysis and numerical verification indicate that the effect of the above-mentioned coupled perturbation on the orbit may exceed 10−4 in the along-track direc- tion. The conclusion is that the solutions of Earth satellites cannot be simply used without any modification when dealing with the analytical perturbation solutions of Mars-orbiting satellites, and that the effect of the coupled terms of Mars's non-spherical gravitational potential discussed in this paper should be taken into consideration.  相似文献   

14.
The space mission of the laser ranging of asteroid Icarus is that a laser reflector and a timer are placed on the No.1566 asteroid and the laser interference ranging is conducted between the asteroid and the ground-based station for making the precise measurements of the PPN parameters γ and β, solar quadrupolar moment J2, time rate of change ?/G of the gravitational constant and barycentric gravitational constant of the solar system objects. With the development of laser techniques, the timing accuracy of 10 ps (or 3 mm expressed by the amount of ranging) can be realized. In 2015 the asteroid Icarus will be close to the earth, which provides a better launch window for the Icarus lander. In the present article the 2003 interplanetary ephemeris frame of the PMOE is adopted to simulate the laser ranging between the ground-based station and the asteroid for 800 days from 2015 September 25 on and obtain the indeterminacies of 18 parameters, among which those of γ, β, J2 and ?/G are respectively 7.8 × 10−8, 9.0 × 10−7, 9.8 × 10−11 and 7.0 × 10−15yr−1, with each being 1 to 3 orders higher than the available experimental accuracy. The simulated result shows that this space mission is of scientific significance to the test of the theory of relativity, determination of the fundamental parameters of solar system and test of the space-time fundamental laws.  相似文献   

15.
16.
Supermassive black holes, with masses of 106 M to more than 109 M, are among the most spectacular objects in the Universe, and are laboratories for physics in extreme conditions. The primary goal of ARISE (Advanced Radio Interferometry between Space and Earth) is to use the technique of Space VLBI to increase our understanding of black holes and their environments, by imaging the havoc produced in the near vicinity of the black holes by their enormous gravitational fields. The mission will be based on a 25-meter space-borne radio telescope operating at frequencies between 8 and 86 GHz, roughly equivalent to an orbiting element of the Very Long Baseline Array. In an elliptical orbit with an apogee height of 40 000–100 000 km, ARISE will provide a resolution of 15 microarcsecond or better, 5–10 times better than that achievable on the ground. At frequencies of 43 and 86 GHz, the resolution of light weeks to light months in distant quasars will complement the gamma-ray and X-ray observations of high-energy photons, which come from the same regions near the massive black holes. At 22 GHz, ARISE will image the H2O maser disks in active galaxies more than 15 Mpc from Earth, probing accretion physics and giving accurate measurements of black-hole masses. ARISE also will study gravitational lenses at resolutions of tens of microarcseconds, yielding important information on the dark-matter distribution and on the possible existence of compact objects with masses of 103 M to 106 M.  相似文献   

17.
The phenomenological nature of a new gravitational type interaction between two different bodies derived from Verlinde’s entropic approach to gravitation in combination with Sorkin’s definition of Universe’s quantum information content, is investigated. Assuming that the energy stored in this entropic gravitational field is dissipated under the form of gravitational waves and that the Heisenberg principle holds for this system, one calculates a possible value for an absolute minimum time scale in nature t = \frac1516 \fracL1/2(h/2p) Gc4 ~ 9.27×10-105\tau=\frac{15}{16} \frac{\Lambda^{1/2}\hbar G}{c^{4}}\sim9.27\times10^{-105} seconds, which is much smaller than the Planck time t P =(ħG/c 5)1/2∼5.38×10−44 seconds. This appears together with an absolute possible maximum value for Newtonian gravitational forces generated by matter Fg=\frac3230\fracc7L (h/2p) G2 ~ 3.84×10165F_{g}=\frac{32}{30}\frac{c^{7}}{\Lambda \hbar G^{2}}\sim 3.84\times 10^{165} Newtons, which is much higher than the gravitational field between two Planck masses separated by the Planck length F gP =c 4/G∼1.21×1044 Newtons.  相似文献   

18.
The ultraviolet spectra of the star RU Lup obtained with the Hubble Space Telescope are analyzed. Emission lines are identified. The presence of absorption components with a nearly zero residual intensity in the Mg II resonance doublet lines is indicative of mass outflow with a velocity V ?300 km s?1. These lines also exhibit a broad (?1400 km s?1 at the base) component originating in the star itself. The profiles of the (optically thin) Si II] and Si III]1892 Å lines for the first time unequivocally prove that these lines originate in an accretion shock wave rather than in the chromosphere, with the gas infall velocity being V 0?400 km s?1. The intensity ratio of the C IV 1550 Å and Si IV 1400 Å resonance doublet components was found to be close to unity, suggesting a high accreted-gas density, logN 0>12.5. Molecular H2 Lyman lines formed in the stellar wind were detected. The H I Lα luminosity of RU Lup was found from their intensities to exceed 10% of L bol. Radiation pressure in the Lα line on atomic hydrogen may play a significant role in the initial acceleration of stellar-wind matter, but the effect of Lα emission on the dynamics of molecular gas is negligible.  相似文献   

19.
A V-band nova search was carried out in NGC 3627 with archival Hubble Space Telescope WFPC2 data which was obtained in the period between November 1997 and January 1998. A total of four novae candidates were discovered which corresponds to a global nova rate of R = 83.65 ± 7.58 yr−1. Taking into account the K-band luminosity obtained from 2MASS (Jarrett et al., 2003) yielded a luminosity specific nova rate (LSNR) of νK = 9.60 ± 1.64 novae per year per 1010L⊙,K. Excluding one of the candidates which may be a long-period variable leads to a LSNR of νK = 7.20 ± 1.23 novae per year per 1010L⊙,K. These values are higher than other known nova rates for external galaxies except the Magellanic Clouds.  相似文献   

20.
In this paper we present a detailed study of BCT Ist solution Tewari (Astrophys. Space Sci. 149:233, 1988) representing time dependent balls of perfect fluid with matter-radiation in general relativity. Assuming the life time of quasar 107 years our model has initial mass≈108 M Θ with an initial linear dimension≈1015 cm. Our model is radiating the energy at a constant rate i.e. L =1047 ergs/sec with the gravitational red shift, z=0.44637. In this model we have 2GM(u)/c 2 R S (u))=0.3191 i.e. the model is horizon free.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号