首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper focuses on surface–subsurface water exchange in a steep coarse‐bedded stream with a step‐pool morphology. We use both flume experiments and numerical modelling to investigate the influence of stream discharge, channel slope and sediment hydraulic conductivity on hyporheic exchange. The model step‐pool reach, whose topography is scaled from a natural river, consists of three step‐pool units with 0.1‐m step heights, discharges ranging between base and over‐bankfull flows (scaled values of 0.3–4.5 l/s) and slopes of 4% and 8%. Results indicate that the deepest hyporheic flow occurs with the steeper slope and at moderate discharges and that downwelling fluxes at the base of steps are highest at the largest stream discharges. In contrast to findings in a pool‐riffle morphology, those in this study show that steep slopes cause deeper surface–subsurface exchanges than gentle slopes. Numerical simulation results show that the portion of the hyporheic zone influenced by surface water temperature increases with sediment hydraulic conductivity. These experiments and numerical simulations emphasize the importance of topography, sediment permeability and roughness elements along the channel surface in governing the locations and magnitude of downwelling fluxes and hyporheic exchange. Our results show that hyporheic zones in these steep streams are thicker than previously expected by extending the results from streams with pool‐riffle bed forms. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Despite the occurrence of riffle–pool sequences in many rivers there are few data concerning riffle–pool unit morphology. Of many criteria proposed to identify riffle–pool units, only three methods can be regarded as objective and robust. These are the ‘zero‐crossing’, the ‘spectral analysis’ and the ‘control‐point’ methods. In this paper statistics are developed using the first two of these methods to describe the streamwise morphology of 275 riffles and 285 pools which form a continuous 32·1 km reach of the bed of the River Severn in Shropshire, England. Yalin's theoretical relationship between the average riffle:pool unit length ( λ p) and channel width ( W ), λ p = 3 W , applies to the River Severn. Reach‐average riffle height ( H ) is a constant proportion of bankfull depth ( h ); typically H ≅ 0·16 h . Riffle height is a positive function of riffle length. Pool depth is a positive function of pool length. However, both riffle length and pool length increase more rapidly than the bed‐level amplitude, such that long riffles or pools are relatively ‘flat’. As channel gradient reduces, bedforms flatten and become more asymmetric as riffle stoss sides and the proximal slope of pools lengthen at the expense of riffle lee sides and pool distal slopes. The statistical relationships between riffle steepness (H/L) and water depth are similar to those for equilibrium subaqueous dunes. The Severn data are consistent with Yalin's theoretical analysis relating riffle bedform length (L r) to water depth, i.e. L r = α2π h, wherein α ≅ 1 for steep near‐equilibrium bedforms but α ≅ 2 to 3 as the relative depth decreases and riffles become long, low features. Theoretical consideration and turbulence data indicate that the frequency of coherent turbulent‐flow structures associated with the riffle–pool mixing length in the Severn should be of the order of 50 to 100 s. The morphological similarity of the steepest River Severn riffles with dunes raises intriguing questions with respect to self‐similar, convergent organization of periodic alluvial bedforms and to bedform dynamic classification particularly. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
Step–pool morphology characterizes many high‐gradient streams in a variety of natural settings, but formative processes and evolutionary dynamics are still poorly understood. In this paper, natural step–pool geometry is compared with steep alluvial channels where grade‐control structures such as check‐dams and bed sills make the stream profile resemble a natural stepped stream. Along these channels, local scouring due to falling jets forms plunge pools under each structure, analogous to natural steps determining the formation of pools. In order to test the hypothesis that natural pools are analogous to pools formed below grade‐control works with respect to their dimensions, shape and formative dynamics, 37 natural pools and 73 artificial pools were surveyed in 10 mountain streams of the eastern Italian Alps. Pools below grade‐control works featured a transitional zone between the scour hole and the downstream sloping bed, marked by a depositional berm. When geometric parameters such as maximum pool depth, length and step–berm distances are normalized to the jet virtual energy, no statistically significant differences were detected between natural and artificial systems. These results lend support to an upstream‐forced cascade model for step–pool formation, where the energy of falling jets controls the geometry of the pools, and is therefore regarded as the most important scaling‐independent variable. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
This paper provides comprehensive evidence that sediment routing around pools is a key mechanism for pool‐riffle maintenance in sinuous upland gravel‐bed streams. The findings suggest that pools do not require a reversal in energy for them to scour out any accumulated sediments, if little or no sediments are fed into them. A combination of clast tracing using passive integrated transponder (PIT) tagging and bedload traps (positioned along the thalweg on the upstream riffle, pool entrance, pool exit and downstream riffle) are used to provide information on clast pathways and sediment sorting through a single pool‐riffle unit. Computational fluid dynamics (CFD) is also used to explore hydraulic variability and flow pathways. Clast tracing results provide a strong indication that clasts are not fed through pools, rather they are transported across point bar surfaces, or around bar edges (depending upon previous clast position, clast size, and event magnitude). Spatial variations in bedload transport were found throughout the pool‐riffle unit. The pool entrance bedload trap was often found to be empty, when the others had filled, further supporting the notion that little or no sediment was fed into the pool. The pool exit slope trap would occasionally fill with sediment, thought to be sourced from the eroding outer bank. CFD results demonstrate higher pool shear stresses (τ ≈ 140 N m–2) in a localized zone adjacent to an eroding outer bank, compared to the upstream and downstream riffles (τ ≈ 60 N m–2) at flows of 6 · 2 m3 s–1 (≈ 60% of the bankfull discharge) and above. There was marginal evidence for near‐bed velocity reversal. Near‐bed streamlines, produced from velocity vectors indicate that flow paths are diverted over the bar top rather than being fed through the thalweg. Some streamlines appear to brush the outer edge of the pool for the 4 · 9 m3 s–1 to 7 · 8 m3 s–1 (between 50 and 80% of the bankfull discharge) simulations, however complete avoidance was found for discharges greater than this. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A field‐based project was initiated in order to characterize velocities and sediment entrainment in a forced‐pool and riffle sequence. Three‐dimensional velocities and turbulence intensities were measured with an acoustic Doppler velocimeter at 222 different points at three similar flows that averaged approximately 4·35 m3 s−1 within a large pool–riffle unit on North Saint Vrain Creek, Colorado. Sediment‐sorting patterns were observed with the introduction of 500 tracer particles painted according to initial seeding location. Tracer particles moved sporadically during a 113 day period in response to the annual snowmelt peak flow, which reached a maximum level of 14·8 m3 s−1. Velocity data indicate high instantaneous velocities and turbulence levels in the centre of pools. Patterns of sediment deposition support the notion that stream competence is higher in the pool than the downstream riffle. Flow convergence around a large channel constriction appears to play a major role in multiple processes that include helical flow development and sediment routing, and backwater development with low velocities and turbulence levels above the constriction that may locally limit sediment supply. Jet flow, flow separation, vortex scour and turbulence generation enhance scour in the centre of pools. Ultimately, multiple processes appear to play some role in maintenance of this forced pool and the associated riffle. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The in?uence of pool length on the strength of turbulence generated by vortex shedding was investigated in a 6 m long recirculating ?ume. The experiment utilized a 38% constriction of ?ow and an average channel‐bed slope of 0·007. The base geometry for the intermediate‐length pool experiment originated from a highly simpli?ed, 0·10 scale model of a forced pool from North Saint Vrain Creek, Colorado. Discharge in the ?ume was 31·6 l/s, which corresponds to a discharge in the prototype channel of 10 m3/s. Three shorter and four longer pool lengths also were created with a ?xed bed to determine changes in turbulence intensities and energy slope with pool elongation. Three‐dimensional velocities were measured with an acoustic Doppler velocimeter at 31–40 different 0·6‐depth and near‐bed locations downstream of the rectangular constriction. The average velocity and root mean square (RMS) of the absolute magnitude of velocity at both depths are signi?cantly related to the distance from the constriction in most pool locations downstream of the constriction. In many locations, pool elongation results in a non‐linear change in turbulence intensities and average velocity. Based on the overall ?ow pattern, the strongest turbulence occurs in the center of the pool along the shear zone between the jet and recirculating eddy. The lateral location of this shear zone is sensitive to changes in pool length. Energy slope also was sensitive to pool length due to a combination of greater length of the pool and greater head loss with shorter pools. The results indicate some form of hydraulic optimization is possible with pools adjusting their length to adjust the location and strength of turbulent intensities in the center of pools, and lower their rate of energy dissipation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Flume experiments have been carried out to study the formation processes and the bed morphology of step–pool channels. From the experiments different step types and step configurations could be distinguished depending on the stream power. These step types can be seen as an image of the generation mechanisms of step–pool systems. These results suggest that the bed roughness geometry develops towards a condition that provides the maximum possible bed stability for a given grain size distribution. In contrast to a variety of other studies, antidunes did not contribute to the generation of the step structures. However, the data of the presented study fits well into the region of antidune formation proposed by Kennedy for sand‐bed rivers. This observation points out that step–pool field‐data located in the Kennedy region do not inevitably prove that antidunes played a role in step development. It is rather proposed that in Kennedy's region of antidune formation there exist hydraulic conditions where the flow resistance is maximized. It is suggested that such maximum flow resistance is associated with an optimal distance between the bedforms and their height, independently of whether these are antidunes in sand‐ and gravel‐bed rivers or step–pool units in boulder‐bed streams. The considerations of the Kennedy region of antidune formation and the analysis of planform step types depending on stream power both suggest that steep channels have a potential for self‐stabilization by modifying the step–pool structure towards a geometry that provides maximum flow resistance and maximum bed stability. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Riffle‐pool sequences are a common feature of gravel‐bed rivers. However, mechanisms of their generation and maintenance are still not fully understood. In this study a monitoring approach is employed that focuses on analysing cross‐sectional and longitudinal channel geometry of a large floodplain river (Vereinigte Mulde, Sachsen‐Anhalt, Germany) with a high temporal and spatial resolution, in order to conclude from stage‐dependant morphometric changes to riffle and pool maintaining processes. In accordance with previous authors, pool cross‐sections of the Mulde River are narrow and riffle cross‐sections are wide suggesting that they should rather be addressed as two general types of channel cross‐sections than solely as bedforms. At high flows, riffles and pools in the study reaches changed in length and height but not in position. Pools were scoured and riffles aggraded, a development which was reversed during receding flows below the threshold of 0·4Qbf (40% bankfull discharge). An index for the longitudinal amplitude of riffle‐pool sequences, the bed undulation intensity or bedform amplitude, is introduced and proved to be highly significant as a form parameter, its first derivative as a process parameter. The process of pool scour and riffle fill is addressed as bedform maintenance or bedform accentuation. It is indicated by increasing longitudinal bed amplitudes. According to the observed dynamics of bed amplitudes, maintenance of riffle‐pool sequences lags behind discharge peaks. Maximum bed amplitudes may be reached with a delay of several days after peak discharges. Increasing bed undulation intensity is interpreted to indicate bed mobility. Post‐flood decrease of the bed undulation intensity indicates a retrograde phase when transport from pools to riffles has ceased and bed mobility is restricted to riffle tails and heads of pools. This type of transport behaviour is referred to as disconnected mobility. The comparison of two river reaches, one with undisturbed sediment supply, the other with sediment deficit, suggests that high bed undulation intensity values at low flows indicate sediment deficit and potentially channel degrading conditions. It is more generally hypothesized that channel bed undulations constitute a major component of form roughness and that increased bed amplitudes are an important feature of channel bed adjustment to sediment deficit be it temporally during late floods or permanently due to a supply limitation of bedload. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Studies on pool morphologies include reports of over 80% or 90% of pools being associated with structural controls and large obstructions that include boulders, bedrock outcrops and large woody debris (LWD). A Monte Carlo simulation approach and developmental computer model was created to predict pool formation, spacing and the percentage length covered by pools, riffles, scour holes and runs based on input data that include channel slope, width, the number of small and large boulders, and the number of 10–30 cm, 30–60 cm and >60 cm pieces of wood. The statistical‐empirical model is founded on the idea that boulders, bedrock outcrops and large woody debris provide a physical framework that then controls local water‐surface slopes, velocity patterns and the locations of pools and riffles. The spacing values of individual types and sizes of obstructions are modeled as log‐normal distributions with separate distributions for each obstruction type. Pools are assigned different probabilities of development depending on the obstruction type. Pool and riffle lengths used to create the subsequent morphology follow their own slope‐dependent, log‐normal trends. A minimum distance develops between successive pools because of the backwater and turbulent conditions needed for pool formation. The total number and spacing of pools, riffles and scour holes thus reflects the number and locations of obstructions and characteristics of the pool–riffle couplet. The simulation model accurately captures the number of pools in the modeled data range at 65% of all the verification field sites, and 86% of the verification field sites with a more limited range of width and slope characteristics. Lower levels of prediction capabilities are associated with modeled numbers of scour holes and log jams. The model accurately mimics some statistical attributes of pool spacing, and future versions of the model could be developed to improve overall predictive capabilities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
11.
Soil loss continues to threaten Java's predominantly bench‐terraced volcanic uplands. Sediment transport processes on back‐sloping terraces with well‐aggregated clay‐rich oxisols in West Java were studied using two different techniques. Splash on bare, cropped, or mulched sub‐horizontal (2–3°) terrace beds was studied using splash cups of different sizes, whereas transport of sediment on the predominantly bare and steep (30–40/deg ) terrace risers was measured using a novel device combining a Gerlach‐type trough with a splash box to enable the separate measurement of transport by wash and splash processes. Measurements were made during two consecutive rainy seasons. The results were interpreted using a recently developed splash distribution theory and related to effective rainfall erosive energy. Splash transportability (i.e. transport per unit contour length and unit erosive energy) on the terrace risers was more than an order of magnitude greater than on bare terrace beds (0·39–0·57 versus 0·013–0·016 g m J?1). This was caused primarily by a greater average splash distance on the short, steep risers (>11 cm versus c. 1 cm on the beds). Splashed amounts were reduced by the gradual formation of a protective ‘pavement’ of coarser aggregates, in particular on the terrace beds. Soil aggregate size exhibited an inverse relationship with detachability (i.e. detachment per unit area and unit erosive energy) and average splash length, and therefore also with transportability, as did the degree of canopy and mulch cover. On the terrace risers, splash‐creep and gravitational processes transported an additional 6–50% of measured rain splash, whereas transport by wash played a marginal role. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
Seventy-eight riffle to riffle and 80 bend spacings along eleven coarse-bedload, low sinuosity stream channels in upland Britain have been surveyed. Frequency distributions of these spacings are notably right-skewed. The most common repeating distances between riffles and bend inflections are between 4 and 6 channel widths although spacings up to 20 widths are also present. Riffle and pool locations around bends at different stages of planform development indicate that change is largely through increased sinuosity between two consecutive riffles of an original straight reach. Observed straight segments exhibit alternating riffles and pools evenly spaced at 4-6 widths, and most bends have similarly spaced riffles at their inflections in plan, with the intermediate pool at their apex. However angular deflections between axial lines joining inflections indicate existing sequences of bends did not develop from a single straight reach. Bends which are significantly longer than 4-6 widths are of low sinuosity and represent variability in naturally irregular planforms rather than arcs in advanced stages of meander growth. Adjusted bed topography around such long bends takes two forms. Either a single riffle-pool cycle is present with one or both bed forms being longer than average, or a 4-6 widths spacing is maintained by more than one riffle-pool sequence. Locally, the cross-section characteristics of riffles and pools are also influenced by planform location.  相似文献   

13.
Water temperature is an important determinant of the growth and development of malaria mosquito immatures. To gain a better understanding of the daily temperature dynamics of malaria mosquito breeding sites and of the relationships between meteorological variables and water temperature, three clear water pools (diameter × depth: 0·16 × 0·04, 0·32 × 0·16 and 0·96 × 0·32 m) were created in Kenya. Continuous water temperature measurements at various depths were combined with weather data collections from a meteorological station. The water pools were homothermic, but the top water layer differed by up to about 2 °C in temperature, depending on weather conditions. Although the daily mean temperature of all water pools was similar (27·4–28·1 °C), the average recorded difference between the daily minimum and maximum temperature was 14·4 °C in the smallest versus 7·1 °C in the largest water pool. Average water temperature corresponded well with various meteorological variables. The temperature of each water pool was continuously higher than the air temperature. A model was developed that predicts the diurnal water temperature dynamics accurately, based on the estimated energy budget components of these water pools. The air–water interface appeared the most important boundary for energy exchange processes and on average 82–89% of the total energy was gained and lost at this boundary. Besides energy loss to longwave radiation, loss due to evaporation was high; the average estimated daily evaporation ranged from 4·2 mm in the smallest to 3·7 mm in the largest water pool. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
We monitor bedload transport and water discharge at six stations in two forested headwater streams of the Columbia Mountains, Canada. The nested monitoring network is designed to examine the effects of channel bed texture, and the influence of alluvial (i.e. step pools and riffle pools) and semialluvial morphologies (i.e. boulder cascades and forced step pools) on bedload entrainment and transport. Results indicate that dynamics of bedload entrainment are influenced by differences in flow resistance attributable to morphology. Scaled fractional analysis shows that in reaches with high form resistance most bedload transport occurs in partial mobility fashion relative to the available bed material, while calibers finer than 16 mm attain full mobility during bankfull flows. Equal mobility transport for a wider range of grain sizes is achieved in reaches exhibiting reduced form resistance. Our findings confirm that the Shields value for mobilization of the median surface grain size depends on channel gradient and relative submergence; however, we also find that these relations vary considerably for cobble and gravel bed channels due to proportionality between dimensionless shear stress and grain size. Exponents of bedload rating curves across sites correlate most with the D90s of the mobile bed, however, where grain effects are controlled (i.e. along individual streams), differences in form resistance across morphologies exert a primary control on bedload transport dynamics. Application of empirical formulae developed for use in steep alpine channels present variable success in predicting transport rates in forested snowmelt streams. Formulae that explicitly account for reductions in mobile bed area and high morphological resistance associated with woody debris provide the best approximation to observed empirical data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Computer flow simulations using the HEC-2 step-backwater routine are used to demonstrate the effect of systematically varying river channel width, riffle spacing and channel roughness on the shear velocity, section-mean velocity and energy slope in fixed-bed pool-riffle sequences. Initial scaling is obtained by utilizing published information on hydraulic parameters within reaches of the River Severn. Subsequently this restriction is relaxed and the effect of varying parameter combinations within realistic limits is explored. The purpose of this exercise is to isolate those scenarios which may preclude or promote the occurrence of a competence ‘reversal’, such that pools scour at high flow whilst deposition occurs on riffles. It is concluded that rivers in which pools are hydraulically rougher than riffles are likely to demonstrate a competence reversal. For prescribed conditions, the critical discharge at which a reversal occurs is a negative function of riffle spacing and riffle width relative to pool width. Downstream variation in hydraulic roughness also has implications for the phase relationship of shear velocity maxima and minima in relation to the extremes in pool-riffle topography.  相似文献   

16.
Studies of hyporheic exchange flows have identified physical features of channels that control exchange flow at the channel unit scale, namely slope breaks in the longitudinal profile of streams that generate subsurface head distributions. We recently completed a field study that suggested channel unit spacing in stream longitudinal profiles can be used to predict the spacing between zones of upwelling (flux of hyporheic water into the stream) and downwelling (flux of stream water into the hyporheic zone) in the beds of mountain streams. Here, we use two‐dimensional groundwater flow and particle tracking models to simulate vertical and longitudinal hyporheic exchange along the longitudinal axis of stream flow in second‐, third‐, and fourth‐order mountain stream reaches. Modelling allowed us to (1) represent visually the effect that the shape of the longitudinal profile has on the flow net beneath streambeds; (2) isolate channel unit sequence and spacing as individual factors controlling the depth that stream water penetrates the hyporheic zone and the length of upwelling and downwelling zones; (3) evaluate the degree to which the effects of regular patterns in bedform size and sequence are masked by irregularities in real streams. We simulated hyporheic exchange in two sets of idealized stream reaches and one set of observed stream reaches. Idealized profiles were constructed using regression equations relating channel form to basin area. The size and length of channel units (step size, pool length, etc.) increased with increasing stream order. Simulations of hyporheic exchange flows in these reaches suggested that upwelling lengths increased (from 2·7 m to 7·6 m), and downwelling lengths increased (from 2·9 m to 6·0 m) with increase in stream order from second to fourth order. Step spacing in the idealized reaches increased from 5·3 m to 13·7 m as stream size increased from second to fourth order. Simulated downwelling lengths increased from 4·3 m in second‐order streams to 9·7 m in fourth‐order streams with a POOL–RIFFLE–STEP channel unit sequence, and increased from 2·5 m to 6·1 m from second‐ to fourth‐order streams with a POOL–STEP–RIFFLE channel unit sequence. Upwelling lengths also increased with stream order in these idealized channels. Our results suggest that channel unit spacing, size, and sequence are all important in determining hyporheic exchange patterns of upwelling and downwelling. Though irregularities in the size and spacing of bedforms caused flow nets to be much more complex in surveyed stream reaches than in idealized stream reaches, similar trends emerged relating the average geomorphic wavelength to the average hyporheic wavelength in both surveyed and idealized reaches. This article replaces a previously published version (Hydrological Processes, 19 (17), 2915–2929 (2005) [ DOI:10.1002/hyp.5790 ]. See also retraction notice DOI:10.1002/hyp.6350 Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
This article has been retracted and replaced. See Retraction and Replacement Notice DOI: 10.1002/hyp.6350 Studies of hyporheic exchange flows have identified physical features of channels that control exchange flow at the channel unit scale, namely slope breaks in the longitudinal profile of streams that generate subsurface head distributions. We recently completed a field study that suggested channel unit spacing in stream longitudinal profiles can be used to predict the spacing between zones of upwelling (flux of hyporheic water into the stream) and downwelling (flux of stream water into the hyporheic zone) in the beds of mountain streams. Here, we use two‐dimensional groundwater flow and particle tracking models to simulate vertical and longitudinal hyporheic exchange along the longitudinal axis of stream flow in second‐, third‐, and fourth‐order mountain stream reaches. Modelling allowed us to (1) represent visually the effect that the shape of the longitudinal profile has on the flow net beneath streambeds; (2) isolate channel unit sequence and spacing as individual factors controlling the depth that stream water penetrates the hyporheic zone and the length of upwelling and downwelling zones; (3) evaluate the degree to which the effects of regular patterns in bedform size and sequence are masked by irregularities in real streams. We simulated hyporheic exchange in two sets of idealized stream reaches and one set of observed stream reaches. Idealized profiles were constructed using regression equations relating channel form to basin area. The size and length of channel units (step size, pool length, etc.) increased with increasing stream order. Simulations of hyporheic exchange flows in these reaches suggested that upwelling lengths increased (from 2·7 m to 7·6 m), and downwelling lengths increased (from 2·9 m to 6·0 m) with increase in stream order from second to fourth order. Step spacing in the idealized reaches increased from 5·3 m to 13·7 m as stream size increased from second to fourth order. Simulated upwelling lengths increased from 4·3 m in second‐order streams to 9·7 m in fourth‐order streams with a POOL–RIFFLE–STEP channel unit sequence, and increased from 2·5 m to 6·1 m from second‐ to fourth‐order streams with a POOL–STEP–RIFFLE channel unit sequence. Downwelling lengths also increased with stream order in these idealized channels. Our results suggest that channel unit spacing, size, and sequence are all important in determining hyporheic exchange patterns of upwelling and downwelling. Though irregularities in the size and spacing of bedforms caused flow nets to be much more complex in surveyed stream reaches than in idealized stream reaches, similar trends emerged relating the average geomorphic wavelength to the average hyporheic wavelength in both surveyed and idealized reaches. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
19.
In May 2003, a breach in a large irrigation ditch within Rocky Mountain National Park (RMNP) initiated a debris flow that entered Lulu Creek and the Colorado River, where 36 000 m3 of sediment substantially altered channel forms and processes. We present a proof of concept to understand whether the 2003 disturbance is within the historical range of variability (HRV), and whether the recovery potential of the system is sufficient to adapt to the disturbance. Flow and sediment regimes, and channel morphology and stability were monitored on Lulu Creek and the Colorado River from 2004 to 2011. Dominant channel response following the debris flow within Lulu Creek included step development, bed armoring, and channel widening. Step height‐to‐length ratios (H/L) for three reaches on Lulu Creek are outside the HRV of reference channels, with one reach approaching reference conditions. Erosion of approximately 23% of the debris fan volume occurred as a result of the long duration 2011 peak flow. Sediment within the Lulu Creek fan will persist for ~30–190 years, assuming current maximum and mean removal rates. Planform changes on the Colorado River since the debris flow include an increase in single‐thread geometries, with braided reaches where bar deposition occurred. Bedload transport and grain‐size analysis of bedload indicate translational spreading of a sand wave front with a dispersive component in steeper reaches. Lulu Creek is returning to a condition of natural variability, but the Colorado River is outside the HRV expected for steep‐gradient, pool‐riffle channels. Applying HRV to a situation where management questions require a longer term perspective, and pre‐disturbance baseline data are limited, is a useful approach. The HRV analysis facilitates a better understanding of site variability and delineates the range of possibilities of channel form and process to achieve management goals. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Single‐thread, gravel‐bed streams of moderate slope in the northern Negev are characterized by three channel units: bars exhibit steeper than average slopes and poorly sorted mixtures of small–medium cobbles and coarse–very coarse pebbles; flats are associated with more gentle slopes and well‐sorted medium–fine pebbles and granules; and transitional units have intermediate slopes and grain size. In general, all three units are planar, span the full channel width and have well‐defined boundaries. Bars and flats are more common than the transitional units and alternate downstream for distances of several hundred metres, forming sequences that are reminiscent of the riffle–pool structure commonly observed in humid‐temperate gravel‐bed rivers. A notable contrast is the absence of significant bed relief: bars lack crests and flats lack depressions. The relative lack of bed relief in bar–flat sequences is attributed to the high rate of sediment supply from the sparsely vegetated hillslopes which promotes the infilling of depressions and to the erosion of crests under conditions of intense transport. This reduction of bed relief lowers channel roughness, which in turn increases flow velocity and, therefore, the ability of the channel to transmit the large sediment loads it receives. Although our analyses pertain to a semi‐arid river system, the results have wider implications for understanding the adjustment of channel bedform to high sediment loads in other fluvial environments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号