首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a three‐dimensional energy‐based solution for the time‐dependent response of a deeply embedded and unsupported semi‐infinite tunnel of circular cross‐section. The tunnel is taken to be excavated quasi‐instantaneously from an infinite rock body that initially exhibits an isotropic stress state and that is made up of a homogeneous, isotropic and viscoelastic material. The viscoelastic behaviour is modelled by means of Burger's model, and the rock is taken to behave volumetrically linear elastic and to exhibit exclusively deviatoric creep. This viscoelastic problem is transformed into the Laplace domain, where it represents a quasi‐elastic problem. The displacement fields in the new solution are taken to be the products of independent functions that vary in the radial and longitudinal directions. The differential equations governing the displacements of the system and appropriate boundary conditions are obtained using the principle of minimum potential energy. The solutions for these governing equations in the Laplace domain are then obtained analytically and numerically using a one‐dimensional finite difference technique. The results are then transformed back into the time domain using an efficient numerical scheme. The accuracy of the new solution is comparable with that of a finite element analysis but requires much less computation effort. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A numerical procedure is described for the analysis of vertical deformation of smooth, rigid foundations of arbitrary shape on homogeneous and layered soil media. The contact area at the interface of the foundation and soil medium is approximated by square subdivisions. The response of the system is then obtained from the superposition of the influence of the individual subdivisions. The flexibility influence coefficients are based on equivalent smooth, rigid circular areas with the same contact area as the square subdivisions. For foundations on a homogeneous, isotropic elastic half-space, the flexibility coefficients are given analytically by the integrated forms of the Boussinesq's solution. For a layered soil medium, the flexibility coefficients are determined from an axisymmetric finite element analysis which is essentially two dimensional. Thus, there is no necessity for a full three-dimensional finite element analysis. Comparison with solutions obtained using the integral transform technique for smooth, rigid rectangular foundations on a homogeneous, isotropic elastic half-space shows good agreement. Parametric solutions are presented for the response of rectangular foundations on some ‘typical’ soil profiles. The use of a simplified method to estimate the settlement of rectangular foundations on a layered soil medium by superposing solutions for homogeneous, elastic strata is discussed.  相似文献   

3.
The aim of this study is to arrive at a better understanding of the phenomenon of locking of low‐order compatible displacement type of finite elements in particular for the hour‐glass mode of the plane four‐node element and dilative materials. To this end the properties of finite elements are investigated in an analytical way, where a finite element is considered as a plane boundary value problem with prescribed boundary displacement (Dirichlet problem). In this paper for the sake of simplicity the simplest possible linear comparison solid, namely isotropic linear elasticity, is applied, although recognizing fully that for a dilative material elasto‐plasticity would be more realistic. From the study described in this paper it is concluded that locking of the four‐node element is not due to any particular numerical formulation of this compatible finite element since, even the analytical solution suffers from this problem. The locking of this element is not related to incompressibility of the material either as the analytical solution shows locking to occur at a parameter set which differs significantly from the one in case of incompressibility. It is shown that locking is a consequence of the combination of the dilative material behaviour and the compatible displacement type of boundary conditions, which leads to infinite isotropic stresses in the element. These infinite isotropic stresses occur at the limit of uniqueness of the solution, which for this element is shown to occur outside the parameter range of the sufficiency of uniqueness. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
A challenging computational problem arises when a discrete structure (e.g. foundation) interacts with an unbounded medium (e.g. deep soil deposit), particularly if general loading conditions and non‐linear material behaviour is assumed. In this paper, a novel method for dealing with such a problem is formulated by combining conventional three‐dimensional finite‐elements with the recently developed scaled boundary finite‐element method. The scaled boundary finite‐element method is a semi‐analytical technique based on finite‐elements that obtains a symmetric stiffness matrix with respect to degrees of freedom on a discretized boundary. The method is particularly well suited to modelling unbounded domains as analytical solutions are found in a radial co‐ordinate direction, but, unlike the boundary‐element method, no complex fundamental solution is required. A technique for coupling the stiffness matrix of bounded three‐dimensional finite‐element domain with the stiffness matrix of the unbounded scaled boundary finite‐element domain, which uses a Fourier series to model the variation of displacement in the circumferential direction of the cylindrical co‐ordinate system, is described. The accuracy and computational efficiency of the new formulation is demonstrated through the linear elastic analysis of rigid circular and square footings. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
An analytical solution of the plane strain problem of the deformation of a homogeneous, isotropic, poroelastic layer of uniform thickness overlying a homogeneous, isotropic, elastic half‐space due to two‐dimensional seismic sources buried in the elastic half‐space has been obtained. The integral expressions for the displacements, stresses and pore pressure have been obtained using the stress function approach by applying suitable boundary conditions at the free surface and the interface. The solution obtained is in the Laplace–Fourier transform domain. The case of a vertical dip‐slip line dislocation for the oceanic crust model of Earth is studied in detail. Schapery's formula is used for the Laplace inversion and the extended Simpson's formula for the Fourier inversion. Diffusion of pore pressure in the layer is studied numerically. Contour maps showing the pore pressure in the poroelastic layer have been plotted. The effect of the compressibility of the solid and fluid constituents on pore pressure has also been studied. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
张劲  牟善波  张士诚 《地质学报》2008,82(10):1450-1453
煤岩的水力压裂实际上就是半无限大分层均匀介质的断裂问题,要利用有限元法或边界元法模拟裂缝扩展,就必须找出半无限空间的基本解。本文从三维弹性力学最基本的平衡方程和本构关系出发,推导出状态传递微分方程。在求解状态传递微分方程时,对指数矩阵进行分解,避免了直接解法导致状态变量的发散。引入了半无限体的无穷边界条件,推导出半无限层表面的位移与应力关系式。根据状态传递方程,可得出层状煤岩任意点的应力和位移的值。此结果可直接退化到经典的半无限域经典的Mindlin解。  相似文献   

7.
This paper analyses the plane strain problem of a fracture, driven by injection of an incompressible viscous Newtonian fluid, which propagates parallel to the free surface of an elastic half‐plane. The problem is governed by a hyper‐singular integral equation, which relates crack opening to net pressure according to elasticity, and by the lubrication equations which describe the laminar fluid flow inside the fracture. The challenge in solving this problem results from the changing nature of the elasticity operator with growth of the fracture, and from the existence of a lag zone of a priori unknown length between the crack tip and the fluid front. Scaling of the governing equations indicates that the evolution problem depends in general on two numbers, one which can be interpreted as a dimensionless toughness and the other as a dimensionless confining stress. The numerical method adopted to solve this non‐linear evolution problem combines the displacement discontinuity method and a finite difference scheme on a fixed grid, together with a technique to track both crack and fluid fronts. It is shown that the solution evolves in time between two asymptotic similarity solutions. The small time asymptotic solution corresponding to the solution of a hydraulic fracture in an infinite medium under zero confining stress, and the large time to a solution where the aperture of the fracture is similar to the transverse deflection of a beam clamped at both ends and subjected to a uniformly distributed load. It is shown that the size of the lag decreases (to eventually vanish) with increasing toughness and compressive confining stress. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
By virtue of a pair of scalar potentials for the displacement of the solid skeleton and the pore fluid pressure field of a saturated poroelastic medium, an alternative solution method to the Helmholtz decomposition is developed for the wave propagation problems in the framework of Biot's theory. As an application, a comprehensive solution for three‐dimensional response of an isotropic poroelastic half‐space with a partially permeable hydraulic free surface under an arbitrarily distributed time‐harmonic internal force field and fluid sources is developed. The Green's functions for the poroelastic fields, corresponding to point, ring, and disk loads, are reduced to semi‐infinite complex‐valued integrals that can be evaluated numerically by an appropriate quadrature scheme. Analytical and numerical comparisons are made with existing elastic and poroelastic solutions to illustrate the quality and features of the solution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The goal of the paper is to determine the most efficient, yet accurate and stable, finite element nonlinear solution method for analysis of partially saturated deformable porous media at small strain. This involves a comparison between fully implicit, semi‐implicit, and explicit time integration schemes, with monolithically coupled and staggered‐coupled nonlinear solution methods and the hybrid combination thereof. The pore air pressure pa is assumed atmospheric, that is, pa=0 at reference pressure. The solid skeleton is assumed to be pressure‐sensitive nonlinear isotropic elastic. Coupled partially saturated ‘consolidation’ in the presence of surface infiltration and traction is simulated for a simple one‐dimensional uniaxial strain example and a more complicated plane strain slope example with gravity loading. Three mixed plane strain quadrilateral elements are considered: (i) Q4P4; (ii) stabilized Q4P4S; and (iii) Q9P4; “Q” refers to the number of solid skeleton displacement nodes, and “P” refers to the number of pore fluid pressure nodes. The verification of the implementation against an analytical solution for partially saturated pore water flow (no solid skeleton deformation) and comparison between the three time integration schemes (fully implicit, semi‐implicit, and explicit) are presented. It is observed that one of the staggered‐coupled semi‐implicit schemes (SIS(b)), combined with the fully implicit monolithically coupled scheme to resolve sharp transients, is the most efficient computationally. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a stable and efficient method for calculating the transient solution of layered saturated media subjected to impulsive loadings by means of the analytical layer element method. Starting with the field equations based on Biot's linear theory for porous, fluid‐saturated media, and the seepage continuity equation, an analytical layer element for a single layer is established by applying Laplace‐Hankel integral transform. The global stiffness matrix in the transform domain for a layered saturated half‐space subjected to a transient circular patch loading is obtained by assembling the layer elements of each layer. The displacements in the time domain are derived by Laplace‐Hankel inverse transform of the global stiffness matrix. Numerical examples are conducted to verify the accuracy of the method and to demonstrate the influences of type of transient loading, buried depth of loading, permeability, and stratification of materials on the transient response of the multilayered saturated poroelastic media.  相似文献   

11.
The paper presents closed‐form solutions for stress and displacement influence functions for stress discontinuity (SD) and displacement discontinuity (DD) elements, for a two‐dimensional plane‐strain elastic, transversely anisotropic medium. The solutions for SD elements are based on Kelvin's problem and for DD elements on the concept of dipoles. Stress and displacement influence functions are derived for the following elements: constant SD, linear SD, constant DD, linear DD, square root DD, parabolic DD, constant DD surface, and linear DD surface elements. The formulations are incorporated into FROCK, a hybridized boundary element method code, and are validated by providing comparisons between the results from FROCK and the finite element code ABAQUS. A limited parametric analysis shows the effects of slight anisotropy on the stress field around the tip of a crack and of the orientation of the crack with respect to the axes of elastic symmetry. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, a coupling method between finite element and analytical layer‐elements is utilized to analyze the time‐dependent behavior of a plate of any shape and finite rigidity resting on layered saturated soils. Based on the integral transform techniques together with the aid of an order reduction method, an analytical layer‐element solution is derived from the governing equations for three‐dimensional Biot consolidation with respect to a Cartesian coordinate system and then extended to be the fundamental solution for the layered saturated soil under a point load. The Mindlin plate is modeled by eight‐noded isoparametric elements. The governing equations of the interaction between soil and plate in the Laplace‐Fourier transformed domain are deduced by referring to the coupling theory of FEM/BEM, and the final solution is obtained by applying numerical inversion. Numerical examples concerned with the time‐dependent response of a plate are performed to demonstrate the influence of soil and plate properties on the interaction process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Four classical geomechanics problems involving semi-infinite linear elastic media have been solved numerically using recently developed mapped infinite elements coupled to finite elements.The effect of the remoteness of the truncated boundary and the location of infinite element coupling on solution accuracy has been studied. The results of conventional analyses using finite elements over a relatively large but restricted region are compared to the coupled analyses. Comparison of the results shows that for the same number of degrees of freedom the performance of the coupled solutions is superior to the conventional approach with respect to accuracy of solution and computational efficiency. Finally, some general guidelines are proposed for the efficient numerical solution of these types of problems using the coupled finite/infinite element approach.  相似文献   

14.
Ai  Zhi Yong  Ye  Zi  Song  Xiaoyu  Wang  Lu Jun 《Acta Geotechnica》2019,14(4):1143-1160

We develop a new numerical model based on a precise integration method to investigate the coupled thermo-mechanical performance of layered transversely isotropic media around a cylindrical/tubular heat source. To obtain the relational matrices of the extended precise integration method, we first convert the governing equations of the problem into ordinary differential matrix equations through the Laplace–Hankel transform. Then, the cylindrical heat source is divided into a series of plane heat sources, and the plane temperature load term is added to the state vector between layer elements. By combining the layer elements, we build a layered transversely isotropic numerical model containing a cylindrical heat source in the transformed domain. Finally, we solve the model in the transformed domain and obtain the solution of the problem in the real domain through the Laplace–Hankel transform inversion. The accuracy of this method is verified by comparing the solutions with the results of the analytical method and the finite element method. Then, we study the influence of the anisotropy of thermal parameters, the embedded depth, the length/radius ratio, the type of heat source and the stratification of the medium on the thermo-mechanical coupled performance.

  相似文献   

15.
A new artificial boundary approach for transient seepage problems in unbounded domain is presented. The artificial boundary condition at the truncated boundary is derived from the analytical solutions for transient seepage problems in one dimension, including solutions, respectively, for flow in one‐dimensional infinite space and for radial flow in an infinite layer, and then it is tentatively applied for some two dimensional problems in addition to the one‐dimensional problems mentioned above. The boundary conditions derived relate the time‐dependent boundary flux with the time derivative of the hydraulic head at the truncated boundary, which makes the implementation much easier compared with the infinite element method. The accuracy and efficiency of the artificial boundary are validated by several numerical examples, which shows that the proposed boundary can give very good results for one‐dimensional transient seepage problems, as expected, whereas reasonable results can be also obtained for two‐dimensional problems, such as two‐dimensional axisymmetric flow and flow in an infinite plane. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
熊浩  邱战洪  王小岗 《岩土力学》2018,39(12):4659-4664
无限元是一种有效的人工边界,可用于处理弹性波的传播问题。在传统动力无限元的基础上,提出了一种采用分向插值技术的新型动力无限元,详细地推导了这种无限元的形函数,建立了完全解析形式的刚度矩阵,以提高计算效率,采用该无限元边界,计算了弹性介质中的线源Lamb问题,通过对比解析解答的地基表面位移,验证了该无限元的有效性。算例分析表明,采用此类无限元时,有限元单元边长建议取不超过1/8剪切波波长,网格边界到激励源点的距离宜取5倍剪切波波长。无限单元中的幅值衰减系数对计算结果影响甚微,建议取较小值。  相似文献   

17.
This paper presents a finite element procedure for the analysis of consolidation of layered soils with vertical drain using general one‐dimensional (1‐D) constitutive models. In formulating the finite element procedure, a Newton–Cotes‐type integration formula is used to avoid the unsymmetry of the stiffness matrix for a Newton (Modified Newton) iteration scheme. The proposed procedure is then applied for the consolidation analysis of a number of typical problems using both linear and non‐linear soil models. Results from this simplified method are compared with those from a fully coupled consolidation analysis using a well‐known finite element package. The average degree of consolidation, excess porewater pressure and average vertical effective stress are almost the same as those from the fully coupled analysis for both the linear and non‐linear cases studied. The differences in vertical effective stresses are tolerable except for the values near the vertical drain boundaries. The consolidation behaviour of soils below a certain depth of the bottom of vertical drain is actually one‐dimensional for the partially penetrating case. Therefore, there are not much differences in whether one uses a one‐dimensional model or a three‐dimensional model in this region. The average degree of consolidation has good normalized feature with respect to the ratio of well radius to external drainage boundary for the cases of fully penetrating vertical drain using a normalized time even in the non‐linear case. Numerical results clearly demonstrate that the proposed simplified finite element procedure is efficient for the consolidation analysis of soils with vertical drain and it has better numerical stability characteristics. This simplified method can easily account for layered systems, time‐dependent loading, well‐resistance, smear effects and inelastic stress–strain behaviour. This method is also very suitable for the design of vertical drain, since it greatly reduces the unknown variables in the calculation and the 1‐D soil model parameters can be more easily determined. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
三维油藏中应力与渗流的摄动-有限元分析   总被引:2,自引:0,他引:2  
陈洁  李尧臣 《岩土力学》2000,21(2):113-118
提出了一个较为实际的石油油藏的三维力学模型。以已有的三维介质中应力与渗流耦合问题的变分原理为基础,用摄动法证明了光油藏厚度变化为小量时,三维问题或简化为平面应变问题,并可采用不同厚度的平面应变单元进行有限元分析,所得到的解即是该三维问题的零阶摄动解。给出了摄动法的推导和有限元格式,计算了一个水驱法进行油田二次开发的算例并给出了计算结果。  相似文献   

19.
In this paper, the infinite boundary elements developed previously in two and three dimensional problems are reviewed, and the shortcoming and irrationality of interpolation functions of those elements are pointed out. A new interpolation function of infinite boundary element is proposed. The divergent integration on infinite element is also discussed in this paper.  相似文献   

20.
杨葳  葛修润 《岩土力学》1989,10(1):1-11
本文通过对二维与三维问题的无界边界元的分析,指出二维问题中原有边界元上插值函数的缺点和不合理性,提出一种新型的无界边界元插值形式,对无界单元上的发散积分作了一些讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号