首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The insertion of steel braces equipped with viscoelastic dampers (VEDs) (‘dissipative braces’) is a very effective technique to improve the seismic or wind behaviour of framed buildings. The main purpose of this work is to compare the earthquake and wind dynamic response of steel‐framed buildings with VEDs and achieve optimal properties of dampers and supporting braces. To this end, a numerical investigation is carried out with reference to the steel K‐braced framed structure of a 15‐storey office building, which is designed according to the provisions of Eurocodes 1 and 3, and to four structures derived from the first one by the insertion of additional diagonal braces and/or VEDs. With regard to the VEDs, the following cases are examined: absence of dampers; insertion of dampers supported by the existing K‐braces in each of the structures with or without additional diagonal braces; insertion of dampers supported by additional diagonal braces. Dynamic analyses are carried out in the time domain using a step‐by‐step initial stress‐like iterative procedure. For this purpose, the frame members and the VEDs are idealized, respectively, by a bilinear model, which allows the simulation of the nonlinear behaviour under seismic loads, and a six‐element generalized model, which can be considered as an in‐parallel‐combination of two Maxwell models and one Kelvin model. Artificially generated accelerograms, whose response spectra match those adopted by Eurocode 8 for a medium subsoil class and for different levels of peak ground acceleration, are considered to simulate seismic loads. Along‐wind loads are considered assuming, at each storey, time histories of the wind velocity for a return period Tr=5 years, according to an equivalent spectrum technique. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
A simplified seismic design procedure for steel portal frame piers installed with hysteretic dampers is proposed, which falls into the scope of performance‐based design philosophy. The fundamental goal of this approach is to design a suite of hysteretic damping devices for existing and new bridge piers, which will assure a pre‐defined target performance against future severe earthquakes. The proposed procedure is applicable to multi‐degree‐of‐freedom systems, utilizing an equivalent single‐degree‐of‐freedom methodology with nonlinear response spectra (referred to as strength‐demanded spectra) and a set of formulae of close‐form expressions for the distribution of strength and stiffness produced in the structure by the designed hysteretic damping devices. As an illustrative example, the proposed procedure is applied to a design of a simple steel bridge pier of portal frame type with buckling‐restrained braces (one of several types of hysteretic dampers). For the steel portal frame piers, an attempt is made to utilize not only the displacement‐based index but also the strain‐based index as pre‐determined target performance at the beginning of design. To validate this procedure, dynamic inelastic time‐history analyses are performed using the general‐purpose finite element program ABAQUS. The results confirm that the proposed simplified design procedure attains the expected performance level as specified by both displacement‐based and strain‐based indices with sufficient accuracy. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
An analytical and experimental study has been conducted to evaluate the seismic performance of a three‐story suspended zipper steel frame. The frame was concentrically braced and had zipper struts to transfer the unbalanced forces induced on the beams due to the buckling of the lower‐story braces. The experimental study was conducted with the hybrid test technique, in which only the bottom‐story braces of the three‐story frame were physically tested, while the behavior of the rest of the frame was modeled using a general structural analysis software. The paper discusses issues pertinent to the calibration of the computer model for the analytical substructure as well as for the entire frame, including the selection of an appropriate damping matrix, and the modeling of the buckling behavior of the braces and bracing connections. The analytical model of the entire frame was validated with the hybrid tests and was able to accurately capture the material and geometric nonlinearities that developed when the braces yielded and buckled. This study has demonstrated the usefulness of hybrid testing in improving analytical models and modeling assumptions and providing information that cannot be obtained from an analytical study alone. The results have shown that the suspended zipper frame can distribute the brace nonlinearity over the first two stories as intended in the design and will not have catastrophic failure under the design‐level earthquakes considered in this study, despite the significant inelastic deformations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A new structural system for earthquake resistant steel structures is investigated in this paper. This new framing system, called the knee-brace-frame (KBF), is a braced frame with diagonal braces connected to ductile knee members. The diagonal braces provide the lateral stiffness, whereas the knee anchors yield in flexure to dissipate energy during severe seismic excitation. To assess the inelastic characteristics of the KBF, a large scale model of a KBF was tested using the pseudodynamic test procedure. The experimental results are compared with analytical results obtained from a DRAIN-2D model. It is found that, with an appropriate design of knee anchors, the KBF can be made to be ductile to dissipate energy during severe seismic excitation.  相似文献   

5.
Shaking table tests are performed on a one‐bay one‐story steel frame with superelastic Cu–Al–Mn shape memory alloy (SMA) tension braces. The frame is subjected to a series of scaled ground motions recorded during the 1995 Kobe earthquake, Japan. The test results demonstrate that the SMA braces are effective to prevent residual deformations and pinching. It is also shown that the time history responses observed from the shaking table tests agree well with the numerical predictions using a rate‐independent piecewise‐linear constitutive model calibrated to the quasi‐static component tests of the SMA braces. This suggests that the loading rate dependence of Cu–Al–Mn SMAs as well as the modeling error due to the piecewise linear approximation can be neglected in capturing the global response of the steel frame. Numerical simulations under a suite of near‐fault ground motion records are further performed using the calibrated analytical models to demonstrate the effectiveness of the SMA braces when the variability of near‐fault ground motions is taken into account. A stopper, or a deformation restraining device, is also proposed to prevent premature fracture of SMA bars in unexpectedly large ground motions while keeping the self‐centering capability in moderate to large ground motions. The effectiveness of the stopper is also demonstrated in the quasi‐static component and shaking table tests. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
An extensive experimental program of shaking table tests on reduced‐scale structural models was carried out within the activities of the MANSIDE project, for the development of new seismic isolation and energy dissipation devices based on shape memory alloys (SMAs). The aim of the experimental program was to compare the behaviour of structures endowed with innovative SMA‐based devices to the behaviour of conventional structures and of structures endowed with currently used passive control systems. This paper presents a comprehensive overview of the main results of the shaking table tests carried out on the models with and without special braces. Two different types of energy dissipating and re‐centring braces have been considered to enhance the seismic performances of the tested model. They are based on the hysteretic properties of steel elements and on the superelastic properties of SMAs, respectively. The addition of passive control braces in the reinforced concrete frame resulted in significant benefits on the overall seismic behaviour. The seismic intensity producing structural collapse was considerably raised, interstorey drifts and shear forces in columns were drastically reduced. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Given their excellent self‐centering and energy‐dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural material in the field of earthquake engineering. This paper presents experimental and numerical studies on a scaled self‐centering steel frame with novel SMA braces (SMAB), which utilize superelastic Ni–Ti wires. The braces were fabricated and cyclically characterized before their installation in a two‐story one‐bay steel frame. The equivalent viscous damping ratio and ‘post‐yield’ stiffness ratio of the tested braces are around 5% and 0.15, respectively. In particular, the frame was seismically designed with nearly all pin connections, including the pinned column bases. To assess the seismic performance of the SMA braced frame (SMABF), a series of shake table tests were conducted, in which the SMABF was subjected to ground motions with incremental seismic intensity levels. No repair or replacement of structural members was performed during the entire series of tests. Experimental results showed that the SMAB could withstand several strong earthquakes with very limited capacity degradation. Thanks to the self‐centering capacity and pin‐connection design, the steel frame was subjected to limited damage and zero residual deformation even if the peak interstory drift ratio exceeded 2%. Good agreement was found between the experimental results and numerical simulations. The current study validates the prospect of using SMAB as a standalone seismic‐resisting component in critical building structures when high seismic performance or earthquake resilience is desirable under moderate and strong earthquakes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The self‐centering energy dissipative (SCED) brace is a new steel bracing member that provides both damping to the structure and a re‐centering capability. The goal of this study was to confirm the behavior of SCED braces within complete structural systems and to confirm the ability to model these systems with both a state‐of‐the‐art computer model as well as a simplified model that would be useful to practicing engineers. To these ends, a three‐story SCED‐braced frame was designed and constructed for testing on a shake table. Two concurrent computer models of the entire frame were constructed: one using the opensees nonlinear dynamic modeling software, and a simplified model using the commercial structural analysis software sap2000 . The frame specimen was subjected to 12 significant earthquakes without any adjustment or modification between the tests. The SCED braces prevented residual drifts in the frame, as designed, and did not show any significant degradation due to wear. Both numerical models were able to predict the drifts, story shears, and column forces well. Peak story accelerations were overestimated in the models; this effect was found to be caused by the absence of transitions at stiffness changes in the hysteretic model of the braces. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
This paper proposes a novel implementation of buckling‐restrained braces (BRB) in new reinforced concrete (RC) frame construction. Seismic design and analysis methods for using a proposed steel cast‐in anchor bracket (CAB) to transfer normal and shear forces between the BRB and RC members are investigated. A full‐scale two‐story RC frame with BRBs (BRB‐RCF) is tested using hybrid and cyclic loading test procedures. The BRBs were arranged in a zigzag configuration and designed to resist 70% of the story shear. The gusset design incorporates the BRB axial and RCF actions, while the beam and column members comply with ACI 318‐14 seismic design provisions. Test results confirm that the BRBs enhanced the RCF stiffness, strength, and ductility. The hysteresis energy dissipation ratios in the four hybrid tests range from 60% to 94% in the two stories, indicating that BRBs can effectively dissipate seismic input energy. When the inter‐story drift ratio for both stories reached 3.5% in the cyclic loading test, the overall lateral force versus deformation response was still very stable. No failure of the proposed steel CABs and RC discontinuity regions was observed. This study demonstrates that the proposed design and construction methods for the CABs are effective and practical for real applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The implementation of buckling‐restrained braces (BRBs) for new reinforced concrete frame (RCF) constructions is limited. This study investigates the seismic forces and stability in the BRBs and gussets of a 2‐story full‐scale RCF specimen by using Abaqus models and a newly proposed stability evaluation method. The hybrid and cyclic loading test results are accurately predicted by the Abaqus analyses. Existing methods for computing the gusset interface forces for steel buildings from both the brace and the frame actions are compared with the Abaqus results. The applicability of these methods for the BRB‐RCF design is critically evaluated. It is confirmed that the Parallel‐2 method is suitable for estimating the BRB force demand imposed on the corner gusset and the generalized uniform force method is good for the corner gusset at the base. In addition, existing stability evaluation methods for BRBs and gussets are applied to investigate the out‐of‐plane (OOP) buckling of the first‐story BRB observed at the end of tests. The proposed stability model incorporates the BRB restrainer's flexural effects and 4 rotational springs in assessing the BRB's buckling. This model confirms that the BRB and the gusset's OOP buckling limit states could be coupled and must be evaluated together. By incorporating the flexural effects of the steel casing and the infilled grout, the proposed model satisfactorily predicts the OOP buckling of the first‐story BRB and gussets. These research results can be used for the implementation of BRBs in new RC frame constructions.  相似文献   

11.
A new earthquake resistant structural system for multi‐storey frame structures, based on a dual function of its bracing components, is developed. This consists of a hysteretic damper device and a cross‐bracing mechanism with a kinetic closed circuit, working only in tension, so that cable members can be used for this purpose. Solutions are presented regarding the connections' design of three types of structural frame system, that are concerned throughout the study: braced moment free frame, braced moment resisting frame with moment free supports, and with moment resisting supports. The dynamic behaviour of the system is investigated on the basis of an SDOF model, and based on the response spectra method an approximate design approach of the controlled structures is shown. From the time history analysis of the structural systems for the El Centro earthquake the areas of appropriate stiffness relations of the frames to the hysteretic dampers and the cable braces are deduced, so that the energy dissipation of the system may be controlled by the damper‐cable bracing mechanism. Based on the results of these studies, a predesign approach is developed for the implementation of the control system in frame structures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
A series of hybrid and cyclic loading tests were conducted on a three‐story single‐bay full‐scale buckling‐restrained braced frame (BRBF) at the Taiwan National Center for Research on Earthquake Engineering in 2010. Six buckling‐restrained braces (BRBs) including two thin BRBs and four end‐slotted BRBs, all using welded end connection details, were installed in the frame specimen. The BRBF was designed to sustain a design basis earthquake in Los Angeles. In the first hybrid test, the maximum inter‐story drift reached nearly 0.030 rad in the second story and one of the thin BRBs in the first story locally bulged and fractured subsequently before the test ended. After replacing the BRBs in the first story with a new pair, a second hybrid test with the same but reversed direction ground motion was applied. The maximum inter‐story drifts reached more than 0.030 rad and some cracks were found on the gusset welds in the second story. The frame responses were satisfactorily predicted by both OpenSees and PISA3D analytical models. The cyclic loading test with triangular lateral force distribution was conducted right after the second hybrid test. The maximum inter‐story drift reached 0.032, 0.031, and 0.008 rad for the first to the third story, respectively. This paper then presents the findings on the local bulging failure of the steel casing by using cyclic test results of two thin BRB specimens. It is found that the steel casing bulging resistance can be computed from an equivalent beam model constructed from the steel core plate width and restraining concrete thickness. This paper concludes with the recommendations on the seismic design of thin BRB steel casings against local bulging failure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents an analytical model for the inelastic response analysis of braced steel structures. A model is first presented for the behaviour of steel struts subjected to cyclic axial load, which combines the analytical formulation of plastic hinge behaviour with empirical formulas developed on the basis of experimental data. The brace is modelled as a pin-ended member, with a plastic hinge located at the midspan. Braces, with other end conditions, are handled using the effective length concept. Step-wise regression analysis is employed, to approximate the plastic conditions for the steel UC section. Verification of the brace model is performed on the basis of quasi-static analyses of individual struts and a one-bay one-storey X-braced steel frame. The comparison of analytical and experimental data has confirmed that the proposed brace model is able to accurately simulate the cyclic inelastic behaviour of steel braces and braced systems. A series of dynamic analyses has been performed on two-storey V- and X-braced frames to study the influence of brace slenderness ratio on the inelastic response, and to look at the redistribution of forces in the post-buckling range of behaviour of CBFs. Recommendations have been made as to the estimation of maximum storey drifts for concentrically-braced steel frames in major seismic event. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
Tension-Only Concentrically Braced Frames (TOCBF) exhibit deteriorating pinched hysteretic behaviour during strong earthquakes. Slender braces transit between an elastic buckling state, a restraightening state, in which they carry almost no load, an elastic tensile loading state as they are suddenly taut and, finally, a tensile yielding state. It has long been suspected that the sudden increase in tensile forces in the braces of TOCBSF creates detrimental impact loading on the connections and other structural elements. No experimental evidence, however, has been provided so far to confirm, or to quantify, this impact phenomenon. This paper addresses this issue through shake table tests of half scale, two-storey, TOCBF models. By normalizing the hysteresis loops of braces obtained from shake table tests to the yield strength of steel obtained from quasi-static tests, the increase in tensile forces in the braces was obtained. Results of dynamic tensile tests on steel coupons under similar strain rates as observed during the shake table tests showed that this increase in tensile forces is not the result of impact, but is rather caused by a yield strength increase of the steel under high strain rate. A procedure is proposed to estimate and account for this increase in tensile forces in the braces at the design stage.  相似文献   

15.
16.
The effectiveness of hysteretic passive devices to protect and mitigate the response of a structure under seismic loading is well established by both analytical and experimental research. Nevertheless, a systematic and well‐established methodology for the topological distribution and size of these devices in order to achieve a desired structural response performance does not exist. In this paper, a computational framework is proposed for the optimal distribution and design of yielding metallic buckling restrained braces (BRB) and/or friction dampers within steel moment‐resisting frames (MRF) for a given seismic environment. A Genetic Algorithm (GA) is used to solve the resulting discrete optimization problem. Specific examples involving two three‐story, four‐bay steel MRFs and a six‐story, three‐bay steel MRF retrofitted with yielding and/or friction braces are considered. The seismic environment consists of four synthetic ground motions representative of the west coast of the United States with 5% probability of exceedance in 50 years. Non‐linear time‐history analyses are employed to evaluate the potential designs. As a result of the evolutionary process, the optimal placement, strength and size of the dampers are obtained throughout the height of the steel MRF. Furthermore, the developed computational approach for seismic design based upon GAs provides an attractive procedure for design of MRFs with hysteretic passive dampers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A simplified design procedure (SDP) for preliminary seismic design of frame buildings with structural dampers is presented. The SDP uses elastic‐static analysis and is applicable to structural dampers made from viscoelastic (VE) or high‐damping elastomeric materials. The behaviour of typical VE materials and high‐damping elastomeric materials is often non‐linear, and the SDP idealizes these materials as linear VE materials. With this idealization, structures with VE or high‐damping elastomeric dampers can be designed and analysed using methods based on linear VE theory. As an example, a retrofit design for a typical non‐ductile reinforced concrete (RC) frame building using high‐damping elastomeric dampers is developed using the SDP. To validate the SDP, results from non‐linear dynamic time history analyses (NDTHA) are presented. Results from NDTHA demonstrate that the SDP estimates the seismic response with sufficient accuracy for design. It is shown that a non‐ductile RC frame building can be retrofit with high‐damping elastomeric dampers to remain essentially elastic under the design basis earthquake (DBE). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The present paper investigates the seismic reliability of the application of buckling restrained braces (BRBs) for seismic retrofitting of steel moment resisting framed buildings through fragility analysis. Samples of regular three‐storey and eight‐storey steel moment resisting frames were designed with lateral stiffness insufficient to comply with the code drift limitations imposed for steel moment resisting frame systems in earthquake‐prone regions. The frames were then retrofitted with concentrically chevron conventional braces and BRBs. To obtain robust estimators of the seismic reliability, a database including a wide range of natural earthquake ground motion records with markedly different characteristics was used in the fragility analysis. Nonlinear time history analyses were utilized to analyze the structures subjected to these earthquake records. The improvement of seismic reliability achieved through the use of conventional braces and BRBs was evaluated by comparing the fragility curves of the three‐storey and eight‐storey model frames before and after retrofits, considering the probabilities of four distinct damage states. Moreover, the feasibility of mitigating the seismic response of moment resisting steel structures by using conventional braces and BRBs was determined through seismic risk analysis. The results obtained indicate that both conventional braces and especially BRBs improve significantly the seismic behavior of the original building by increasing the median values of the structural fragility curves and reducing the probabilities of exceedance of each damage state. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A multi‐objective optimization procedure is presented for designing steel moment resisting frame buildings within a performance‐based seismic design framework. Life cycle costs are considered by treating the initial material costs and lifetime seismic damage costs as two separate objectives. Practical design/construction complexity, important but difficult to be included in initial cost analysis, is taken into due account by a proposed diversity index as another objective. Structural members are selected from a database of commercially available wide flange steel sections. Current seismic design criteria (AISC‐LRFD seismic provisions and 1997 NEHRP provisions) are used to check the validity of any design alternative. Seismic performance, in terms of the maximum inter‐storey drift ratio, of a code‐verified design is evaluated using an equivalent single‐degree‐of‐freedom system obtained through a static pushover analysis of the original multi‐degree‐of‐freedom frame building. A simple genetic algorithm code is used to find a Pareto optimal design set. A numerical example of designing a five‐storey perimeter steel frame building is provided using the proposed procedure. It is found that a wide range of valid design alternatives exists, from which a decision maker selects the one that balances different objectives in the most preferred way. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
Earthquake‐resilient steel frames, such as self‐centering frames or frames with passive energy dissipation devices, have been extensively studied during the past decade, but little attention has been paid to their column bases. The paper presents a rocking damage‐free steel column base, which uses post‐tensioned high‐strength steel bars to control rocking behavior and friction devices to dissipate seismic energy. Contrary to conventional steel column bases, the rocking column base exhibits monotonic and cyclic moment–rotation behaviors that are easily described using simple analytical equations. Analytical equations are provided for different cases including structural limit states that involve yielding or loss of post‐tensioning in the post‐tensioned bars. A step‐by‐step design procedure is presented, which ensures damage‐free behavior, self‐centering capability, and adequate energy dissipation capacity for a predefined target rotation. A 3D nonlinear finite element (FE) model of the column base is developed in abaqus . The results of the FE simulations validate the accuracy of the moment–rotation analytical equations and demonstrate the efficiency of the design procedure. Moreover, a simplified model for the column base is developed in OpenSees . Comparisons among the OpenSees and abaqus models demonstrate the efficiency of the former and its adequacy to be used in nonlinear dynamic analysis. A prototype steel building is designed as a self‐centering moment‐resisting frame with conventional or rocking column bases. Nonlinear dynamic analyses show that the rocking column base fully protects the first story columns from yielding and eliminates the first story residual drift without any detrimental effect on peak interstory drifts. The study focuses on the 2D rocking motion and, thus, ignores 3D rocking effects such as biaxial bending deformations in the friction devices. The FE models, the analytical equations, and the design procedure will be updated and validated to cover 3D rocking motion effects after forthcoming experimental tests on the column base. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号