首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have searched for new members of the TWHya association (TWA) among unidentified ROSAT X‐ray sources by identifying them in proper motion catalogues and selecting those that would be consistent with kinematical membership to the TWA. Spectroscopic follow‐up observations of 19 member candidates revealed the detection of moderate lithium absorption lines for the following three stars: GSC 7206 845, TYC 7216‐55, and TYC 7247‐12. The isochronal ages of the latter TYC stars are estimated to be ∼20 Myr while the other one has ∼100 Myr age based on a kinematic distance estimate that assumes TWA membership. However, the moderately Li‐rich stars are not likely to be new pre‐main sequence members of TWA partly because of the discrepant radial velocities. Infrared follow‐up imaging in the H‐band for the 3 stars shows companion candidates near two of them.While one system (TYC 7216‐55) is probably a near‐equal‐magnitude stellar binary, our follow‐up H‐band spectrum of the faint companion candidate near GSC 7206 845 shows that it is instead a background K‐type star rather than a companion. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Because of the intense brightness of the OB‐type multiple star system σ Ori, the low‐mass stellar and substellar populations close to the centre of the very young σ Orionis cluster is poorly know. I present an IJHKs survey in the cluster centre, able to detect from the massive early‐type stars down to cluster members below the deuterium burning mass limit. The near‐infrared and optical data have been complemented with X‐ray imaging. Ten objects have been found for the first time to display high‐energy emission. Previously known stars with clear spectroscopic youth indicators and/or X‐ray emission define a clear sequence in the I vs. IKs diagram. I have found six new candidate cluster members that follow this sequence. One of them, in the magnitude interval of the brown dwarfs in the cluster, displays X‐ray emission and a very red JKs colour, indicative of a disc. Other three low‐mass stars have excesses in the Ks band as well. The frequency of X‐ray emitters in the area is 80±20 %. The spatial density of stars is very high, of up to 1.6±0.1 arcmin–2. There is no indication of lower abundance of substellar objects in the cluster centre. Finally, I also report two cluster stars with X‐ray emission located at only 8000–11000 AU to σ Ori AB, two sources with peculiar colours and an object with X‐ray emission and near‐infrared magnitudes similar to those of previously‐known substellar objects in the cluster. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We present a detailed analysis of deep ROSAT HRI observations of the luminous blue variable P Cyg and its surrounding radio nebula. The HRI image provides a point source at the position of P Cyg. However, we show that this emission can be attributed to the ultraviolet leak of the ROSAT HRI. The X‐ray flux upper limit derived from the HRI data of this star is discussed in the context of X‐ray emission from hot stars. Furthermore, we present a search for diffuse X‐ray emission possibly associated with the radio nebula surrounding P Cyg. We compare our results to model predictions and X‐ray fluxes observed for shells around other hot stars. Additionally, we detect 10 X‐ray sources in the field of view. All but one of these X‐ray emitters have stellar counter parts in the Palomar Sky Survey. We suggest that they are active late‐type stars possibly belonging to Cyg OB1.  相似文献   

4.
This article summarizes the processes of high‐energy emission in young stellar objects. Stars of spectral type A and B are called Herbig Ae/Be (HAeBe) stars in this stage, all later spectral types are termed classical T Tauri stars (CTTS). Both types are studied by high‐resolution X‐ray and UV spectroscopy and modeling. Three mechanisms contribute to the highenergy emission from CTTS: 1) CTTS have active coronae similar to main‐sequence stars, 2) the accreted material passes through an accretion shock at the stellar surface, which heats it to a few MK, and 3) some CTTS drive powerful outflows. Shocks within these jets can heat the plasma to X‐ray emitting temperatures. Coronae are already well characterized in the literature; for the latter two scenarios models are shown. The magnetic field suppresses motion perpendicular to the field lines in the accretion shock, thus justifying a 1D geometry. The radiative loss is calculated as optically thin emission. A mixture of shocked and coronal gas is fitted to X‐ray observations of accreting CTTS. Specifically, the model explains the peculiar line‐ratios in the He‐like triplets of Ne IX and O VII. All stars require only small mass accretion rates to power the X‐ray emission. In contrast, the HAeBe HD 163296 has line ratios similar to coronal sources, indicating that neither a high density nor a strong UV‐field is present in the region of the X‐ray emission. This could be caused by a shock in its jet. Similar emission is found in the deeply absorbed CTTS DG Tau. Shock velocities between 400 and 500 km s–1 are required to explain the observed spectrum (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
XMM‐Newton and Chandra have boosted our knowledge about the X‐ray emission of early‐type stars (spectral types OB and Wolf‐Rayet). However, there are still a number of open questions that need to be addressed in order to fully understand the X‐ray spectra of these objects. Many of these issues require high‐resolution spectroscopy or monitoring of a sample of massive stars. Given the moderate X‐ray brightness of these targets, rather long exposure times are needed to achieve these goals. In this contribution, we review our current knowledge in this field and present some hot topics that could ideally be addressed with XMM‐Newton over the next decade. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Stellar photometry derived from the INT/WFC Photometric Hα Survey (IPHAS) of the Northern Galactic plane can be used to identify large, reliable samples of A0–A5 stars. For every A-type star, so identified, it is also possible to derive individual reddening and distance estimates, under the assumption that most selected objects are on or near the main sequence, at a mean absolute r ' magnitude of 1.5–1.6. This study presents the method for obtaining such samples and shows that the known reddenings and distances to the open clusters NGC 7510 and NGC 7790 are successfully recovered. A sample of over 1000 A-type stars is then obtained from IPHAS data in the magnitude range  13.5 < r ' < 20  from the region of sky including the massive northern OB association Cyg OB2. An analysis of these data reveals a concentration of ∼200 A stars over an area about a degree across, offset mainly to the south of the known 1–3 Myr old OB stars in Cyg OB2: their dereddened r ' magnitudes fall in the range 11.8–12.5. These are consistent with a ∼7 Myr old stellar population at distance modulus DM = 10.8, or with an age of ∼5 Myr at DM = 11.2. The number of A-type stars found in this clustering alone is consistent with a lower limit to the cluster mass of  ∼104 M  .  相似文献   

7.
A new photometric and spectroscopic survey of the star formation region (SFR) CMa R1 is described. In a sample of 165 stars brighter than 13th mag, 88 stars were found to be probable members of the SFR. They are defined as early-type stars with E ( B − V )0.16 mag, which corresponds to a distance of about 1 kpc. 74 of the probable members are B stars. 19 stars are possibly associated with an IRAS point source. We derive a most probable distance of 1050±150 pc to the association. It appears that about 80 candidate members are pre-main-sequence stars with ages lower than 6 million years, while the main sequence extends over 6.0–7.6 mag, which is consistent with star formation starting about 8 million years ago and continuing until at least half a million years ago. Two bright B stars in the association (GU CMa and FZ CMa) seem to be much older and probably do not originate from the same star formation episode. The star formation efficiency appears to increase roughly monotonically with time up to half a million years ago. From our data, we conclude that only a minor fraction of the stars has been created through the scenario suggested by Herbst & Assousa, in which the members of CMa R1 form by compression of ambient material by a supernova shock wave. An extensive search for candidate members with H α emission did not reveal new Herbig Ae/Be candidates, so that the number of stars in this class seems to be limited to four: Z CMa, LkH α 218, LkH α 220 and possibly HD 53367.  相似文献   

8.
The unprecedented harvest of X‐ray photons detected from dozens of isolated neutron stars has made it possible to glimpse at their emission mechanisms as well as at their emission geometry. Rotating hot spot(s), superimposed to the global thermal emission from the neutron star surface, are seen from several objects, allowing to probe the stars' external heating sources. Non‐thermal emission is also seen to vary as the stars rotate. Moreover, absorption features have been detected in the spectra of several objects, allowing to probe (tentatively) the stars' magnetic fields. Spectacular tails, trailing the stars' supersonic motion, trace the boundaries of the relativist winds streaming from the star's magnetosphere. Apart from classical radio pulsar and certified radio‐quiet neutron stars, XMM‐Newton has devoted significant observation time to the enigmatic central compact objects, presumably isolated neutron stars shining at the center of their supernova remnants. Far from showing a unifying behaviour, XMM‐Newton data have unveiled a surprising diversity. Understanding the reason(s) behind such diversity is the challenge for the next decade of X‐ray observations. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We observed two main sequence stars in the globular cluster NGC 2808, using X‐shooter. We selected one of the targets on the blue main sequence (bMS) and one on the red main sequence (rMS) and measured abundances for several light elements that are expected to be different in stars of first and second generations in globular clusters. The differences between the bMS and the rMS stars amply exceed the errors and is in agreement with a difference in products of hydrogen burning at high temperature. More data are required to put the findings on more solid basis and to try to distinguish between the different models proposed to explain the formation of globular clusters (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Although magnetic fields have been discovered in ten massive O‐type stars during the last years, the origin of their magnetic fields remains unknown. Among the magnetic O‐type stars, two stars, HD 36879 and HD 57682, were identified as candidate runaway stars in the past, and θ1 Ori C was reported to move rapidly away from its host cluster. We search for an explanation for the occurrence of magnetic fields in O‐type stars by examining the assumption of their runaway status. We use the currently best available astrometric, spectroscopic, and photometric data to calculate the kinematical status of seven magnetic O‐type stars with previously unknown space velocities. The results of the calculations of space velocities suggest that five out of the seven magnetic O‐type stars can be considered as candidate runaway stars. Only two stars, HD 155806 and HD 164794, with the lowest space velocities, are likely members of Sco OB4 and NGC 6530, respectively. However, the non‐thermal radio emitter HD 164794 is a binary system with colliding winds, for which the detected magnetic field has probably a different origin in comparison to other magnetic O‐type stars (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Anomalous X‐ray Pulsars and Soft Gamma‐ray Repeaters are believed to be magnetars: isolated neutron stars powered by the decay of extremely high magnetic fields. We review some of the main results obtained with XMM‐Newton and discuss the prospects for future observations of this small but extremely interesting class of objects. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Ap star magnetism is often attributed to fossil magnetic fields which have not changed much since the pre‐main‐sequence epoch of the stars. Stable magnetic field configurations are known which could persist probably for the entire mainsequence life of the star, but they may not show the complexity and diversity exhibited by the Ap stars observed. We suggest that the Ap star magnetism is not a result of stable configurations, but is the result of an instability based on strong toroidal magnetic fields buried in the stars. The highly nonaxisymmetric remainders of the instability are reminiscent of the diversity of fields seen on Ap stars. The strengths of these remnant magnetic fields are actually between a few per cent up to considerable fractions of the internal toroidal field; this means field strengths of the order of kGauss being compatible with what is observed. The magnetic fields emerge at the surface rather quickly; rough estimates deliver time‐scales of the order of a few years. Since rotation stabilizes the instability, normal A stars may still host considerable, invisible toroidal magnetic fields (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
I propose that the properties of the two outbursts observed in the X‐ray transient XTEJ1118+480 in 2000 are akin to superoutbursts of SU UMa stars. In these systems a ‘normal’ outburst immediately precedes a 5–10 times longer (‘super’) outburst. The optical light curve of the outbursts of XTEJ1118+480 is remarkably similar to that seen in some SU UMa stars, such as UVPer and TLeo, where the precursor outburst is distinct from the superoutburst, but the time scales are a factor of ∼15 different. The first outburst of XTEJ1118+480 was relatively short (∼1 month) while the second outburst was ∼5 times longer. During the second outburst superhumps were seen, a feature characteristic for superoutbursts. The gap of about a month between the two outbursts is longer in X‐rays with respect to the optical, a feature not previously recognized for X‐ray transients. Also in SU UMa stars the precursor outburst becomes more distinct at shorter wavelengths. Finally, I show that the time of appearance of the superhumps in XTEJ1118+480 is consistent with the expected superhump growth time, if the superhump mechanism was triggered during the first outburst. I conclude that the similarity in outburst behaviour in the two types of systems provides further support that a common mechanism is at work to start the long (‘super’) outbursts.  相似文献   

14.
The Herbig Ae/Be stars are intermediate mass pre‐main sequence stars that bridge the gap between the low mass T Tauri stars and the Massive Young Stellar Objects. In this mass range, the acting star forming mechanism switches from magnetically controlled accretion to an as yet unknown mechanism, but which is likely to be direct disk accretion onto the star. We observed a large sample of Herbig Ae/Be stars with X‐shooter to address this issue from a multi‐wavelength perspective. It is the largest such study to date, not only because of the number of objects involved, but also because of the large wavelength coverage from the blue to the near‐infrared. This allows many accretion diagnostics to be studied simultaneously. By correlating the various properties with mass, temperature and age, we aim to determine where and whether the magnetically controlled mass accretion mechanism halts and the proposed direct disk accretion takes over. Here, we will give an overview of the background, present some observations and discuss our initial results. We will introduce a new accretion diagnostic for the research of Herbig Ae/Be stars, the HeI 1.083 μm line (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The existence of older stars within a young star cluster can be interpreted to imply that star formation occurs on time-scales longer than a free-fall time of a pre-cluster cloud core. Here, the idea is explored that these older stars are not related to the star formation process forming the young star cluster but rather that the orbits of older field stars are focused by the collapsing pre-cluster cloud core. Two effects appear: the focusing of stellar orbits leads to an enhancement of the density of field stars in the vicinity of the centre of the young star cluster; and due to the time-dependent potential of the forming cluster some of these stars can get bound gravitationally to the cluster. These stars exhibit similar kinematical properties to the newly formed stars and cannot be distinguished from them on the basis of radial velocity or proper motion surveys. Such contaminations may lead to a wrong apparent star formation history of a young cluster. In the case of the ONC, the theoretical number of gravitationally bound older low-mass field stars agrees with the number of observed older low-mass stars.  相似文献   

16.
As Be stars are restricted to luminosity classes III‐V, but early B‐type stars are believed to evolve into supergiants, it is to be expected that the Be phenomenon disappears at some point in the evolution of a moderately massive star, before it reaches the supergiant phase. As a first stage in an attempt to determine the physical reasons of this cessation, a search of the literature has provided a number of candidates to be Be stars with luminosity classes Ib or II. Spectroscopy has been obtained for candidates in a number of open clusters and associations, as well as several other bright stars in those clusters. Among the objects observed, HD 207329 is the best candidate to be a high‐luminosity Be star, as it appears like a fast‐rotating supergiant with double‐peaked emission lines. The lines of HD 229059, in Berkeley 87, also appear morphologically similar to those of Be stars, but there are reasons to suspect that this object is an interacting binary. At slightly lower luminosities, LS I +56°92 (B4 II) and HD 333452 (O9 II), also appear as intrinsically luminous Be stars. Two Be stars in NGC 6913, HD 229221 and HD 229239, appear to have rather higher intrinsic magnitudes than their spectral type (B0.2 III in both cases) would indicate, being as luminous as luminosity class II objects in the same cluster. HD 344863, in NGC 6823, is also a rather early Be star of moderately high luminosity. The search shows that, though high‐luminosity Be stars do exist, they are scarce and, perhaps surprisingly, tend to have early spectral types. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We present the results of a search for UV and optical counterparts of the SSS population in M 31. We find that out of the 56 sources we included in our search, 16 are associated with regions of ongoing or recent star formation. We discuss two particularly interesting sources that are identified optically as early type stars, one of which displayed long term X‐ray evolution similar to that observed in classical novae. We discuss the physical origin of supersoft X‐rays in these and the other SSS in young regions, and their possible link to the so‐called “prompt” component of the Type Ia supernova population (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The XMM‐Newton Extended Survey of the Taurus Molecular Cloud (XEST) is a survey of the nearest large star‐forming region, the Taurus Molecular Cloud (TMC), making use of all instruments on board the XMM‐Newton X‐ray observatory. The survey, presently still growing, has provided unprecedented spectroscopic results from nearly every observed T Tauri star, and from ≈50% of the studied brown dwarfs and protostars. The survey includes the first coherent statistical sample of high‐resolution spectra of T Tauri stars, and is accompanied by an U ‐band/ultraviolet imaging photometric survey of the TMC. XEST led to the discovery of new, systematic X‐ray features not possible before with smaller samples, in particular the X‐ray soft excess in classical T Tauri stars and the Two‐Absorber X‐ray (TAX) spectra of jet‐driving T Tauri stars. This paper summarizes highlights from XEST and reviews the key role of this large project. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
20.
We compare theoretical stellar models for main sequence (MS) stars with the Hipparcos data base for the Hyades cluster to give a warning against the uncritical use of available theoretical scenarios and to show how formal MS fittings can be fortuitous if not fictitious. Moreover, we find that none of the current theoretical scenarios appears able to account for an observed mismatch between theoretical predictions and observations of the coolest Hyades MS stars. Finally, we show that current theoretical models probably give too faint He burning luminosities unlike the case of less massive He burning models, with degenerate progenitors, which have been suggested to suffer the opposite discrepancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号