首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Barchan dunes are common on Earth, Mars and Titan. Previous studies have shown that their formation, migration and evolution are influenced by the wind regime and other factors, but details vary among regions. Understanding barchan morphology and migration will both improve our understanding of dune geomorphology and provide a basis for describing the environmental conditions that affect the formation and development of these dunes on Earth and other planets. Here, we provide detailed measurements of barchan dune migration in China's Quruq Desert, in the lower reaches of the Tarim River. We monitored their migration direction and rate, and their morphological changes during migration, by comparing Google Earth images acquired in 2003 and 2014. The dunes migrated west-southwest, close to the local resultant drift direction. The migration rate averaged 8.9 to 32.1 m year−1, with obvious spatial variation. In addition to the wind regime, the migration rate depended on dune morphology, density and vegetation cover; the rate was negatively related to dune height, density and vegetation cover, but positively linearly related to the length/width ratio (LU/W) and to the decrease in this ratio from 2003 to 2014. We found correlations among the dune morphometric parameters, but the relationships were weaker than in previous research. Due to the complexity of the factors that affect the processes that underlie sand dune development and migration, the morphological changes during dune migration were also complex. Our measurements suggest that the aeolian environment played a dominant role in dune migration and its spatial variation in the Quruq Desert. These results will support efforts to control dune migration in the western Quruq Desert and improve our understanding of dune morphodynamics. © 2019 John Wiley & Sons, Ltd.  相似文献   

2.
A computer simulation model for transverse‐dune‐field dynamics, corresponding to a uni‐directional wind regime, is developed. In a previous formulation, two distinct problems were found regarding the cross‐sectional dune shape, namely the erosion in the lee of dunes and the steepness of the windward slopes. The first problem is solved by introducing no erosion in shadow zones. The second issue is overcome by introducing a wind speedup (shear velocity increase) factor, which can be accounted for by adding a term to the original transport length, which is proportional to the surface height. By incorporating these features we are able to model dunes whose individual shape and collective patterns are similar to those observed in nature. Moreover we show how the introduction of a non‐linear shear‐velocity‐increase term leads to the reduction of dune height, and this may result in an equilibrium dune field configuration. This is thought to be because the non‐linear increase of the transport length makes the sand trapping efficiency lower than unity, even for higher dunes, so that the incoming and the outgoing sand flux are in balance. To fully describe the inter‐dune morphology more precise dynamics in the lee of the dune must be incorporated. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
The shape and migration speed of a proto‐dune are mathematically discussed. The migration speed of a low dune is shown to be inversely proportional to its wind‐directional length. Proto‐dunes, whose wind‐directional lengths are about 10 m, are expected to migrate at finite speeds. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Reynolds shear stress (RS = –uw′) and sand transport patterns over a vegetated foredune are explored using three‐dimensional velocity data from ultrasonic anemometers (at 0 · 2 and 1 · 2 m) and sand transport intensity from laser particle counters (at 0 · 014 m). A mid‐latitude cyclone on 3–4 May 2010 generated storm‐force winds (exceeding 20 m s–1) that shifted from offshore to obliquely alongshore. Quadrant analysis was used to characterize the spatial variation of RS quadrant components (Q1 through Q4) and their relative contributions were parameterized using the flow exuberance relation, EXFL = (Q1 + Q3)/(Q2 + Q4). The magnitudes of RS and sand transport varied somewhat independently over the dune as controlled by topographic forcing effects on flow dynamics. A ‘flow exuberance effect’ was evident such that Q2 (ejection‐like) and Q4 (sweep‐like) quadrants (that contribute positively to RS) dominated on the beach, dune toe, and lower stoss, whereas Q1 and Q3 (that contribute negatively to RS) dominated near the crest. This exuberance effect was not expressed, however, in sand transport patterns. Instead, Q1 and Q4, with above‐average streamwise velocity fluctuations (+u′), were most frequently associated with sand transport. Q4 activity corresponded with most sand transport at the beach, toe, and stoss locations (52, 60, 100%). At the crest, 25 to 86% of transport was associated with Q1 while Q4 corresponded with most of the remaining transport (13 to 59%). Thus, the relationship between sand transport and RS is not as straightforward as in traditional equations that relate flux to stress in increasing fashion. Generally, RS was poorly associated with sand transport partly because Q1 and Q4 contributions offset each other in RS calculations. Thus, large amounts of transport can occur with small RS. Turbulent kinetic energy or Reynolds normal stresses (u2, w2) may provide stronger associations with sand transport over dunes, although challenges exist on how to normalize and compare these quantities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Lee-side windspeed and sediment transport were measured over a small (1·2 m) transverse ridge in the Silver Peak dunefield, west-central Nevada, USA, using an intensive array of 25 cup anemometers and seven total flux traps. During crest-transverse and transporting flow conditions (u0·3crest ≈ 8·4 m s−1), windspeed near the surface of the lee slope averaged half (48 per cent) that of crest speeds. Dimensionless speeds in the separation zone ranged from 0·2 to 0·8 that of the outer flow (u12). Along the boundary of the separation cell, windspeed increased by 10 per cent of the crest speed before separation. Equilibrium of upper and lower wake regions was not observed by the documented eight dune heights, suggesting that wake recovery may not occur over closely spaced dunes. Sediment transport measured directly on both the lee slope and interdune surfaces averaged approximately 15 per cent of crest inputs. This suggests that a significant amount (c. 70–95 per cent) of sediment transported over the crest moved as fallout. For this data set, flux was approximately proportional to the cube of the near-surface windspeed (u0·3) and in general there was an order of magnitude difference between flux measured at the crest and that measured within the separation zone. Transport direction in the separation zone was acutely oblique to the incident direction owing to secondary flow deflection. Beyond the interdune, transport direction progressed from oblique to crest-transverse. This indicates that an appreciable amount of sediment may move laterally along the lee slope and interdune corridor under crest-transverse flows. Regarding the grain size and sorting properties of transported sediment, there was no significant difference in mean grain size over the dune, although in general particles were finer and more poorly sorted in the lee. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
We herein report the results of a ?eld study that was designed to test the feasibility of using ground‐based LIDAR to map the topography of a sand dune in high spatial resolution. A portable Cyrax 2500 three‐dimensional (3D) laser scanner was used to digitally capture the topography of a barchan, roughly 4 m tall and 50 m long, located in the White Sands National Monument, New Mexico. We performed eleven scans around the barchan and obtained the elevation relative to the inter‐dune ?at at roughly 1/4 million points on the dune surface. The elevation point data were then interpolated to yield a continuous surface model of the dune topography with c. 10 cm spatial resolution and c. 6 mm position accuracy. The results from this ?eld study clearly demonstrate the potential of ground‐based LIDAR as a mapping tool for use in aeolian research and other earth science applications. The 3D surface model of the dune can describe the morphology with hitherto unprecedented detail. Moreover, the surface of the dune is mapped with a minimum of foot traf?c on the dune itself. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
The Nyírség is the second largest alluvial fan in Hungary covered by fixed sand dunes. The primary aim of the paper is to describe the morphology of dunes in the region and classify them based on their morphometric characteristics. The other major aim is to select those dunes which were exposed to significant anthropogenic impact, and to determine the spatial and temporal differences in the intensity of human activity. The following dune types were separated: valley‐marginal, transitional valley‐marginal, transitional parabolic, filled, partially and unfilled parabolic dunes. After defining different dune types and their parameters, certain dunes were selected based on exposure to significant anthropogenic impact. Definite connection was demonstrated between the intensity of human environmental impact and the rate of erosion on fixed sand dunes. The erosion of sand dunes was most intensive in Medieval times, most likely due to concentration of agricultural land use. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Flow in a single fracture (SF) is an important research subject in groundwater hydrology, hydraulic engineering, radioactive nuclear waste repository and geotechnical engineering. An abruptly changing aperture is a unique type of SF. This study discusses the relation between the values of the critical Reynolds number (Rec) for the onset of symmetry breaking of flow and the expansion ratio (E) of SF, which is defined as the ratio between the outlet (D) and inlet (d) apertures. This study also investigates the effect of inlet aperture d on Rec for flow in an SF with abruptly changing apertures (SF‐ACA) using the finite volume method. Earlier numerical and experimental results showed that flow is symmetric in respect to the central plane of the SF‐ACA at small Reynolds number (Re) but becomes asymmetric when Re is sufficiently large. Our simulations show that the value of Rec decreases with the increasing E, and the relationship between the logarithm of Rec and E can be described accurately using either a quadratic polynomial function or a logarithmic function. However, the relationship of Rec and d for a given E value is vague, and Rec becomes even less sensitive to d when E increases. This study also reveals that the hydraulic gradient (J) and flow velocity (v) follow a super‐linear relationship that can be fitted almost perfectly by the Forchheimer equation. The inertial component (Ji) of J increases monotonically with Re, whereas the viscous component (Jv) of J decreases monotonically with Re. The Re value corresponding to equal inertial and viscous components of J (named as the transitional point Re) decreases when E increases, and such a transitional point Re should be closely related to the critical Reynolds number Rec, although a rigorous theoretical proof is not yet available. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Changes in vegetation cover within dune fields can play a major role in how dune fields evolve. To better understand the linkage between dune field evolution and interdune vegetation changes, we modified Werner's (Geology, 23, 1995: 1107–1110) dune field evolution model to account for the stabilizing effects of vegetation. Model results indicate that changes in the density of interdune vegetation strongly influence subsequent trends in the height and area of eolian dunes. We applied the model to interpreting the recent evolution of Jockey's Ridge, North Carolina, where repeat LiDAR surveys and historical aerial photographs and maps provide an unusually detailed record of recent dune field evolution. In the absence of interdune vegetation, the model predicts that dunes at Jockey's Ridge evolve towards taller, more closely‐spaced, barchanoid dunes, with smaller dunes generally migrating faster than larger dunes. Conversely, the establishment of interdune vegetation causes dunes to evolve towards shorter, more widely‐spaced, parabolic forms. These results provide a basis for understanding the increase in dune height at Jockey's Ridge during the early part of the twentieth century, when interdune vegetation was sparse, followed by the decrease in dune height and establishment of parabolic forms from 1953‐present when interdune vegetation density increased. These results provide a conceptual model that may be applicable at other sites with increasing interdune vegetation cover, and they illustrate the power of using numerical modeling to model decadal variations in eolian dune field evolution. We also describe model results designed to test the relative efficacy of alternative strategies for mitigating dune migration and deflation. Installing sand‐trapping fences and/or promoting vegetation growth on the stoss sides of dunes are found to be the most effective strategies for limiting dune advance, but these strategies must be weighed against the desire of many park visitors to maintain the natural state of the dunes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The Mars Global Digital Dune Database (MGD3) now extends from 90°N to 65°S. The recently released north polar portion (MC‐1) of MGD3 adds ~844 000 km2 of moderate‐ to large‐size dark dunes to the previously released equatorial portion (MC‐2 to MC‐29) of the database. The database, available in GIS‐ and tabular‐format in USGS Open‐File Reports, makes it possible to examine global dune distribution patterns and to compare dunes with other global data sets (e.g. atmospheric models). MGD3 can also be used by researchers to identify areas suitable for more focused studies. The utility of MGD3 is demonstrated through three example applications. First, the uneven geographic distribution of the dunes is discussed and described. Second, dune‐derived wind direction and its role as ground truth for atmospheric models is reviewed. Comparisons between dune‐derived winds and global and mesoscale atmospheric models suggest that local topography may have an important influence on dune‐forming winds. Third, the methods used here to estimate north polar dune volume are presented and these methods and estimates (1130 km3 to 3250 km3) are compared with those of previous researchers (1158 km3 to 15 000 km3). In the near future, MGD3 will be extended to include the south polar region. Published in 2011. This article is a US Government work and is in the public domain in the USA.  相似文献   

12.
Within the greater Ar Rub' al Khali (Empty Quarter) sand sea lies an internal depocentre, the Al Liwa Basin, which comprises a variety of mega‐scale dune types. Crescentic dunes dominant the north of the basin while megadunes of stellate or star form are a major landform of the south‐eastern reaches. Their development into dune fields is determined by the style and rate of dune–dune interactions, the boundary conditions imposed by a multi‐modal wind regime, fluctuating groundwater levels, and sediment availability under an assortment of climatic conditions throughout the Quaternary. As a result, dune field patterns are a collective response to these perturbations in space, time and environment. The R‐statistic is a collective measure of these responses, and is a metric capable of identifying the degree of pattern maturity or self‐organization of the aeolian system, and the pathways from which patterns evolve. The spatial signature of the southerly located star dunes is characterized by two definitive patterns of organization: the first, one of complete spatial randomness, the second, a low degree of spatial uniformity. In isolation, these results appear to be unrelated to those for crescentic dunes of the region in which a significantly higher degree of pattern dispersion is the norm. However, when spatial statistical measures are integrated with the theoretical understanding of dune–dune interactions and the involvement of environmental agents, the complex morphodynamic pathways and linkages between regional dune fields is better understood. In this case, both constructive (e.g. merging, lateral linking) and regenerative activity (e.g. calving) have played important roles in the development of dune size, and associated adjustments in spacing, and dune numbers, and subsequently dune field patterns. Synergetic patterns are emblematic of this vast dunescape, whereby transitional geographic, morphologic, dimensional and environmental modifications exist between the mega‐crescentic and mega‐stellate dunes of the Empty Quarter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
For development of embryo dunes on the highly dynamic land–sea boundary, summer growth and the absence of winter erosion are essential. Other than that, however, we know little about the specific conditions that favour embryo dune development. This study explores the boundary conditions for early dune development to enable better predictions of natural dune expansion. Using a 30 year time series of aerial photographs of 33 sites along the Dutch coast, we assessed the influence of beach morphology (beach width and tidal range), meteorological conditions (storm characteristics, wind speed, growing season precipitation, and temperature), and sand nourishment on early dune development. We examined the presence and area of embryo dunes in relation to beach width and tidal range, and compared changes in embryo dune area to meteorological conditions and whether sand nourishment had been applied. We found that the presence and area of embryo dunes increased with increasing beach width. Over time, embryo dune area was negatively correlated with storm intensity and frequency. Embryo dune area was positively correlated with precipitation in the growing season and sand nourishment. Embryo dune area increased in periods of low storm frequency and in wet summers, and decreased in periods of high storm frequency or intensity. We conclude that beach morphology is highly influential in determining the potential for new dune development, and wide beaches enable development of larger embryo dune fields. Sand nourishment stimulates dune development by increasing beach width. Finally, weather conditions and non‐interrupted sequences of years without high‐intensity storms determine whether progressive dune development will take place. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
Large asymmetric bedforms known as dunes commonly dominate the bed of sand rivers. Due to the turbulence generation over their stoss and lee sides, dunes are of central importance in predicting hydraulic roughness and water levels. During floods in steep alluvial rivers, dunes are observed to grow rapidly as flow strength increases, undergoing an unstable transition regime, after which they are washed out in what is called upper stage plane bed. This transition of dunes to upper stage plane bed is associated with high transport of bed sediment in suspension and large decrease in bedform roughness. In the present study, we aim to improve the prediction of dune development and dune transition to upper stage plane bed by introducing the transport of suspended sediment in an existing dune evolution model. In addition, flume experiments are carried out to investigate dune development under bed load and suspended load dominated transport regimes, and to get insight in the time scales related to the transition of dunes to upper stage plane bed. Simulations with the extended model including the transport of suspended sediment show significant improvement in the prediction of equilibrium dune parameters (e.g. dune height, dune length, dune steepness, dune migration rate, dune lee side slope) both under bed load dominant and suspended load dominant transport regimes. The chosen modeling approach also allows us to model the transition of dunes to upper stage plane bed which was not possible with the original dune evolution model. The extended model predicts change in the dune shapes as was observed in the flume experiments with decreasing dune heights and dune lee slopes. Furthermore, the time scale of dune transition to upper stage plane bed was quite well predicted by the extended model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Submarine dune dynamics are controlled by tidal currents and wind forces. According to the relative influence of these forces and the nature of dune sediment, different bedform behaviors can be observed. The footprint of the different hydrodynamic agents is recorded into the internal architecture of dunes. This paper is concerned with bedforms that compose the thick sediment wedge located in the eastern English Channel, off the Bay of Somme. This sedimentary archive constitutes an interesting feature to achieve a better understanding of seabed sediment dynamics and its timeline building stages. The dynamics of large submarine dunes, which are organized in fields, are studied thanks to bathymetric and seismic data over the periods 1937–1993 and 1993–2007. Dune morphology presents low lee and stoss side slopes (on average 8° and 3°, respectively) and dune migration rate is not very high. Dune movements are in the direction of residual tidal currents, i.e. toward the east, with mean migration rates around 0·8 to 5 ± 0·25 m yr?1 and up to 6·6 ± 0·7 m yr?1, respectively, at multi‐decennial and decennial time scales. The dune internal architecture is complex with superimposed eastward prograding units, displaying locally opposite progradation. Second‐order discontinuities (dip of 0·5°–4° perpendicular to dune crests) constitute dune master bedding. By counting the number of second‐order reflectors between 1937–1993 and 1993–2007, the formation periodicity of these bounding surfaces is estimated to range from 4 to 18 years. These time intervals coincide with the long‐term tidal cyclicities and also with the inter‐annual to decennial variability of storm activity in northern Europe. Two theories were made to interpret the dune internal structures: the second‐order surfaces are interpreted either as the depositional surfaces corresponding to the marks of weak energy periods (weak tidal and storm action), or as erosive surfaces due to an opposite direction of dune migration provoked temporarily by exceptional storms from the northeast. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Transverse dunes appear in regions of mainly unidirectional wind and high sand availability. A dune model is extended to two‐dimensional calculation of the shear stress. It is applied to simulate dynamics and morphology of three‐dimensional transverse dunes. In the simulations they seem to reach translational invariance and do not stop growing. Hence, simulations of two‐dimensional dune ?elds have been performed. Characteristic laws were found for the time evolution of transverse dunes. Bagnold's law of the dune velocity is modi?ed and reproduced. The interaction between transverse dunes led to the interesting conclusion that small dunes can travel over bigger ones. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
As with most dune fields, the White Sands Dune Field in New Mexico forms in a wind regime that is not unimodal. In this study, crescentic dune shape change (deformation) with migration at White Sands was explored in a time series of five LiDAR‐derived digital elevation models (DEMs) and compared to a record of wind direction and speed during the same period. For the study period of June 2007 to June 2010, 244 sand‐transporting wind events occurred and define a dominant wind mode from the SW and lesser modes from the NNW and SSE. Based upon difference maps and tracing of dune brinklines, overall dune behavior consists of crest‐normal migration to the NE, but also along‐crest migration of dune sinuosity and stoss superimposed dunes to the SE. The SW winds are transverse to dune orientations and cause most forward migration. The NNW winds cause along‐crest migration of dune sinuosity and stoss bedforms, as well as SE migration of NE‐trending dune terminations. The SSE winds cause ephemeral dune deformation, especially crestal slipface reversals. The dunes deform with migration because of differences in dune‐segment size, and differences in the lee‐face deposition rate as a function of the incidence angle between the wind direction and the local brinkline orientation. Each wind event deforms dune shape, this new shape then serves as the boundary condition for the next wind event. Shared incidence‐angle control on dune deformation and lee‐face stratification types allows for an idealized model for White Sands dunes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
There is little understanding of the flow-field surrounding semi-vegetated linear dunes, and predictions of dune mobility are hampered by a lack of empirical data concerning windflow. In an attempt to characterize the near-surface airflow upwind of and over partially vegetated linear dunes in the southwest Kalahari Desert, this study presents measurements of vertical and horizontal wind velocity profiles across cross-sectional transects of seven partially vegetated linear dunes. Vegetation surveys combined with velocity measurements from vertical arrays of cup-anemometers, placed up to 2·3 m above the ground surface, were used to gain information concerning the modification of airflow structure caused by the intrusion of the dunes into the atmospheric boundary layer and to predict the variability of aerodynamic roughness (z0) from interdune to crest. The results suggest an acceleration of flow up the windward slopes of the dunes and, as such, the data correspond to classical theory concerning flow over low hills (essentially Jackson and Hunt (1975) principles). Where the theory is incapable of explaining the airflow structure and acceleration characteristics, this is explained, in part, by the presence of a spatially variable vegetation cover over the dunes. The vegetation is important both in terms of the varying aerodynamic roughness (z0) and problems concerning the definition of a zero-plane displacement (d). It is considered that any attempts to characterize surface shear stress over the Kalahari linear dunes, in order to predict sand transport and dune mobility, will be hampered by two problems. These are the progressively non-log-linear nature of the velocity profiles over the dunes caused by flow acceleration, and the production of thin near-surface boundary layers caused by areally variable aerodynamic roughness as a result of the partially vegetated nature of the dunes.  相似文献   

19.
Sunset Crater in north‐central Arizona (USA) is a 900‐year‐old scoria‐cone volcano. Wind action has redistributed its widespread tephra deposit into a variety of aeolian dune forms that serve as a terrestrial analog for similar landforms and aeolian processes on Mars. Fieldwork was conducted to collect essential geomorphological and sedimentological data, and to establish a baseline for the type and morphometry of dunes, physical properties, interactions with topography, and saltation pathways. Our analyses focused primarily on coppice dunes, falling dunes, wind ripples, and sand streaks. For all collected volcaniclastic aeolian sediment samples, the sand‐size fraction dominated, ranging from almost 100% sand to 74.6% sand. No sample contained more than 1.6% silt. The composition is overwhelmingly basaltic with non‐basaltic particles composing 2 to 6% of the total. Coppice (nebkha) dunes form where clumps of vegetation trap saltating particles and create small mounds or hummocks. Mean grain size for coppice dune samples is coarse sand. Measured dune height for 15 coppice dunes ranged from 0.3 to 3.3 m with a mean of 1 m. Mean length was 6.7 m and mean width was 4.8 m. Falling dunes identified in this study are poorly developed and thin, lacking a prominent ramp‐like structure. Mean wavelength for three sets of measured ripples ranged from 22 to 36 cm. Sand streaks extend downwind for more than a kilometer and are up to 200 m in width. They commonly occur on the lee side of mesas and similar landforms and are typically the downwind continuation of falling dunes. Falling dunes, wind ripples, and sand streaks have been identified on Mars, while coppice dunes are similar to Martian shadow or lee dunes in which sand accumulates in the lee of obstacles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A relatively unknown coastal zone of southern Mozambique in Africa is covered by vast mobile and stabilized dunefields. The aeolian dynamics of these transgressive dunefields are studied based on mobility and stability models, statistical analysis of climate data and topographic profiles. Detailed analyses of regional winds, rainfall records, atmospheric temperature records and annual monitoring of dune migration rates helped to find reliable data about instantaneous aeolian sand transport rates, wind drift potential, dune mobility and dune migration rates. The data obtained suggest that the coastal transgressive dunefields are controlled by the southeast winds, availability of loose sediments on the beach, the presence of headland boundary between Maputo and Gaza provinces and the appropriate deposition spaces between the coastline and lacustrine‐lagoon systems. Two distinctive segments of transgressive dunefields were identified in the region studied, including the northern segment of Maputo province with active (mobile) and semi‐vegetated dunes that migrate 23 m/yr landward, and Gaza province dunefields with stabilized (vegetated) and semi‐vegetated dunes. The data obtained in this research have considerable potential to make a valuable contribution to the study of coastal dunefields. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号