首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A control algorithm has been developed for controlling Active Variable Stiffness (AVS) structures. This algorithm analyses information of an observed seismic excitation, estimates the future structural responses and determines how to alter the structure stiffness. An objective structure is assumed to possess N on-off elements whose states are controlled by the proposed algorithm. That is, at a given moment tk, (1) seismic excitation information is expressed by an Auto Regressive (AR) model as the identification model; (2) future excitation information is predicted using the AR model; (3) future responses due to predicted excitation are estimated; (4) based on the initial condition at tk, the responses of 2N possible structural states from tk, to tk+L are calculated; (5) the state which minimizes the input energy during tL is selected; and (6) immediately after tk, on-off elements are set up and subjected to the selected states. The effectiveness of the induced algorithm is confirmed by numerical experiments on a model of a three-storey building under sine and seismic excitations.  相似文献   

2.
Single bed load particle impacts were experimentally investigated in supercritical open channel flow over a fixed planar bed of low relative roughness height simulating high‐gradient non‐alluvial mountain streams as well as hydraulic structures. Particle impact characteristics (impact velocity, impact angle, Stokes number, restitution and dynamic friction coefficients) were determined for a wide range of hydraulic parameters and particle properties. Particle impact velocity scaled with the particle velocity, and the vertical particle impact velocity increased with excess transport stage. Particle impact and rebound angles were low and decreased with transport stage. Analysis of the particle impacts with the bed revealed almost no viscous damping effects with high normal restitution coefficients exceeding unity. The normal and resultant Stokes numbers were high and above critical thresholds for viscous damping. These results are attributed to the coherent turbulent structures near the wall region, i.e. bursting motion with ejection and sweep events responsible for turbulence generation and particle transport. The tangential restitution coefficients were slightly below unity and the dynamic friction coefficients were lower than for alluvial bed data, revealing that only a small amount of horizontal energy was transferred to the bed. The abrasion prediction model formed by Sklar and Dietrich in 2004 was revised based on the new equations on vertical impact velocity and hop length covering various bed configurations. The abrasion coefficient kv was found to be vary around kv ~ 105 for hard materials (tensile strength ft > 1 MPa), one order of magnitude lower than the value assumed so far for Sklar and Dietrich's model. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
A predictive-adaptive (PA) control algorithm has been developed for a structure under a seismic excitation. This algorithm analyses information of an observed seismic excitation, estimates future structural responses and determines the control force for the structure, based on the linear quadratic regulator. That is, at a given moment tk: (1) seismic excitation information is converted to an autoregressive model, which forms the state equation for the excitation; (2) the identification model is combined with the structural model to build a state equation in an augmented space; (3) the weighted quadratic norm of the state vector and the future control force is formed as a cost function for estimating future responses; (4) the Ricatti equation is solved to find the optimum value of the cost function; and (5) the optimum gain matrix is obtained, and the control force is determined. The PA algorithm is not restricted to one type of control system, but can be applied to both an active driver system and an active tendon system. Its effectiveness is confirmed by numerical experiments for 1DOF and 3DOF structural models under sine and seismic excitations.  相似文献   

4.
In many finite element platforms, a classical global damping matrix based on the elastic stiffness of the system (including isolators) is usually developed as part of the solution to the equations of motion of base-isolated buildings. The conducted analytical and numerical investigations illustrate that this approach can lead to the introduction of unintended damping to the first and higher vibration modes and the spurious suppression of the respective structural responses. A similar shortcoming might be observed even when a nonclassical damping model (ie, an assembly of the superstructure and isolation system damping sub-matrices) is used. For example, the use of Rayleigh damping approach to develop the superstructure damping sub-matrix can lead to the undesired addition of damping to the isolated mode arising from the mass-proportional component of the superstructure damping. On the other hand, the improper use of nonclassical stiffness-proportional damping (eg, determining the proportional damping coefficient, βk , based on the first mode) can result in assigning significant damping to the higher-modes and the unintended mitigation of the higher-mode responses. Results show that a nonclassical stiffness-proportional model in which βk is determined based on the second modal period of a base-isolated building can reasonably specify the intended damping to the higher modes without imparting undesirable damping to the first mode. The nonclassical stiffness-proportional damping can be introduced to the numerical model through explicit viscous damper elements attached between adjacent floors. In structural analysis software such as SAP2000®, the desired nonclassical damping can be also modeled through specifying damping solely to the superstructure material.  相似文献   

5.
A Bremmer Series decomposition of the solution y(t) to the lossless wave equation in layered media is where the yj(t) are physically meaningful constituents (i.e., y1(t) are primaries, y2(t) are secondaries, etc.). This paper reviews Mendel's state space models for generating the constituents; reviews Bremmer's integral equation models for generating the constituents; and demonstrates how Mendel's state space models can be obtained by a careful decomposition of Bremmer's integral equation models. It shows that Mendel's equations can be viewed as approximate numerical solutions of Bremmer's integral equations. In a lossless homogeneous medium, the approximations become exact.  相似文献   

6.
Knowledge of air permeability (ka) at dry conditions is critical for the use of air flow models in porous media; however, it is usually difficult and time consuming to measure ka at dry conditions. It is thus desirable to estimate ka at dry conditions from other readily obtainable properties. In this study, the feasibility of using information derived from grain‐size distributions (GSDs) for estimating ka at dry conditions was examined. Fourteen GSD‐based equations originally developed for estimating saturated hydraulic conductivity were tested using ka measured at dry conditions in both undisturbed and disturbed river sediment samples. On average, the estimated ka from all the equations, except for the method of Slichter, differed by less than ± 4 times from the measured ka for both undisturbed and disturbed groups. In particular, for the two sediment groups, the results given by the methods of Terzaghi and Hazen‐modified were comparable to the measured ka. In addition, two methods (e.g., Barr and Beyer) for the undisturbed samples and one method (e.g., Hazen‐original) for the undisturbed samples were also able to produce comparable ka estimates. Moreover, after adjusting the values of the coefficient C in the GSD‐based equations, the estimation of ka was significantly improved with the differences between the measured and estimated ka less than ±4% on average (except for the method of Barr). As demonstrated by this study, GSD‐based equations may provide a promising and efficient way to estimate ka at dry conditions.  相似文献   

7.
The damping‐solvent extraction method for the analysis of unbounded visco‐elastic media is evaluated numerically in the frequency domain in order to investigate the influence of the computational parameters—domain size, amount of artificial damping, and mesh density—on the accuracy of results. An analytical estimate of this influence is presented, and specific questions regarding the influence of the parameters on the results are answered using the analytical estimate and numerical results for two classical problems: the rigid strip and rigid disc footings on a visco‐elastic half‐space with constant hysteretic material damping. As the domain size is increased, the results become more accurate only at lower frequencies, but are essentially unaffected at higher frequencies. Choosing the domain size to ensure that the static stiffness is computed accurately leads to an unnecessarily large domain for analysis at higher frequencies. The results improve by increasing artificial damping but at a slower rate as the total (material plus artificial) damping ratio ζt gets closer to 0.866. However, the results do not deteriorate significantly for the larger amounts of artificial damping, suggesting that ζt≈0.6 is appropriate; a larger value is not likely to influence the accuracy of results. Presented results do not support the earlier suggestion that similar accuracy can be achieved by a large bounded domain with small damping or by a small domain with larger damping. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
9.
In this study, we proposed a new approach for linking event sediment sources to downstream sediment transport in a watershed in central New York. This approach is based on a new concept of spatial scale, sub‐watershed area (SWA), defined as a sub‐watershed within which all eroded soils are transported out without deposition during a hydrological event. Using (rainfall) event data collected between July and November, 2007 from several SWAs of the studied watershed, we developed an empirical equation that has one independent variable, mean SWA slope. This equation was then used to determine event‐averaged unit soil erosion rate, QS/A, (in kg/km2/hr) for all SWAs in the studied watershed and calculate event‐averaged gross erosion Eea (in kg/hr). The event gross erosion Et (in kilograms) was subsequently computed as the product of Eea and the mean event duration, T (in hours) determined using event hydrographs at the outlet of the studied watershed. Next, we developed two linear sediment rating curves (SRCs) for small and big events based on the event data obtained at the watershed outlet. These SRCs, together with T, allowed us to determine event sediment yield SYe (in kilograms) for all events during the study period. By comparing Et with SYe, developing empirical equations (i) between Et and SYe and (ii) for event sediment delivery ratio, respectively, we revealed the event dynamic processes connecting sediment sources and downstream sediment transport. During small events, sediment transport in streams was at capacity and dominated by the deposition process, whereas during big events, it was below capacity and controlled by the erosion process. The key of applying this approach to other watersheds is establishing their empirical equations for QS/A and appropriately determining their numbers of SWAs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A procedure has been developed for calculating permeability (k) from the Kozeny‐Carman equation, a procedure that links ideas from percolation theory with the ideas of Koltermann and Gorelick (1995) and Esselburn et al. (2011) . The approach focuses on the proportion of coarser pores that are occupied by finer sediments relative to a percolation threshold proportion (ωc). If the proportion occupied is below ωc, then the unoccupied coarser pores percolate. Otherwise they do not percolate. Following the ideas of Koltermann and Gorelick (1995) , the effective grain‐size term in the Kozeny‐Carman equation is calculated using the geometric mean if the unoccupied coarse pores percolate, and using the harmonic mean if otherwise. Following ideas of Esselburn et al. (2011) , this approach is implemented by evaluating the potential for grains in each size category to occupy pores among sediment of each larger‐size category. Application of these ideas to physical sediment models for sands and gravels, which have known k, indicates that a threshold does indeed exist. Results also suggest that the Kozeny‐Carman equation is robust and gives representative values for k, even though ωc is not precisely known.  相似文献   

11.
To describe temporal change in tafone development, an S‐shaped curve equation is proposed: Z = Zc [1 ? (n + 1) exp (? β t ) + n exp (? (1 + 1/n) β t )] , where Z is observed tafone depth, Zc is ultimate tafone depth, t is time, and n and β are constants. The applicability of this model is examined using tafone data selected from seven sites, which are categorized into three different salt‐weathering environments: a spray/splash‐dominant (occasionally wave‐affected) supra‐tidal zone, aerosol‐affected coastal regions, and inland desert areas. The results indicate that the equation can well describe tafone development in each of these environments. An investigation based on the values of n and β, determined through a best fit of the equation to the data, suggests that n characterizes site‐specific environmental conditions and β reflects the magnitude of factors controlling the recession mechanism of tafone surfaces. It is found that (1) the maximum rate of tafone growth dramatically decreases from supra‐tidal, through coastal, to desert environments, and (2) the growing mode of tafoni is different depending on the environmental settings. The erosional force to facilitate the development of tafoni at supra‐tidal sites is estimated to be about 400 times greater than that in the general coastal area. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
We study path effects on prediction equations of pseudo‐velocity response spectra (natural period of 0.1–5.0 s) in northern Japan, where heterogeneous attenuation structure exists. The path effects have been examined by comparing the regression analysis results for two different prediction equations. The first equation consists of a single term of anelastic attenuation conventionally. The second equation consists of two terms of anelastic attenuation in consideration of the heterogeneous attenuation structure. In the second equation, we divide a source‐to‐site distance into two distances at the attenuation boundary beneath the volcanic front. The boundary is considered to separate the relatively high Q fore‐arc side mantle wedge (FAMW) from the low Q back‐arc side mantle wedge (BAMW). Strong motion records (hypocentral distances less than 300 km) from interplate and intraslab events with Mw 5.1–7.3 are used. Regression analysis results show that the standard errors are significantly reduced by the second prediction equation at short periods (0.1–0.5 s), whereas the difference in standard errors from both prediction equations is negligible at intermediate and long periods. The Qs values (quality factor for S‐wave) converted from two anelastic attenuation coefficients for the second prediction equation are remarkably similar to the path‐averaged Qs values for the FAMW and BAMW by other studies using spectral inversion method. From these findings, we conclude that the path effects on the prediction equation of pseudo‐velocity response spectra are satisfactorily accomplished by the second prediction equation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
An eigenfunction solution is presented for the dynamic response of vertical circular cylinders to earthquake excitation in a compressible fluid of finite depth. This single eigenseries expansion eliminates the need for a double summation over both the eigenfunctions and the trial functions as required by Rayleigh-Ritz methods. Revised definitions for the added mass and hydrodynamic radiation damping coefficients per unit length are derived from the hydrodynamic fluid pressures. Based on comparisons between these newly defined coefficients, the compressibility of the fluid is found to be relatively more important at dimensionless frequencies greater than unity (ω > 1.0) when analysing both rigid and flexible cylinders having relatively large diameter to water depth ratios,r0/h > 0.25 (squatty type). This conclusion regarding the relative importance of the fluid compressibility is derived from a comparison between the relative magnitudes and the vertical distributions over depth of both the added mass and radiation damping coefficients per unit length for both rigid and flexible squatty cylinders. From additional comparisons with Rayleigh-Ritz solutions that require trial functions, the results for totally immersed flexible slender cylinders (r0/h< 0.10) are shown to be equivalent; but the results for totally immersed flexible squatty cylinders (r0/h > 0.25) are not. The reason for this difference appears to be in the truncation of the trial function series in the Rayleigh-Ritz methods, which excludes the higher mode shapes, and in the definitions of the added mass coefficients. Comparisons with laboratory data for both rigid and flexible cylinders confirm the accuracy of the solutions obtained by the eigenseries in the limited frequency interval above the highest frequency for surface gravity waves (f > 1.0 Hz) and below the first dimensionless cut-off frequency for acoustic waves (ω< 1.0).  相似文献   

14.
Abstract

The dependence of the recession of the ground water levels and the ground water discharge upon the initial state of the aquifer is examined for deep unconfined aquifers. It is shown that only in the early stages of the recession does the initial state exert a limited influence on the recession. An estimate of the upper limit of the time t 0 for which for t > t 0 the recession becomes effectively independent of the initial state of the aquifer, valid for physically realistic initial states can be gained from inequalities (11) and (12a) and equation (16). t 0 depends essentially on the parameters of the aquifer and it is estimated that for useful aquifers t 0 can not be expected to exceed one month in relatively adverse cases. This explains why empirical recessions often are found to be consistent, of an exponential form.  相似文献   

15.
A start‐up study for biohydrogen production from palm oil mill effluent (POME) is carried out in a pilot‐scale up‐flow anaerobic sludge blanket fixed‐film reactor (UASFF). A substrate with a chemical oxygen demand (COD) of 30 g L?1 is used, starting with molasses solution for 30 days and followed by a 10% v/v increment of POME/molasses ratio. At 100% POME, a hydrogen content of 80%, hydrogen production rate of 36 L H2 per day, and maximum COD removal of 48.7% are achieved. Bio‐kinetic coefficients of Monod, first‐order, Grau second‐order, and Stover‐Kincannon kinetic models are calculated to describe the performance of the system. The steady‐state data with 100% POME shows that Monod and Stover‐Kincannon models with bio‐kinetic coefficients of half‐velocity constant (Ks) of 6000 mg COD L?1, microbial decay rate (Kd) of 0.0015 per day, growth yield constant (Y) of 0.786 mg volatile suspended solids (VSS)/mg COD, specific biomass growth rate (μmax) of 0.568 per day, and substrate consumption rate of (Umax) 3.98 g/L day could be considered as superior models with correlation coefficients (R2) of 0.918 and 0.989, respectively, compared to first‐order and Grau's second‐order models with coefficients of K1 1.08 per day, R2 0.739, and K2s 1.69 per day, a = 7.0 per day, b = 0.847.  相似文献   

16.
This paper deals with the lower order (first four) nonstationary statistical moments of the response of linear systems with random stiffness and random damping properties subject to random nonstationary excitation modeled as white noise multiplied by an envelope function. The method of analysis is based on a Markov approach using stochastic differential equations (SDE). The linear SDE with random coefficients subject to random excitation with deterministic initial conditions are transformed to an equivalent nonlinear SDE with deterministic coefficients and random initial conditions subject to random excitation. In this procedure, new SDE with random initial conditions, deterministic coefficients and zero forcing functions are introduced to represent the random variables. The joint statistical moments of the response are determined by considering an augmented dynamic system with state variables made up of the displacement and velocity vectors and the random variables of the structural system. The zero time-lag joint statistical moment equations for the augmented state vector are derived from the Itô differential formula. The statistical moment equations are ordinary nonlinear differential equations where hierarchy of moments appear. The hierarchy is closed by the cumulant neglect closure method applied at the fourth order statistical moment level. General formulation is given for multi-degree-of-freedom (MDOF) systems and the performance of the method in problems with nonstationary excitations and large variabilities is illustrated for a single-degree-of-freedom (SDOF) oscillator.  相似文献   

17.
Simulated rainfall of fluctuating intensity was applied to runoff plots on bare dryland soils in order to explore a new method for analysing the non‐steady‐state responses of infiltration and overland flow. The rainfall events all averaged 10 mm/h but included intensity bursts of up to 70 mm/h and lasting 5–15 min, as well as periods of low intensity and intermittency of up to 25 min. Results were compared with traditional steady‐state estimates of infiltrability made under simulated rainfall sustained at a fixed intensity of 10 mm/h. Mean event infiltration rate averaged 13.6% higher under fluctuating intensities, while runoff ratios averaged only 63% of those seen under constant intensity. In order to understand the changing soil infiltrability, up to three affine Horton infiltration equations were fitted to segments of each experiment. All equations had the same final infiltrability fc, but adjusted values for coefficients f0 (initial infiltrability) and Kf (exponential decay constant) were fitted for periods of rainfall that followed significant hiatuses in rainfall, during which subsurface redistribution allowed near‐surface soil suction to recover. According to the fitted Horton equations, soil infiltrability recovered by up 10–24 mm/h during intra‐event rainfall hiatuses of 15 to 20‐min duration, contributing to higher overall event infiltration rates and to reduced runoff ratios. The recovery of infiltrability also reduced the size of runoff peaks following periods of low intensity rainfall, compared with the predictions based on single Horton infiltration equations, and in some cases, no runoff at all was recorded from late intensity peaks. The principal finding of this study is that, using a set of affine equations, the intra‐event time variation of soil infiltrability can be tracked through multiple intensity bursts and hiatuses, despite the lack of steady‐state conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract

Bayly (1993) introduced and investigated the equation (? t + ▽-η ▽2)S = RS as a scalar analogue of the magnetic induction equation. Here, S(r, t) is a scalar function and the flow field v(r, t) and “stretching” function R(r, t) are given independently. This equation is much easier to handle than the corresponding vector equation and, although not of much relevance to the (vector) kinematic dynamo problem, it helps to study some features of the fast dynamo problem. In this note the scalar equation is considered for linear flow and a harmonic potential as stretching function. The steady equation separates into one-dimensional equations, which can be completely solved and therefore allow one to monitor the behaviour of the spectrum in the limit of vanishing diffusivity. For more general homogeneous flows a scaling argument is given which ensures fast dynamo action for certain powers of the harmonic potential. Our results stress the singular behaviour of eigenfunctions in the limit of vanishing diffusivity and the importance of stagnation points in the flow for fast dynamo action.  相似文献   

19.
In India, the annual production of tea is ca. 857,000 tonnes, which is 27.4% of the total world production. The amount of tea factory waste (TFW) produced per annum after processing is ca. 190,400 tonnes. TFW can be used as a low cost adsorbent for the removal of toxic metals from the aqueous phase. An investigation was carried out to study the feasibility of the use of TFW as an adsorbent for the removal of the heavy metal, zinc. Equilibrium, kinetic and thermodynamic studies were reported. The straight line plot of log (qeq) versus time t for the adsorption of zinc shows the validity of the Lagergren equation. The various steps involved in adsorbate transport from the solution to the surface of the adsorbent particles were dealt with by using a Weber‐Morris plot, qe versus t0.5 for the TFW. The rate controlling parameters, kid,1 and kid,2, were determined and it was found that the macro‐pore diffusion rate was much larger than micro‐pore diffusion rate. A batch sorption model, which assumes the pseudo‐second‐order mechanism, was used to predict the rate constant of sorption, the equilibrium sorption capacity and the initial sorption rate with the effect of initial zinc (II) ion concentration. Equilibrium data obtained from the experiments were analyzed with various isotherms, i. e., Freundlich, Langmuir, Redlich‐Peterson and Tempkin. The adsorption equilibrium was reached in 30 min and the adsorption data fitted well to all models. The maximum adsorption capacity of TFW for zinc (II) ions was determined to be 14.2 mg/g. The capacity of adsorption on Zn(II) increased with increasing temperatures and pH. The maximum uptake level of zinc was observed at pH of 4.2. The various thermodynamic parameters, i. e., ΔG°, ΔH° and ΔS°, were estimated. The thermodynamics of the zinc ion/TFW system indicated a spontaneous, endothermic and random nature of the process. The results showed that the TFW, which has low economical value, is a suitable adsorbent for the removal of zinc (II) ions from aqueous solutions.  相似文献   

20.
Different commonly used predictive equations for the reaeration rate coefficient (K2) have been evaluated using 231 data sets obtained from the literature and 576 data sets measured at different reaches of the River Kali in western Uttar Pradesh, India. The data sets include stream/channel velocity, bed slope, flow depth, cross‐sectional area and reaeration rate coefficient (K2), obtained from the literature and generated during the field survey of River Kali, and were used to test the applicability of the predictive equations. The K2 values computed from the predictive equations have been compared with the corresponding K2 values measured in streams/channels. The performance of the predictive equations has been evaluated using different error estimation, namely standard error (SE), normal mean error (NME), mean multiplicative error (MME) and coefficient of determination (r2). The results show that the reaeration rate equation developed by Parkhurst and Pomeroy yielded the best agreement, with the values of SE, NME, MME and r2 as 33·387, 4·62, 3·58 and 0·95, respectively, for literature data sets (case 1) and 37·567, 3·57, 2·6 and 0·95, respectively, for all the data sets (literature data sets and River Kali data sets) (case 2). Further, to minimize error estimates and improve correlation between measured and computed reaeration rate coefficients, supplementary predictive equations have been developed based on Froude number criteria and a least‐squares algorithm. The supplementary predictive equations have been verified using different error estimates and by comparing measured and computed reaeration rate coefficients for data sets not used in the development of the equations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号