首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Balloon observations of the X-ray source Sco X-1 carried out in November 1978 have revealed a thermal spectrum withkT?7 keV in the 20–60 keV energy band. In addition, there was evidence of a high energy component, possibly variable, above ~50 keV. The spectral form of this component could not be determined but was hard with a 60 keV flux of ~10?4 photons (keV cm2 s)?1.  相似文献   

2.
The X-ray spectral and timing properties of ultraluminous X-ray sources (ULXs) have many similarities with the very high state of stellar-mass black holes (power-law dominated, at accretion rates greater than the Eddington rate). On the other hand, their cool disk components, large characteristic inner-disk radii and low characteristic timescales have been interpreted as evidence of black hole masses ~1000 M (intermediate-mass black holes). Here we re-examine the physical interpretation of the cool disk model, in the context of accretion states of stellar-mass black holes. In particular, XTE J1550–564 can be considered the missing link between ULXs and stellar-mass black holes, because it exhibits a high-accretion-rate, low-disk-temperature state (ultraluminous branch). On the ultraluminous branch, the accretion rate is positively correlated with the disk truncation radius and the bolometric disk luminosity, while it is anti-correlated with the peak temperature and the frequency of quasi-periodic-oscillations. Two prototypical ULXs (NGC?1313 X-1 and X-2) also seem to move along that branch. We use a phenomenological model to show how the different range of spectral and timing parameters found in the two classes of accreting black holes depends on both their masses and accretion rates. We suggest that ULXs are consistent with black hole masses ~50–100 M , moderately inefficiently accreting at ≈20 times Eddington.  相似文献   

3.
Soft X-ray emission from the X-ray source Per X-1 was observed in the 0.4–2 keV energy interval from a rocket borne X-ray detector. Spectral analysis of the data indicates that in the 0.4–2 keV band the X-ray emission from Per X-1 can be fitted either with a power law of slope-(4.8±1.2) or a thermal bremsstrahlung spectrum with akT value of (0.26 ?0.08 +0.12 ) keV. Such a steep spectrum is inconsistent with the spectrum measured above 2 keV. The measured flux in 0.4–2 keV band corresponds to X-ray luminosity of 3×1045 ergs s?1 for Per X-1.  相似文献   

4.
We report the results of a two-month campaign conducted with the Chandra X-ray observatory to monitor the ultraluminous X-ray source (ULX) NGC 5204 X-1. This was composed of a 50-ks observation, followed by ten 5-ks follow-ups spaced initially at ∼3, then at ∼10-d intervals. The ULX flux is seen to vary by factors ∼5 on time-scales of a few days, but no strong variability is seen on time-scales shorter than an hour. There is no evidence for a periodic signal in the X-ray data. An examination of the X-ray colour variations over the period of the campaign shows the ULX emission consistently becomes spectrally harder as its flux increases. The X-ray spectrum from the 50-ks observation can be fitted by a number of disparate spectral models, all of which describe a smooth continuum with, unusually for a ULX, a broad emission feature evident at 0.96 keV. The spectral variations, both within the 50-ks observation and over the course of the whole campaign, can then be explained solely by variations in the continuum component. In the context of an optically thick corona model (as found in other recent results for ULXs) the spectral variations can be explained by the heating of the corona as the luminosity of the ULX increases, consistent with the behaviour of at least one Galactic black hole system in the strongly Comptonized very high state. We find no new evidence supporting the presence of an intermediate-mass black hole in this ULX.  相似文献   

5.
We analyze the statistical properties of normal galaxies to be detected in the all-sky survey by the eROSITA X-ray telescope of the Spectrum-X-Gamma observatory. With the current configuration and parameters of the eROSITA telescope, the sensitivity of a 4-year-long all-sky survey will be ≈10?14 erg s?1 in the 0.5–2 keV band. This will allow ~(1.5–2) × 104 normal galaxies with approximately the same contribution of star-forming and elliptical galaxies to be detected. All galaxies of the X-ray survey are expected to enter into the existing far-infrared (IRAS) or near-infrared (2MASS) catalogs; the sample of star-forming galaxies will be approximately equivalent in sensitivity to the sample of star-forming galaxies in the IRAS catalog of infrared sources. Thus, a large homogeneous sample of normal galaxies with measured X-ray, near-infrared, and far-infrared fluxes will be formed. About 90% of the galaxies in the survey are located within ~200–400 Mpc. A typical (most probable) galaxy will have a luminosity log L X ~ 40.5–41.0, will be located at a distance of ~70–90 Mpc, and will be either a star-forming galaxy with a star formation rate of ~20M yr?1 whose X-ray emission is produced by ultraluminous X-ray sources (ULXs) or an elliptical galaxy with amass log M * ~ 11.3 emitting through to a hot interstellar gas. The galaxies within 35 Mpc will collectively contain ~102 ULXs with luminosities log L X > 40, ~80% of whichwill be the only luminous source in the galaxy. Thus, although the angular resolution of the eROSITA telescope is too low for the luminosity function of compact sources in galaxies to be studied in detail, the survey data will allow one to investigate its bright end and, possibly, to impose constraints on the maximum luminosity of ULXs.  相似文献   

6.
《New Astronomy Reviews》2000,44(7-9):477-481
The idea that some of the unusual features in the X-ray spectra of Narrow-Line Seyfert 1 galaxies (NLS1s) are due to the steep X-ray continuum is tested by comparing photoionization model calculations with various observed properties of Seyfert 1 galaxies. A meaningful comparison must involve the careful use of the “right” X-ray ionization parameter, designated here U(oxygen). When this is done, it is found that the strength of the continuum absorption features is insensitive to the exact slope of the 0.1–50 keV continuum. It is also shown that the complex of iron L-shell lines near 1 keV can produce strong absorption and emission features, depending on the gas distribution and line widths. While this may explain some unusual X-ray features in AGN, the predicted intensity of the features do not distinguish NLS1s from broader line sources. Finally, acceleration of highly ionized gas, by X-ray radiation pressure, is also not sensitive to the exact slope of the X-ray continuum.  相似文献   

7.
We present the results of our study of the X-ray spectrum for the source X-6 in the nearby galaxy M33 obtained for the first time at energies above 10 keV from the data of the NuSTAR orbital telescope. The archival Swift–XRT data for energy coverage below 3 keV have been used, which has allowed the spectrum of M33 X-6 to be constructed in the wide energy range 0.3–20 keV. The spectrum of the source is well described by the model of an optically and geometrically thick accretion disk with a maximum temperature of ~2 keV and an inner radius of ~5 cos?1/2θ km (where >θ is the unknown disk inclination angle with respect to the observer). There is also evidence for the presence of an additional hard component in the spectrum. The X-ray luminosity ofM33 X-6 measured for the first time in the wide energy range 0.3–20 keV is ~2 × 1038 erg s?1, with the luminosity in the hard 10–20 keV X-ray band being ~10% of the source’s total luminosity. The results obtained suggest that X-6 may be a Z-source, i.e., an X-ray binary with subcritical accretion onto a weakly magnetized neutron star.  相似文献   

8.
We present the results of measurements of the total X-ray flux from the Andromeda galaxy (M31) in the 3-100 keV band based on data from the RXTE/PCA, INTEGRAL/ISGRI, and SWIFT/BAT space experiments. We show that the total emission from the galaxy has a multicomponent spectrum whose main characteristics are specified by binaries emitting in the optically thick and optically thin regimes. The galaxy’s luminosity at energies 20–100 keV gives about 6% of its total luminosity in the 3–100 keV band. The emissivity of the stellar population in M31 is L 2–20 keV ~ 1.1 × 1029 erg s?1 M ?1 in the 2–20 keV band and L 20–100 keV ~ 8 × 1027 erg s?1 M ?1 in the 20–100 keV band. Since low-mass X-ray binaries at high luminosities pass into a soft state with a small fraction of hard X-ray emission, the detection of individual hard X-ray sources in M31 requires a sensitivity that is tens of times better (up to 10?13 erg s?1 cm?2) than is needed to detect the total hard X-ray emission from the entire galaxy. Allowance for the contribution from the hard spectral component of the galaxy changes the galaxy’s effective Compton temperature approximately by a factor of 2, from ~1.1 to ~2.1 keV.  相似文献   

9.
We have analysed the X-ray spectra of the highly variable X-ray source Cygnus X-3 over a wide energy range from 5 keV to 150 keV using data selected from the RXTE archives. Separate analysis of the low and hard states show the presence of a hard powerlaw tail in both the states. Here we present the result of the wide band spectral study of the source.  相似文献   

10.
LMC X-1 and LMC X-3 are the only known persistent stellar-mass black-hole candidates that have almost always shown spectra that are dominated by a soft, thermal component. We present here results from 170-ks-long Rossi X-ray Timing Explorer ( RXTE ) observations of these objects, taken in 1996 December, where their spectra can be described by a disc blackbody plus an additional soft     high-energy power law (detected up to energies of 50 keV in LMC X-3). These observations, as well as archival Advanced Satellite for Cosmology and Astrophysics ( ASCA ) observations, constrain any narrow Fe line present in the spectra to have an equivalent width ≲90 eV. Stronger, broad lines (≈150 eV EW,     are permitted. We also study the variability of LMC X-1. Its X-ray power spectral density (PSD) is approximately proportional to     between 10−3 and 0.3 Hz with a root-mean-square (rms) variability of ≈7 per cent. At energies >5 keV, the PSD shows evidence of a break at     possibly indicating an outer disc radius of ≲1000  GM c 2 in this likely wind-fed system. Furthermore, the coherence function     a measure of the degree of linear correlation between variability in the >5 keV band and variability in the lower energy bands, is extremely low (≲50 per cent). We discuss the implications of these observations for the mechanisms that might be producing the soft and hard X-rays in these systems.  相似文献   

11.
The hydrogen column density along the line of sight to Cyg X-1 is 7×1021 cm–2 as determined from the extinction of its optical counterpart HD 226 868. This value may be used to interpret soft X-ray measurements, including those previously reported, where it is not possible to determine the column density independently from the intrinsic spectral function. The correction for interstellar absorption is larger than previously thought. Application to an old observation suggests that an intense soft X-ray component was present in Cyg X-1, even though the data at 1 keV suggests that it was probably in a low state. This is consistent with the picture of Cyg X-1 suggested by Price and Thorne, in which transitions in Cyg X-1 are attributed to changes in the high energy cut-off of an intense soft component.Paper presented at the COSPAR Symposium on Fast Transients in X-and Gamma-Rays, held at Varna, Bulgaria, 29–31 May, 1975.  相似文献   

12.
Analysis of recent observations of the elliptical galaxies NGC 4472 and NGC 4649 with the Chandra X-ray space telescope has revealed faint soft X-ray sources at their centers. The sources are located at the galactic centers, to within 1″, and are most likely associated with the radiation from the supermassive black holes that are assumed to be at the optical centers of these galaxies. Interest in these and several other similar objects stems from the unusually low luminosity of the supermassive black hole embedded in a dense interstellar medium. The sources have soft energy spectra in the Chandra energy range 0.2–10 keV. The source is detected at a 3σ confidence level only in the range 0.2–0.6 keV with a luminosity of ~6×1037 erg s?1 in NGC 4649 and in the range 0.2–2.5 keV with a luminosity of ~ 1.7×1038 erg ?1 in NGC 4472.  相似文献   

13.
We present the X-ray light curves of the last two outbursts – 2014 & 2016 – of the well known accreting millisecond X-ray pulsar (AMXP) Aquila X-1 using the monitor of all sky X-ray image (MAXI) observations in the 2–20 keV band. After calibrating the MAXI count rates to the all-sky monitor (ASM) level, we report that the 2016 outburst is the most energetic event of Aql X-1, ever observed from this source. We show that 2016 outburst is a member of the long-high class according to the classification presented by Güngör et al. with ∼ 68 cnt/s maximum flux and ∼ 60 days duration time and the previous outburst, 2014, belongs to the short-low class with ∼ 25 cnt/s maximum flux and ∼ 30 days duration time. In order to understand differences between outbursts, we investigate the possible dependence of the peak intensity to the quiescent duration leading to the outburst and find that the outbursts following longer quiescent episodes tend to reach higher peak energetic.  相似文献   

14.
Results of rocket observations of SCO X-1 over the spectral range of 220 keV are presented. The observations have been performed partly in India and partly in Japan under the collaboration of the three groups. The present results are compared with results of similar observations carried out by the LRL (Lawrence Radiation Laboratory) group. Some of these X-ray observations were accompanied by simultaneous optical observations. Relationships between the hardness of the X-ray spectrum and the X-ray intensity and between the hardness and the optical luminosity are compiled. The relationships among the parameters (temperature, density and size) which characterize the postulated isothermal cloud model of SCO X-1 are given. They indicate that SCO X-1 is characterized by a temperature of about 107–108K, a density of about 1016–1017 cm–3 and a radius of about 108–109 cm respectively. We further show that the temperature is inversely correlated with the size of the source; an increase in temperature corresponds to a decrease in the radius and an increase in density.  相似文献   

15.
During the GRIF experiment onboard the Mir orbiting station, the sky was monitored with a PX-2 wide-field (~1 sr) scintillation X-ray spectrometer to detect bursts in the photon energy range 10–300 keV. Because of the comprehensive instrumentation, which, apart from the X-ray and gamma-ray instruments, also included charged-particle detectors, the imitations of astrophysical bursts by magnetospheric electron precipitations and strongly ionizing nuclei were effectively filtered out. It was also possible to separate solar and atmospheric events. Several tens of bursts interpreted as being astrophysical were detected in the experiment at sensitivity levels S~10?7 erg cm?2 (for bursts whose spectra were characterized by effective temperatures kT~100 keV) and S~3×10?8 erg cm?2 (for bursts with kT~25 keV). Some of the soft gamma-ray or hard X-ray bursts with kT~10–50 keV were identified with the bursting pulsar GRO J1744-28. Our estimate of the detection rate for cosmological soft gamma-ray or hard X-ray bursts from the entire sky suggests that the distributions of long-duration (>1 s) gamma-ray bursts (GRBs) in characteristic energy kT and duration are inconsistent with the steady-state cosmological model in which the evolution of burst sources is disregarded. Based on GRIF and BATSE/CGRO data, we conclude that most of the GRB sources originate at redshifts 1<z<5.  相似文献   

16.
Using the All-Sky Monitor (ASM, 1.5∼12 keV) data of Rossi X-ray Timing Explorer (RXTE) from January 1996 to October 2011, we have analyzed in detail the power spectrum of the hardness ratio (HR) (5∼12 keV/3∼5 keV) of the X-ray binary Cyg X-1 as a black hole candidate. The results show that the HR exhibits the following periodical variations: (1) During MJD = 50087∼55841, the HR presented the the periods T ≈ 5.6 d, T ≈ 40.0 d, T ≈ 78.4 d, T ≈ 173.8 d, and T ≈ 400/800 d; (2) When Cyg X-1 was in the hard state, the HR exhibited the periods T ≈ 5.6 d, T ≈ 33.7/67.6 d, T ≈ 45.3 d, and T ≈ 165.3 d; (3) When Cyg X-1 was in the soft state, the HR exhibited the periods T ≈ 38.5 d, T ≈ d, and T ≈ 128.3 d. Moreover, using the viscosity theory and Zdziarski accretion disk model, we have made a discussion on the physical mechanism of this kind of periodicity.  相似文献   

17.
We present the results of our comparative timing and spectral analysis of the high and low (off) states in the X-ray pulsar Her X-1 based on data from the ART-P telescope onboard the Granat observatory. A statistically significant (several mCrab) persistent flux with a simple power-law spectrum was detected during the low state. The spectral slope changed from observation to observation by almost a factor of 2. Pulsations were detected only during the high state of the source, when its flux was a factor of ~25 larger than the low-state flux. The spectral shape of Her X-1 in its high state was complex, with the parameters depending on pulse phase.  相似文献   

18.
Using a reliablymeasured intrinsic (i.e., corrected for absorption effects) present-day luminosity function of high-mass X-ray binaries (HMXBs) in the 0.25–2 keV energy band per unit star formation rate, we estimate the preheating of the early Universe by soft X-rays from such systems. We find that X-ray irradiation, mainly executed by ultraluminous and supersoft ultraluminous X-ray sources with luminosity L X > 1039 erg s?1, could significantly heat (T >T CMB, where T CMB is the temperature of the cosmic microwave background) the intergalactic medium by z ~ 10 if the specific X-ray emissivity of the young stellar population in the early Universe was an order of magnitude higher than at the present epoch (which is possible due to the low metallicity of the first galaxies) and the soft X-ray emission from HMXBs did not suffer strong absorption within their galaxies. This makes it possible to observe the 21 cm line of neutral hydrogen in emission from redshifts z < 10.  相似文献   

19.
The Comptonization-softening of very hard X-ray photons withEm 0 c 2 in the cold electron gas is discussed. The frequency diffusion equation for Comptonization of hard X-rays has been derived to the zero-temperature approximation. By use of this equation, and under the assumption of pair-annihilation origin of hard X-rays, we calculated the energy spectrum withE>80 keV, for Cyg X-1, which is in good fit with the observation. The high-energy edge 400 keV of the observed spectrum and the small bump in the range 100–200 keV also can be explained by this way.  相似文献   

20.
The spectra of disc accreting neutron stars generally show complex curvature, and individual components from the disc, boundary layer and neutron star surface cannot be uniquely identified. Here we show that much of the confusion over the spectral form derives from inadequate approximations for Comptonization and for the iron line. There is an intrinsic low-energy cut-off in Comptonized spectra at the seed photon energy. It is very important to model this correctly in neutron star systems as these have expected seed photon temperatures (from either the neutron star surface, inner disc or self-absorbed cyclotron) of ≈1 keV, clearly within the observed X-ray energy band. There is also reflected continuum emission which must accompany the observed iron line, which distorts the higher energy spectrum. We illustrate these points by a reanalysis of the Ginga spectra of Cyg X-2 at all points along its Z track, and show that the spectrum can be well fitted by models in which the low-energy spectrum is dominated by the disc, while the higher energy spectrum is dominated by Comptonized emission from the boundary layer, together with its reflected spectrum from a relativistically smeared, ionized disc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号