首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the regime of chromospheric oscillations at the bases of coronal holes and compare them with the oscillations in the quiet chromosphere outside coronal holes using time series of spectrograms taken at different times in eight quiet regions on the Sun. As the oscillation parameter being studied, we have chosen the central intensity of the chromospheric Ca II K and H and 849.8-nm lines. The intensity measurements at all spatial points (along the spectrograph slit) have been subjected to a standard Fourier analysis. For the identified areas of the networks, cells, and network boundaries, we have calculated the integrated oscillation powers in several frequency bands. For all frequency bands, the powers of the intensity oscillations at the formation level of the Ca II resonance doublet line cores have been found to be enhanced at the bases of coronal holes approximately by a factor of 1.5. For the “three-minute” band, this enhancement is more pronounced in the network than in the cell, while the opposite is true for the “five-minute” band. The power in the five-minute band is higher than that in the three-minute one both at the bases of coronal holes and outside them, but this ratio in the network for a coronal hole is higher (1.40 ± 0.25 and 1.30 ± 0.10). We interpret this fact and the fact that the power of the three-minute oscillations for nonmagnetic regions changes with height differently at the base of a coronal hole and outside it as an increase in the importance of magnetoacoustic portals at the chromospheric base of the coronal hole.  相似文献   

2.
The behavior of oscillations in the quite solar chromosphere under a coronal hole at several heights has been investigated. The properties of oscillations in cell, network, and weak-floccule areas have been analyzed. A time series of spectrograms in three ionized calcium lines, the Ca II K and H resonance doublet lines and the infrared Ca II 849.8-nm triplet line, was used. The observations were carried out at the horizontal solar telescope of the Sayan Observatory. The goal of this study was to compare the distributions of spectral power in various frequency ranges and their variations for selected spatial areas at different heights of the chromosphere. Particular attention was paid to the weak floccule due to a noticeable difference in the central intensity distribution between the K and H lines and the 849.8-nm line. A spectral Fourier analysis was used. The central intensities of the observed spectral lines, the K-index, and the equivalent width (the latter for the 849.8-nm line) were chosen as oscillation parameters. The studies have shown that the main intensity oscillation power at both atmospheric levels is concentrated at frequencies below 9 mHz. In the distribution of intensity oscillation power at different chromospheric levels, there are differences clearly distinguishable in the floccule. Powerful five-minute oscillations whose main peak frequency decreases with height, while the amplitude increases have been detected in the central part of the floccule. This result confirms the assumptions recently pointed out in the literature that vertical magnetic field concentrations can serve as a channel for the passage of low-frequency oscillations from the photosphere to the chromosphere in faculae. The intensity oscillation power in the frequency ranges under consideration has turned out to decrease with height, on average, for the entire observed spatial area. This may be related to the loss of part of the wave energy through the reflection, dissipation, and transformation of wave modes in the magnetic canopy layer. An area with a low brightness but powerful oscillations at about 3.3 mHz covering a considerable range of heights probably pertaining to “magnetic flashers” has been isolated in the telescope’s field of view.  相似文献   

3.
The nature of the three-minute and five-minute oscillations observed in sunspots is considered to be an effect of propagation of magnetohydrodynamic (MHD) waves from the photosphere to the solar corona. However, the real modes of these waves and the nature of the filters that result in rather narrow frequency bands of these modes are still far from being generally accepted, in spite of a large amount of observational material obtained in a wide range of wave bands. The significance of this field of research is based on the hope that local seismology can be used to find the structure of the solar atmosphere in magnetic tubes of sunspots. We expect that substantial progress can be achieved by simultaneous observations of the sunspot oscillations in different layers of the solar atmosphere in order to gain information on propagating waves. In this study we used a new method that combines the results of an oscillation study made in optical and radio observations. The optical spectral measurements in photospheric and chromospheric lines of the line-of-sight velocity were carried out at the Sayan Solar Observatory. The radio maps of the Sun were obtained with the Nobeyama Radioheliograph at 1.76 cm. Radio sources associated with the sunspots were analyzed to study the oscillation processes in the chromosphere – corona transition region in the layer with magnetic field B=2000 G. A high level of instability of the oscillations in the optical and radio data was found. We used a wavelet analysis for the spectra. The best similarities of the spectra of oscillations obtained by the two methods were detected in the three-minute oscillations inside the sunspot umbra for the dates when the active regions were situated near the center of the solar disk. A comparison of the wavelet spectra for optical and radio observations showed a time delay of about 50 seconds of the radio results with respect to the optical ones. This implies an MHD wave traveling upward inside the umbral magnetic tube of the sunspot. For the five-minute oscillations the similarity in spectral details could be found only for optical oscillations at the chromospheric level in the umbral region or very close to it. The time delays seem to be similar. Besides three-minute and five-minute ones, oscillations with longer periods (8 and 15 minutes) were detected in optical and radio records. Their nature still requires further observational and theoretical study for even a preliminary discussion.  相似文献   

4.
We find that oscillations of the LOS velocity in Hα vary within facula regions. The power spectra show that the contributions of low-frequency modes (1.2 – 2 mHz) increase at the network boundaries. Three- and five-minute periods dominate inside cells. The spectra of photospheric and chromospheric LOS-velocity oscillations differ for most faculae. We detected several cases where oscillations in faculae seem to propagate horizontally with phase velocities of 50 – 70 km s−1. Their location in space and time coincided with the local maximum of the longitudinal magnetic field.  相似文献   

5.
The differences between physical conditions in solar faculae and those in sunspots and quiet photosphere (increased temperature and different magnetic field topology) suggest that oscillation characteristics in facula areas may also have different properties. The analysis of 28 time series of simultaneous spectropolarimetric observations in facula photosphere (Fe?i 6569 Å, 8538 Å) and chromosphere (Hα, Ca?ii 8542 Å) yields the following results. The amplitude of five-minute oscillations of line-of-sight (LOS) velocity decreases by 20?–?40% in facula photosphere. There are only some cases revealing the inverse effect. The amplitude of four- to five-minute LOS velocity oscillations increases significantly in the chromosphere above faculae, and power spectra fairly often show pronounced peaks in a frequency range of 1.3?–?2.5 mHz. Evidence of propagating oscillations can be seen from space?–?time diagrams. We have found oscillations of the longitudinal magnetic field (1.5?–?2 mHz and 5.2 mHz) inside faculae.  相似文献   

6.
Three-and five-minute sunspot oscillations have different spatial distributions in the solar atmospheric layers. The spatial distributions are crucial for revealing the physical origin of sunspot oscillations and to investigate their propagation. In this study, six sunspots observed by Solar Dynamics Observatory/Atmospheric Imaging Assembly were used to obtain the spatial distributions of three-and five-minute oscillations. The fast Fourier transform method is applied to represent the power spectra of oscillation modes. We find that, from the temperature minimum to the lower corona, the powers of the fiveminute oscillation exhibit a circle-shape distribution around its umbra, and the shapes gradually expand with temperature increase. However, the circle-shape disappears and the powers of the oscillations appear to be very disordered in the higher corona. This indicates that the five-minute oscillation can be suppressed in the high-temperature region. For the three-minute oscillations, from the temperature minimum to the high corona, their powers mostly distribute within an umbra, and part of them are located at the coronal fan loop structures. Moreover, those relative higher powers are mostly concentrated in the position of coronal loop footpoints.  相似文献   

7.
We have used a high spatial and temporal resolution of long time sequence of spectra in CaII H-line obtained at the Vacuum Tower Telescope (VTT) of the Sacramento Peak Observatory on a quiet region at the center of the solar disk over a large number of bright points and network elements to search for atmospheric (chromospheric) g-mode oscillations. An important parameter of the H-line profile, intensity at H2v(Ih2V), has been derived from a large number of line profiles. We derived the light curves of all the bright points and network elements. The light curves represent the main pulse with large intensity amplitude and followed by several follower pulses with lower intensity amplitudes. The light curves of these bright points would give an impression that one can as well draw curves towards and away from the highest peak (main pulse) showing an exponential growth and decay of the amplitudes. An exponential decaying function has been fitted for all the light curves of the bright points to determine the damping time of the modes that are more or less the same, and one value of the coefficient of exponent can represent reasonably well the decay for all the cases. The FFT analysis of temporal variation of both the bright points and the network elements indicates around 10-min periodicity. We speculate that this longer period of oscillation may be related to chromospheric g-mode oscillations.  相似文献   

8.
The very nature of the solar chromosphere, its structuring and dynamics, remains far from being properly understood, in spite of intensive research. Here we point out the potential of chromospheric observations at millimeter wavelengths to resolve this long-standing problem. Computations carried out with a sophisticated dynamic model of the solar chromosphere due to Carlsson and Stein demonstrate that millimeter emission is extremely sensitive to dynamic processes in the chromosphere and the appropriate wavelengths to look for dynamic signatures are in the range 0.8–5.0 mm. The model also suggests that high resolution observations at mm wavelengths, as will be provided by ALMA, will have the unique property of reacting to both the hot and the cool gas, and thus will have the potential of distinguishing between rival models of the solar atmosphere. Thus, initial results obtained from the observations of the quiet Sun at 3.5 mm with the BIMA array (resolution of 12″) reveal significant oscillations with amplitudes of 50–150 K and frequencies of 1.5–8 mHz with a tendency toward short-period oscillations in internetwork and longer periods in network regions. However higher spatial resolution, such as that provided by ALMA, is required for a clean separation between the features within the solar atmosphere and for an adequate comparison with the output of the comprehensive dynamic simulations.  相似文献   

9.
K. A. Marsh 《Solar physics》1977,52(2):343-348
Microphotometry of calcium K-line photographs in the regions of polar coronal holes shows that the chromospheric network exterior to a hole has a slightly broader intensity distribution than that inside the hole itself, a fact which can be attributed to a greater number of bright network elements outside the hole. These bright elements presumably represent the enhanced network resulting from the dispersal of magnetic flux from old active regions, a hypothesis which is consistent with current ideas of coronal hole formation.  相似文献   

10.
The goal of this paper is a detailed statistical analysis of the low-frequency Ca II line intensity oscillations containing information about the dynamics of the lower and middle chromosphere. A pixel-by-pixel analysis of the observed parameters has been performed. The following results have been obtained. (1) The low-frequency chromospheric oscillations (periods >400 s) are seen much more frequently in networks than in chromospheric network cells. (2) The relative fraction of the low-frequency chromospheric intensity oscillations increases with height. (3) The occurrence distribution of intensity oscillations as a function of the frequency is subdivided at least into two types. (4) In contrast to the low-frequency photospheric oscillations, the phase differences between the Ca II K and 849.8 nm line intensity oscillations do not give grounds to identify the low-frequency chromospheric oscillations with internal gravity waves. (5) The spectral composition of the oscillations in the network chromosphere resembles that expected in magnetic flux tubes in the nonlinear regime of conversion of transverse MHD waves at lower levels of the atmosphere into longitudinal MHD waves in its upper layer.  相似文献   

11.
We have investigated 15 time series of Ca II line spectrograms in quiet-Sun regions located at various distances from the disk center. Our goal is to reveal the center-to-limb variation of the brightness oscillations. The residual intensities at the centers of the Ca II K and 849.806-nm lines and the K index have been analyzed. We have considered separately two components of the chromospheric network. Our main result is that the power of the brightness oscillations in the chromosphere of the average quiet Sun decreases to the limb. This change for the boundaries of supergranulation cells (networks) is considerably larger than that for their inner parts (cells). It is mainly determined by the 5-min oscillations; the 3-min oscillations show virtually no center-to-limb variation. In addition to studying the dependence of the oscillation power on the heliocentric angle, we also consider other characteristics of the oscillatory regime of the chromosphere. For example, the low-frequency oscillations with periods longer than 700 s, which are inherent predominantly in the K line core in networks, have been separated into an isolated mode. No center-to-limb variation has been revealed for them. As a result of our discussion of the patterns found based on present-day publications on the chromosphere dynamics, we conclude that different mechanisms and sources of its heating can simultaneously make their contributions.  相似文献   

12.
Eit Observations of the Extreme Ultraviolet Sun   总被引:3,自引:0,他引:3  
The Extreme Ultraviolet Imaging Telescope (EIT) on board the SOHO spacecraft has been operational since 2 January 1996. EIT observes the Sun over a 45 x 45 arc min field of view in four emission line groups: Feix, x, Fexii, Fexv, and Heii. A post-launch determination of the instrument flatfield, the instrument scattering function, and the instrument aging were necessary for the reduction and analysis of the data. The observed structures and their evolution in each of the four EUV bandpasses are characteristic of the peak emission temperature of the line(s) chosen for that bandpass. Reports on the initial results of a variety of analysis projects demonstrate the range of investigations now underway: EIT provides new observations of the corona in the temperature range of 1 to 2 MK. Temperature studies of the large-scale coronal features extend previous coronagraph work with low-noise temperature maps. Temperatures of radial, extended, plume-like structures in both the polar coronal hole and in a low latitude decaying active region were found to be cooler than the surrounding material. Active region loops were investigated in detail and found to be isothermal for the low loops but hottest at the loop tops for the large loops. Variability of solar EUV structures, as observed in the EIT time sequences, is pervasive and leads to a re-evaluation of the meaning of the term ‘quiet Sun’. Intensity fluctuations in a high cadence sequence of coronal and chromospheric images correspond to a Kolmogorov turbulence spectrum. This can be interpreted in terms of a mixed stochastic or periodic driving of the transition region and the base of the corona. No signature of the photospheric and chromospheric waves is found in spatially averaged power spectra, indicating that these waves do not propagate to the upper atmosphere or are channeled through narrow local magnetic structures covering a small fraction of the solar surface. Polar coronal hole observing campaigns have identified an outflow process with the discovery of transient Fexii jets. Coronal mass ejection observing campaigns have identified the beginning of a CME in an Fexii sequence with a near simultaneous filament eruption (seen in absorption), formation of a coronal void and the initiation of a bright outward-moving shell as well as the coronal manifestation of a ‘Moreton wave’. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1004902913117  相似文献   

13.
Intensity distributions of the EUV network and the cell interior in the solar atmosphere have been obtained in fourteen emission lines from Solar and Heliospheric Observatory (SOHO)/Coronal Diagnostic Spectrometer (CDS) observations. The formation temperature of the observed lines is in the range log T=4.90 – 6.06 (T in Kelvin), and hence they represent increasing heights in the solar atmosphere from the upper chromosphere and the transition region to the low corona. Intensity distributions of the cell interior have been found to be different in the quiet Sun and the coronal hole even at the lower transition region, which is at variance with some earlier results. The intensity contrast of the network with respect to the cell interior has been obtained for each line, and differences in the quiet Sun and the coronal hole have been examined. The network contrast, in general, is lower for the coronal hole as compared to the quiet Sun, but becomes equal to it in the upper transition region. The maximum contrast for both the regions is at about log T=5.3. Also obtained are the relative contributions of the network and the cell interior to the total intensity. The implications of the results for models of the transition region are briefly mentioned.  相似文献   

14.
A coronal hole was observed for three days of its passage near the central meridian of the Sun. Spectrograms containing strong lines of ionized calcium were obtained. The central intensities of the Ca II H, K, and λ849.8 nm lines in the region of the coronal hole and in the quiet-Sun region outside its boundaries were measured. Only the line profiles that were confidently identified as being undisturbed even by weak flocculi were selected. All profiles were averaged in each of the two chromospheric network components (network and cell), and the average profiles were calculated using all of the available data (network+cell). Small differences were found between the central intensities of the Ca II H and K lines inside and outside the coronal hole, with the hole being brighter than the quiet region. A detailed statistical analysis shows that these small differences are real at high confidence levels owing to the large sample sizes. A difference of the same sign is slightly noticeable in the infrared line, but its confidence level is less than 90%. The chromosphere in the coronal hole is brightened by the cell alone; in the network, the chromospheric foot of the coronal hole does not differ from the quiet region. Comparison with the results of other authors obtained from observations in higher atmospheric layers suggests that the network also contains a brightness peak that subsequently gives way to a characteristic depression, but it lies higher than that in the cell.  相似文献   

15.
The five-minute oscillations inside sunspots appear to be the absorption of the solar p-mode. It is a potential tool to probe a sunspot's sub-structure. We studied the collective properties of five-minute oscillations in the power and phase distribution at the sunspot's umbra-penumbra boundary. The azimuthal distributions of the power and phase of five-minute oscillations enclosing a sunspot's umbra were obtained with images taken with the Solar Dynamics Observatory/Atmospheric Imaging Assembly(SDO/AIA). The azimuthal modes were quantified with periodogram analysis and justified with significance tests. The azimuthal nodal structures in an approximately axially symmetric sunspot AR 11131(2010 Dec 08) were investigated. Mode numbers m = 2, 3, 4, 7, 10 were obtained in both 1700 ?A and 1600 ?A bandpasses. The 1600 ?A channel also revealed an extra mode at m = 9. In the upper atmosphere(304 ?A), fewer modes were detected at m = 3, 4, 7. The azimuthal modes in the sunspot's low atmosphere could be interpreted as high-order azimuthal MHD body modes. They were detected in the power and phase of the five-minute oscillations in sunspot AR 11131 with SDO/AIA data. Fewer modes were detected in the sunspot's upper atmosphere.  相似文献   

16.
R. Kariyappa 《Solar physics》1996,165(2):211-222
We have analysed a 35-min-long time sequence of spectra in the Caii H line, Nai D1 and D2 lines, and in a large number of strong and weak Fei lines taken over a quiet region at the center of the solar disk. The time series of these spectra have been observed simultaneously in these lines under high spatial, spectral, and temporal resolution at the Vacuum Tower Telescope (VTT) of the Sacramento Peak Observatory. We have derived the line profiles and their central intensity values at the sites of the chromospheric bright points, which are visible in the H line for easy identification. We have done a power spectrum analysis for all the lines, using their central intensity values to determine the period of oscillations. It is shown that the 3 Fei lines, present 23 Å away from the core of the H line representing the pure photospheric lines, Nai D1 and D2 lines, 6 Fei lines at the wings of H line, and Can H line exhibit 5-min, 4.05-min, 3.96-min, and 3.2-min periodicity in their intensity oscillations, respectively. Since all these lines form at different heights in the solar atmosphere from low photosphere to middle chromosphere and show different periodicities in their intensity oscillations, these studies may give an idea about the spatial and temporal relation between the photospheric and chromospheric intensities. Therefore these studies will help to better understand the physical mechanisms of solar oscillations. It is clearly seen that the period of intensity oscillations decreases outward from the low photosphere to the middle chromosphere. Since we have studied a single feature at a time on the Sun (i.e., bright points seen in the H line) in all these spectral lines simultaneously, this may explain about the footpoints of the bright points, the origin of 3-min oscillations, and the relation to other oscillations pertaining to these locations on the Sun. We have concluded that 80% of the bright points are associated with dark elements in the true continuum, and they may seem to have a relationship with the dark intergranular lanes of the photosphere, after carefully examining the brightness (bright threads) extending from the core to the far wings of the H line at the locations of a large number of bright points, using their time sequence of spectra.NRC Resident Research Associate, on leave from Indian Institute of Astrophysics, Bangalore 560034, India.  相似文献   

17.
Kobanov  N.I.  Makarchik  D.V.  Sklyar  A.A. 《Solar physics》2003,217(1):53-67
In this paper we carry out an analysis of the spatial–temporal line-of-sight velocity variations measured in the chromospheric (H, H) and photospheric (Fei 6569 Å, Fei 4864 Å, Nii 4857 Å) lines at the base of 17 coronal holes. Time series of a duration from 43 to 120 min were recorded with the CCD line-array and the CCD matrix. Rather frequently we observed quasi-stationary upward flows with a measured velocity of up to 1 km s–1 in the photosphere and up to 4–5 km s–1 in the chromosphere (equivalent radial velocity of up to 3 km s–1 and up to 12–15 km s–1 accordingly) near dark points on the chromospheric network boundary inside polar CH. Line-of-sight velocity fluctuation spectra contain meaningful maxima in the low-frequency region clustering around the values 0.4, 0.75, and 1 mHz. Usually, the spatial localization of these maxima mutually coincides and, in our opinion, coincides with the chromospheric network boundary. Acoustic 3- and 5-min oscillations are enhanced in the coronal hole region and reach 1 km s–1 in the photosphere and 3–4 km s–1 in the chromosphere. These oscillations are not localized spatially and are distinguished throughout the entire region observed.  相似文献   

18.
The locations of coronal holes are usually based on equivalent-width images in the He i 1083 nm line. However, it is difficult to differentiate coronal holes from the centers of quiet chromospheric network without complementary data and the skill of an experienced observer. Analysis of imaging spectroscopy shows that line half-width and central intensity are correlated differently in coronal holes and a quiet Sun. This fact can be used to form linear combinations of these images in which coronal holes are better separated from the quiet Sun. Coronal hole borders agree well with SOHO/EIT data but can show significant differences from National Solar Observatory maps.  相似文献   

19.
A. Anđić 《Solar physics》2007,242(1-2):9-20
High-frequency acoustic waves have been suggested as a source of mechanical heating in the chromosphere. In this work the radial component of waves in the frequency interval 22 to 1 mHz are investigated. Observations were performed using 2D spectroscopy in the spectral lines of Fe i 543.45 nm and Fe i 543.29 nm at the Vacuum Tower Telescope, Tenerife, Spain. Speckle reconstruction has been applied to the observations. We have used Fourier and wavelet techniques to identify oscillatory power. The energy flux is estimated by assuming that all observed oscillations are acoustic running waves. We find that the estimated energy flux is not sufficient to cover the chromospheric radiative losses.  相似文献   

20.
Solar radio maps obtained by our group and others over a wide wavelength range (millimeter to meter) and over a considerable time span (1973–1978) have allowed us to compute the radio spectrum of an average coronal hole, i.e., the brightness temperature inside a coronal hole normalized by the brightness temperature of the quiet Sun outside the coronal hole measured at several different radio wavelengths. This radio spectrum can be used to obtain the changes of the quiet Sun atmosphere inside coronal holes and also as an additional check for coronal hole profiles obtained by other methods. Using a standard solar atmosphere and a computer program which included ray tracing, we have tried to reproduce the observed radio spectrum by computing brightness temperatures at many different wavelengths for a long series of modifications in the electron density, neutral particle density and temperature profiles of the standard solar atmosphere. This analysis indicates that inside an average coronal hole the following changes occur: the upper chromosphere expands by about 20% and its electron density and temperature decrease by about 10%. The transition zone experiences the largest change, expanding by a factor of about 6, its electron density decreases by a similar factor, and its temperature decreases by about 50%. Finally in the corona the electron density decreases by about 20% and the temperature by about 15%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号