首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of the family of binaries with a low-mass star and a compact neutron star companion (low-mass X-ray binaries (LMXBs) with neutron stars) ismodeled by the method of population synthesis. Continuous Roche-lobe filling by the optical star in LMXBs is assumed to be maintained by the removal of orbital angular momentum from the binary by a magnetic stellar wind from the optical star and the radiation of gravitational waves by the binary. The developed model of LMXB evolution has the following significant distinctions: (1) allowance for the effect of the rotational evolution of a magnetized compact remnant on themass transfer scenario in the binary, (2) amore accurate allowance for the response of the donor star to mass loss at the Roche-lobe filling stage. The results of theoretical calculations are shown to be in good agreement with the observed orbital period-X-ray luminosity diagrams for persistent Galactic LMXBs and their X-ray luminosity function. This suggests that the main elements of binary evolution, on the whole, are correctly reflected in the developed code. It is shown that most of the Galactic bulge LMXBs at luminosities L x > 1037 erg s?1 should have a post-main-sequence Roche-lobe-filling secondary component (low-mass giants). Almost all of the models considered predict a deficit of LMXBs at X-ray luminosities near ~1036.5 erg s?1 due to the transition of the binary from the regime of angular momentum removal by a magnetic stellar wind to the regime of gravitational waves (analogous to the widely known period gap in cataclysmic variables, accreting white dwarfs). At low luminosities, the shape of the model luminosity function for LMXBs is affected significantly by their transient behavior-the accretion rate onto the compact companion is not always equal to the mass transfer rate due to instabilities in the accretion disk around the compact object. The best agreement with observed binaries is achieved in the models suggesting that heavy neutron stars with masses 1.4–1.9M can be born.  相似文献   

2.
We present the results of measurements of the total X-ray flux from the Andromeda galaxy (M31) in the 3-100 keV band based on data from the RXTE/PCA, INTEGRAL/ISGRI, and SWIFT/BAT space experiments. We show that the total emission from the galaxy has a multicomponent spectrum whose main characteristics are specified by binaries emitting in the optically thick and optically thin regimes. The galaxy’s luminosity at energies 20–100 keV gives about 6% of its total luminosity in the 3–100 keV band. The emissivity of the stellar population in M31 is L 2–20 keV ~ 1.1 × 1029 erg s?1 M ?1 in the 2–20 keV band and L 20–100 keV ~ 8 × 1027 erg s?1 M ?1 in the 20–100 keV band. Since low-mass X-ray binaries at high luminosities pass into a soft state with a small fraction of hard X-ray emission, the detection of individual hard X-ray sources in M31 requires a sensitivity that is tens of times better (up to 10?13 erg s?1 cm?2) than is needed to detect the total hard X-ray emission from the entire galaxy. Allowance for the contribution from the hard spectral component of the galaxy changes the galaxy’s effective Compton temperature approximately by a factor of 2, from ~1.1 to ~2.1 keV.  相似文献   

3.
A sample of cataclysmic variables (CVs) detected among the X-ray sources of the 400 square degree (400d) survey performed based on ROSAT pointings is presented. A technique for selecting CVs among the X-ray sources using additional optical and infrared data, based on Sloan Digital Sky Survey andWISE data, is described. We present the optical observations of the selected objects carried out mainly with the Russian–Turkish 1.5-m telescope (RTT-150) and the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences (BTA). Some observations have also been performed with the 1.6-m AZT-33IK telescope of the Institute of Solar–Terrestrial Physics, the Siberian branch of the Russian Academy of Sciences. Eight CVs, four of which were detected in our work, have been selected by now. Based on this sample, we have obtained preliminary constraints on the X-ray luminosity function of CVs in the solar neighborhood in the range of low luminosities, L X ~ 1029–1030 erg s?1 (0.5–2 keV). The logarithmic slope of the CV luminosity function in this luminosity range is shown to become gentler than that at L X > 1031 erg s?1. It follows from our estimates of the CV luminosity function that several thousand CVs will be detected in the SRG all-sky survey at high Galactic latitudes, which will allow much more accurate measurements of their X-ray luminosity function to be obtained.  相似文献   

4.
The X-ray luminosity function of distant (3 < z < 5.1) type 1 quasars has been measured. A sample of distant high-luminosity (1045 erg s?1LX,2?10 < 7.5×1045 erg s?1 in the 2–10 keV energy band) quasars from the catalog by Khorunzhev et al. (2016) compiled from the data of the 3XMM-DR4 catalog of the XMM-Newton serendipitous survey and the Sloan Digital Sky Survey (SDSS) has been used. This sample consists of 101 sources. Most of them (90) have spectroscopic redshifts zspec ? 3; the remaining ones are quasar candidates with photometric redshift estimates zphot ? 3. The spectroscopic redshifts of eight sources have been measured with the BTA and AZT-33IK telescopes. Owing to the record sky coverage area (?250 sq. deg at X-ray fluxes ~10?14 erg s?1 cm?2 in the 0.5–2 keVband) from which the sample was drawn, we have managed to obtain reliable estimates of the space density of distant X-ray quasars with luminosities LX,2?10 > 2×1045 erg s?1 for the first time. Their comoving space density remains constant as the redshift increases from z = 3 to 5 to within a factor of 2. The power-law slope of the X-ray luminosity function of distant quasars at its bright end (above the break) has been reliably constrained for the first time. The range of possible slopes for the quasar luminosity and density evolution model is γ2 = 2.72 ?0.12 +0.19 ± 0.21, where initially the lower and upper boundaries of γ2 with the remaining uncertainty in the detection completeness of X-ray sources in SDSS and subsequently the statistical error of the slope are specified.  相似文献   

5.
We analyze the statistical properties of normal galaxies to be detected in the all-sky survey by the eROSITA X-ray telescope of the Spectrum-X-Gamma observatory. With the current configuration and parameters of the eROSITA telescope, the sensitivity of a 4-year-long all-sky survey will be ≈10?14 erg s?1 in the 0.5–2 keV band. This will allow ~(1.5–2) × 104 normal galaxies with approximately the same contribution of star-forming and elliptical galaxies to be detected. All galaxies of the X-ray survey are expected to enter into the existing far-infrared (IRAS) or near-infrared (2MASS) catalogs; the sample of star-forming galaxies will be approximately equivalent in sensitivity to the sample of star-forming galaxies in the IRAS catalog of infrared sources. Thus, a large homogeneous sample of normal galaxies with measured X-ray, near-infrared, and far-infrared fluxes will be formed. About 90% of the galaxies in the survey are located within ~200–400 Mpc. A typical (most probable) galaxy will have a luminosity log L X ~ 40.5–41.0, will be located at a distance of ~70–90 Mpc, and will be either a star-forming galaxy with a star formation rate of ~20M yr?1 whose X-ray emission is produced by ultraluminous X-ray sources (ULXs) or an elliptical galaxy with amass log M * ~ 11.3 emitting through to a hot interstellar gas. The galaxies within 35 Mpc will collectively contain ~102 ULXs with luminosities log L X > 40, ~80% of whichwill be the only luminous source in the galaxy. Thus, although the angular resolution of the eROSITA telescope is too low for the luminosity function of compact sources in galaxies to be studied in detail, the survey data will allow one to investigate its bright end and, possibly, to impose constraints on the maximum luminosity of ULXs.  相似文献   

6.
We obtained long-term (10–20 years) light curves for seven X-ray bursters. These sources exhibited no prolonged episodes of luminosities exceeding several percent of the Eddington luminosity over the entire observing period. For four sources, we found upper limits for the luminosity of over 5 years. These limits proved to be below 1036 erg s?1. We estimated the total number of such sources in our Galaxy.  相似文献   

7.
We obtained constraints on the luminosity of the central source in SNR 1987 A using XMM-Newton and INTEGRAL data. XMM-Newton yields an upper limit on the SNR luminosity in the 2–10 keV energy band, LX ? 5 × 1034 erg s?1. Since the optical depth of the envelope is still large in the XMM-Newton energy band, this constraint carries no useful information about the luminosity of the central source. The optical depth is expected to be small in the hard (20–200 keV) X-ray band of the IBIS telescope aboard the INTEGRAL observatory. We detected no statistically significant emission from SNR 1987 A in the INTEGRAL data and obtained an upper limit of LX ? 1.1 × 1036 erg s?1 on the luminosity of the central source in the 20–60 keV band. We also obtained an upper limit on the mass of radioactive 44Ti, M(44Ti) ? 10?3M.  相似文献   

8.
The results of investigations of a number of eclipsing Wolf-Rayet binaries are presented. The ‘core’ radiuses, the ‘core’ temperatures and masses of WR stars in the eclipsing WR+OB binary systems V 444 Cyg, CX Cep, CQ Cep, and CV Ser are obtained (see Table I). The results obtained from the light curves analysis of the V 444 Cyg in the range λλ2460 Å-3.5μ give strong evidence for the Beals (1944) model of WR phenomenon. The chromospheric-coronal effects in the WN5 extended atmosphere are not observed up to a distance ofr?20R . In the Hertzsprung—Russell diagram all the WR stars lie on the left side from the main sequence between the main sequence and the sequence of uniform helium stars (see Figure 9). Their locations are close to those of the helium remnants formed as a result of mass exchange in massive close binary systems. The period variations in the systems V 444 Cyg and CQ Cep have been discovered and a reliable value of the mass loss rateM=10?5 M yr?1 is obtained, for the two WR stars. The results of the photometric and spectroscopic investigations of the WR stars with low mass companions (post X-ray binary stage?) are presented too (see Table II). The masses of the companions are (1–2)M , their optical luminosity is ~1036, erg s?1 which implies that these companions cannot be the normal stars. It is possible that these companions are neutron stars accreting from the stellar wind of the WR stars. Low values of the X-ray luminosities of such WR stars with low mass companions imply that the accretion of matter in such systems is distinct from the accretion process in classical X-ray binary systems. It is noted also that the parameters of low massive companions coupled with WR stars are close to those of helium stars.  相似文献   

9.
Analysis of recent observations of the elliptical galaxies NGC 4472 and NGC 4649 with the Chandra X-ray space telescope has revealed faint soft X-ray sources at their centers. The sources are located at the galactic centers, to within 1″, and are most likely associated with the radiation from the supermassive black holes that are assumed to be at the optical centers of these galaxies. Interest in these and several other similar objects stems from the unusually low luminosity of the supermassive black hole embedded in a dense interstellar medium. The sources have soft energy spectra in the Chandra energy range 0.2–10 keV. The source is detected at a 3σ confidence level only in the range 0.2–0.6 keV with a luminosity of ~6×1037 erg s?1 in NGC 4649 and in the range 0.2–2.5 keV with a luminosity of ~ 1.7×1038 erg ?1 in NGC 4472.  相似文献   

10.
The existence or otherwise of X-ray luminous star-forming galaxies has been an open question since the era of the Einstein satellite. Various authors have claimed the discovery of X-ray luminous star-forming galaxies but in many cases more careful spectroscopic studies of these objects have shown that many of them are in fact obscured AGN. In order to investigate the possibility that such a class of galaxies do exist, we have carried out a cross-correlation between optical and IRAS samples of galaxies which are known to contain large numbers of star-forming galaxies and catalogues of sources detected in X-ray surveys. The selection criteria for the optical follow-up observations was based on their X-ray and infrared (IRAS) colours and their X-ray luminosities. We note that this sample is by no means complete or uniformly selected and hence cannot be used for statistical studies; nevertheless, confirmation of the existence of such a class of objects would be an important step and would require us to understand the physical process responsible for such powerful X-ray emission. We have initiated an optical spectroscopic survey in order to obtain accurate spectroscopic classifications for all the objects which are claimed to be starburst galaxies. Here we present preliminary results from this survey. We have discovered a number of starburst galaxies with X-ray luminosities above ~ 1041 erg s-1 (for H 0=50 km s-1 Mpc-1).We investigate possible origins for the X-ray emission in individual cases.  相似文献   

11.
The question of which progenitor channel can reproduce the observed rate of Type Ia supernovae (SNe Ia) remains unresolved, the two leading models being the so-called single and double degenerate scenarios. The former implies a large population of accreting, nuclear-burning white dwarfs with photospheric temperatures T~105–106 K during some part of their accretion history. Recently, we demonstrated that a population of accreting white dwarfs large enough to reproduce the observed SN Ia rate would contribute significantly to the ionizing radiation expected from the stellar population in early-type galaxies, now commonly observed to host spatially extended regions of neutral and ionized gas. From our photoionization calculations, we show that one can constrain the contribution of the single degenerate channel to the SN Ia rate in early-type galaxies from upper limits on the luminosity of a number of emission lines characteristic of ionization by high-temperature sources. Detection (or strong upper limits on) He II 1640 Å and [C II] 1335 Å, expected to be overluminous in these galaxies if the single-degenerate channel holds true, can strongly constrain the total luminosity of nuclear-burning white dwarfs in these populations. In the near-UV, our photoionization calculations demonstrate that the EW of the [O II] 3727 doublet and the [Ne III] 3869/[O II] 3727 ratio can also provide a powerful diagnostic, particularly in post-starburst galaxies. Together with the He II 3203 Å (5 → 3) recombination line, these lines present an excellent opportunity for strongly constraining the population of accreting, nuclear-burning white dwarfs, and in general the available ionizing continuum, at relatively short delay-times (time from initial starburst).  相似文献   

12.
We analyze the observations of the transient X-ray pulsar 4U 0115+63 with the RXTE and INTEGRAL observatories in a wide X-ray (3–100 keV) energy band during its intense outbursts in 1999 and 2004. The energy of the fundamental harmonic of the cyclotron resonance absorption line near the maximum of the X-ray flux from the source (luminosity range 5 × 1037–2 × 1038 erg s?1) is ~11 keV. When the pulsar luminosity falls below ~5 × 1037 erg s?1, the energy of the fundamental harmonic is displaced sharply toward the high energies, up to ~16 keV. Under the assumption of a dipole magnetic field configuration, this change in cyclotron harmonic energy corresponds to a decrease in the height of the emitting region by ~2 km, while other spectral parameters, in particular, the cutoff energy, remain essentially constant. At a luminosity ~7 × 1037 erg s?1, four almost equidistant cyclotron line harmonics are recorded in the spectrum. This suggests that either the region where the emission originates is compact or the emergent spectrum from different (in height) segments of the accretion column is uniform. We have found significant pulse profile variations with energy, luminosity, and time. In particular, we show that the profile variations from pulse to pulse are not reduced to a simple modulation of the accretion rate specified by external conditions.  相似文献   

13.
We analyze Chandra observatory images of the field of the X-ray burster KS 1731-260. A factor of 10 to 15 improvement in the localization accuracy (up to ~0.6″) has allowed a possible candidate for counterparts of KS 1731-260 to be determined from infrared sky images (Barret et al. 1998). The possible counterpart (the sky position difference is ~1.46″, i.e., less than 2σ) is a 16th magnitude star in the J band. If this star is actually an infrared counterpart of KS 1731-260, then we can estimate its luminosity and the lower limit on the counterpart total luminosity, L>L J,H ~10L . The sharp decline in the X-ray flux from KS 1731-260 in 2001 offers an additional test of whether the proposed candidate is actually a counterpart of KS 1731-260. If the optical and infrared luminosities of this counterpart are largely attributable to reradiation of the X-ray flux from the neutron star, as is the case in low-mass X-ray binaries, then the brightness of the counterpart star must decrease sharply in 2001, after the X-ray source is turned off.  相似文献   

14.
The expected x-ray luminosity of megamaser OH galaxies lies between 22.5 and 24.5 erg s-1 Hz-1, with an average of 23.6 erg s-1 Hz-1. This range of luminosities is typical of galaxies with active nuclei and galaxies with active star formation. X-ray heating ( X 10-22-10-18 erg s-1) and collisional pumping may be responsible for the maser emission in megamaser galaxies.  相似文献   

15.
Based on data from the Two-Micrometer All-Sky Survey (2MASS), we analyzed the infrared properties of 451 Local-Volume galaxies at distances D ≤ 10 Mpc. We determined the K-band luminosity function of the galaxies in the range of absolute magnitudes from ?25m to ?11m. The local luminosity density within 8 Mpc is 6.8 × 108L Mpc?3, a factor of 1.5 ± 0.1 higher than the global mean K-band luminosity density. We determined the ratios of the virial mass to the K-band luminosity for nearby groups and clusters of galaxies. In the luminosity range from 5 × 1010 to 2 × 1013L, the dependence log(M/LK) ∝ (0.27 ± 0.03) log LK with a dispersion of ~0.1 comparable to the measurement errors of the masses and luminosities of the systems of galaxies holds for the groups and clusters of galaxies. The ensemble-averaged ratio, 〈M/LK〉 ? (20–25) M/L, was found to be much smaller than the expected global ratio, (80–90)M/L, in the standard model with Ωm = 0.27. This discrepancy can be eliminated if the bulk of the dark matter in the Universe is not associated with galaxies and their systems.  相似文献   

16.
Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 6 (SDSS DR6), we have explored the difference of the environmental dependence of u-, g-, r-, i-, and z-band luminosities between galaxies above and below the value of M r*. It turns out that in the luminous volume-limited sample, all the five band luminosities strongly correlate with local environments. Because the u-band luminosity of galaxies still strongly depends on local environments in the faint volumelimited sample, we conclude that M r* is not an important characteristic parameter for the environmental dependence of the u-band luminosity. It is worth noting that for the u-band, the subsample at low density has a higher proportion of luminous galaxies and a lower proportion of faint galaxies than the one at high density, which is opposite to widely accepted conclusion: luminous galaxies exist preferentially in the densest regions of the universe, but faint galaxies are located preferentially in low density regions. Our results show that the environmental dependence of luminosity is not a single trend in different luminosity regions and for different bands.  相似文献   

17.
A number of white dwarf models have been calculated which correspond to various radial and nonradial modes of vibration with eigenfrequencies in agreement with the observed pulsation frequencies of the X-ray sources Hercules X-1 and Centaurus X-3. Most of the white dwarf models have hot interiors, but for calculational purposes these were simplified so that the bulk of the interior was isothermal, and the surface layers were designed to produce an energy generation rate of 1037 erg s?1 and to transport this energy continuously to the surface by radiative transfer. Cold white dwarfs have a fairly large spread of masses corresponding to the different overtone modes with the given eigenfrequencies, but in the hot models this spread of masses is greatly reduced, for both radial and nonradial modes. It is concluded that if the pulsating X-ray sources are hot white dwarfs, the mass of Cen X-3 probably lies in the range 0.7–1.2M , and the mass of Her X-1 probably lies in the range 1.1–1.25M (in accord with observation).  相似文献   

18.
Here we present the results of panoramic and long-slit observations of eight ULX nebular counterparts performed with the 6m SAO telescope. In two ULX nebulae (ULXNe) we detected for the first time signatures of high excitation ([O III]λ5007 / Hβ > 5). Two of the ULXs were identified with young (T ~ 5–10 Myr) massive star clusters. Four of the eight ULXNe show bright high-excitation lines. This requires existence of luminous (~ 1038 ÷ 1040 erg s?1) UV/EUV sources coinciding with the X-ray sources. The other 4 ULXNe require shock excitation of the gas with shock velocities of 20–100 km s ?1. However, all the studied ULXNe spectra show signatures of shock excitation, but even those ULXNe where the shocks are prevailing show presence of a hard ionizing source with a luminosity of at least ~ 1038 erg s?1. Most likely shock waves, X-ray and EUV ionization act simultaneously in all the ULXNe, but they may be roughly separated in two groups: shock-dominated and photoionization-dominated ULXNe. The ULXs have to produce strong winds and/or jets (~ 1039 erg s?1) for powering their nebulae. Both the wind/jet activity and the existence of a bright UV source are consistent with the suggestion that ULXs are high-mass X-ray binaries with supercritical accretion disks of the SS433 type.  相似文献   

19.
Having analyzed the 1999 scanning observations of the Galactic-center region with the PCA spectrometer onboard the RXTE observatory, we obtained upper limits on the flux from the microlensing black hole OGLE-1999-BUL-32 in 1999–2000. We show that the X-ray luminosity of this black hole did not exceed L x ? 3 × 1033(d/1kpc)2 erg s?1. Near the maximum amplification of the background star (on June 6, 1999), the upper limit was L x ? 7 × 1033(d/1kpc)2 erg s?1.  相似文献   

20.
We study the relation between high-mass X-ray binary (HMXB) population and recent star formation history (SFH) for the Small Magellanic Cloud (SMC). Using archival optical SMC observations, we have approximated the color-magnitude diagrams of the stellar population by model stellar populations and, in this way, reconstructed the spatially resolved SFH of the galaxy over the past 100 Myr. We analyze the errors and stability of this method for determining the recent SFH and show that uncertainties in the models of massive stars at late evolutionary stages are the main factor that limits its accuracy. By combining the SFH with the spatial distribution of HMXBs obtained from XMM-Newton observations, we have derived the dependence of the HMXB number on the time elapsed since the star formation event. The number of young systems with ages ? 10 Myr is shown to be smaller than the prediction based on the type-II supernova rate. The HMXB number reaches its maximum ~20–50 Myr after the star formation event. This may be attributable, at least partly, to a low luminosity threshold in the population of X-ray sources studied, L min ~ 1034 erg s?1. Be/X systems make a dominant contribution to this population, while the contribution from HMXBs with black holes is relatively small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号