首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Coexisting Ca-poor and Ca-rich pyroxenes in granulites at Cape Riche, in the Precambrian Albany-Fraser Province, Western Australia, are dominantly chemically homogeneous within individual samples, suggesting a major episode of equilibration. However, occasional grains in a few samples contain exsolved domains interpreted as relics of an earlier, higher-T assemblage. Pyroxene pairs in ten, presumably isothermal, samples from a restricted area are used to (i) assess the suitability of several versions of the two-pyroxene thermometer for application to metamorphic rocks, and (ii) determine the thermal history of the Cape Riche pyroxenes. The various versions of the two-pyroxene thermometer applied to the well-equilibrated homogeneous pyroxene grains show poor to good precision and yield mean temperatures varying widely from 683° to 893°C, in the following order of increasing T: Lindsley (1983; opx version), 683°± 11°C; Kretz (1982; KD version), 705°± 19°C; Ross & Huebner (1975), 709°± 30°C; Kretz (1982; solvus version), 735°± 24°C; Fonarev & Graphchikov (1982; opx version), <750°C; Lindsley (1983; cpx version), 784°± 40°C; Fonarev & Graphchikov (1982; cpx version), ~820°± 30°C; Wood & Banno (1973), 849°± 16°C; Powell (1978), 854°± 23°C; Wells (1977), 893°± 10°C. Independent T estimates, based on mafic assemblages and garnet-biotite thermometry, suggest that the major episode of metamorphism occurred at 700-800°C (P ~ 5 kbar). Therefore the Wells, Powell, Wood & Banno and Fonarev & Graphchikov (cpx) temperatures are almost certainly too high. In the absence of a more precise independent T estimate it is difficult to assess the relative merits of the results obtained from the remaining versions of the two-pyroxene thermometer, none of which can be unequivocally demonstrated to be seriously in error, though the Lindsley (opx) T is probably too low. Other significant shortcomings evident in the results include the relatively poor precision obtained from the three methods based on purely graphical representation of the augite limb of the solvus (i.e., the Ross & Huebner, Fonarev & Graphchikov (cpx) and Lindsley (cpx) versions), and the apparent dependence of derived T on Mg/Fe2+ ratio for the Powell, Wood & Banno and Lindsley (cpx) methods. For the bulk compositions of exsolved domains, the different versions of the two-pyroxene thermometer yield mean temperatures 23° to 82°C (overall mean, 65°C) higher than for homogeneous grains in the same samples. These exsolved domains are interpreted as relics of a higher-T (peak?) metamorphic assemblage, rather than an igneous precursor.  相似文献   

2.
We apply Fourier and wavelet analyses to the precipitation and sunspot numbers in the time series (1901–2000) over Australia (27°S, 133°E), Canada (60°N, 95°W), Ethiopia (8°N, 38°E), Greenland (72°N, 40°W), United Kingdom (54°N, 2°W), India (20°N, 77°E), Iceland (65°N, 18°W), Japan (36°N, 138°E), United States (38°N, 97°W), South Africa (29°S, 24°E) and Russia (60°N, 100°E). Correlation analyses were also performed to find any relation among precipitation, sunspot numbers, temperature, and cloud-cover at the same spatial and temporal scale. Further correlations were also performed between precipitation with electron and proton fluence at the time interval, 1987–2006. All these parameters were considered in annual and seasonal scales. Though correlation study between precipitation and other parameters do not hint any linear relation, still the Fourier and wavelet analyses give an idea of common periodicities. The 9–11 year periodicity of sunspot numbers calculated by Fourier transform is also confirmed by wavelet transform in annual scale. Similarly, wavelet analysis for precipitation also supports the short periods at 2–5 years which is verified by Fourier transform in discontinuous time over different geographic regions.  相似文献   

3.
青藏高原南部第四纪花粉植物群及古气候   总被引:3,自引:0,他引:3  
本文选择了青藏高原南部具有代表性的6个花粉剖面,应用主成分分析处理这些剖面的花粉数据,重建了这些地区的古植被和古气候。研究表明,在青藏高原南部,早、中更新世的植被类型主要是松林、云杉林、铁杉林、桦林、桤木林和栎林,晚更新世和全新世的植被类型主要是高山灌丛草原、小半灌木草原、杂类草草甸、亚高山灌丛和落叶阔叶灌丛;在早、中更新世气候条件良好,有森林生长,晚更新世以后气候明显恶化,基本无森林生长。  相似文献   

4.
The petro- and paleomagnetic studies of ultramafic rocks (dunites, clinopyroxenites, kosvites) from the Konder Massif revealed the primary thermal remanance nature of the defined characteristic magnetization components. The calculated coordinates of the paleomagnetic poles are as follows: Plat = −4°, Plong = 178°, dp = 5°, and dm = 8° for the dunites; Plat = −2°, Plong = 181°, dp= 6°, and dm = 10° for the clinopyroxenites; and Plat = 71°, Plong = 206°, dp = 5°, and dm = 6° for the kosvites. Based on paleomagnetic and petromagnetic data, the age is estimated to be the Early Neoproterozoic for the dunites and clinopyroxenites and the Early Cretaceous for the kosvites. The massif as a whole is dated back to the Early Neoproterozoic (1000–950 Ma).  相似文献   

5.
New pole positions for Triassic and Cretaceous times have been obtained from volcanic and sedimentary sequences in Central Iran. These new results confirm the general trend of the Apparent Polar Wander Path (APWP) of the Central-East-Iran microplate (CEIM) from the Triassic through the Tertiary as published by Soffel and Förster (1983, 1984). Two new palaeopoles for the Triassic of the CEIM have been obtained; limestones and tuffs from the Nakhlak region yield a mean direction of 094.0°/25.0°, N=12, k=4.1,α 95=24.7°, after bedding correction, corresponding to a palaeopole position of 310.8°E; 3.9°S, and volcanic rocks from the Sirjan regions yield a mean direction of 114.5°/35.1°, N=44, k=45.9,α 95=3.2° after bedding correction and a palaeopole position of 295.8°E; 10.3°N. Combining these with the two previously published results yields a new palaeopole position of 317.5°E; 12.7°N, for the Triassic of the CEIM, thus confirming that large counterclockwise rotations of the CEIM have occurred since the Triassic time. New results have also been obtained from Cretaceous limestones from the Saghand region of the CEIM. The mean direction of 340.7°/26.3°, N=33, k=44.3,α 95=3.8°, and the corresponding palaeopole position of 283.1°E; 64.4°N, is in agreement with previously determined Cretaceous palaeopole positions of the CEIM. Furthermore, results have also been obtained from Triassic dolomite, limestone, sandstone and siltstone from the Natanz region, which is located to the west of the CEIM. A total of 161 specimens from 44 cores taken at five sites gave a mean direction of the five sites at 033.3°/25.1°, N=5, k=69.0,α 95=9.3° and a palaeopole position of 167.2°E; 53.7°N. They pass the positive fold test of McElhinny (1964) on the level of 99% confidence. This pole position is in fairly good agreement with the mean Triassic pole position of the Turan Plate (149°E; 49°N). It indicates that the area of Natanz has not undergone the large counterclockwise rotation relative to the Turan plate since the Triassic, which has been shown for the CEIM. A Triassic palaeogeographic reconstruction of Iran, Arabia (Gondwana) and the Turan Plate (Eurasia) is also presented.  相似文献   

6.
The apparent polar wander (APW) path from the Tarim block consists of palaeo-magnetic poles ofDevonian (λ=16°N, ψ= 165° E. A_(95)=4°). Late Carboniferous (λ=41° N, ψ=160° E, A_(95)=4°).Permian (λ=61°N, ψ=177° E. A_(95)=9°). Early Triassic (λ=69° N. ψ=183° E. A_(95)=11°) andJurassic/Cretaceous (λ=65° N, ψ=214° E. A_(95)=6°) times. On the basis of this APW path, it is con-cluded that the Tarim block was subducted beneath the Kazakstan plate between Devonian and Permiantimes. The Tarim, North China and South China blocks were sutured between the Early Triassic and EarlyCretaceous. Tarim had moved eastward some 2000 km relative to Siberia since the Cretaceous.  相似文献   

7.
Sixty-three internally consistent geothermobarometers for mineral equilibria involving sapphirine (2:2:1 and 7:9:3), pyrope, cordierite, enstatite, Mg-tschermak orthopyroxene, quartz, spinel and sillimanite have been calibrated in the MAS system. The updated thermodynamic data of these minerals are consistent, within limits of error, with highP-T experiments on several mineral equilibria and calorimetric data. TheP-T conditions of the granulite facies metamorphism, spanning a range of 700 to more than 1000°C and 4 to more than 10 kbar, can be estimated simultaneously from these geothermobarometers andP-T-t trajectories can be deduced from the reaction coronas well preserved in these rocks because of the refractory nature of aluminous phases. The geothermobarometers have been applied to sapphirine-spinel granulites of Eastern Ghats and Enderby Land. TheP-T conditions of metamorphism (a-prograde/thermal peak and b-retrograde isothermal/isobaric decompression/cooling) estimated for these granulites are: (1) Eastern Ghats (Visakhapatnam): Paderu- (a) 900°C/8.3kbar, (b-1) 900°C/6.8kbar and (b-2) 740°C/5.4 kbar; Anantgiri- (a) prograde anticlockwise 930°C/6.2 kbar and (b) 870°C/6.8 kbar, 820°C/6.1 kbar; Anakapalle- (b) 845°C/8.5-6.2 kbar; and Araku- (b) 840°C/6.2 kbar to 795°C/5.9 kbar. Enderby Land (Napier complex): Spot height 945, Tula Mts.- (a) 970°C/9.1 ± 0.6 kbar, isobaric cooling (b) 885°C/ 7.75 kbar, isothermal decompression (b) 880°C/6.85 kbar; Mt. Hardy, Tula Mts.- (b) 885°C/6.75 kbar; Mt. Riiser-Larsen, Amundsen bay- (a) 1000°C/7.0 kbar prograde anticlockwise; Mt. Sones- (b) 920°C/ 6.8 kbar; Forefinger Point, SW Enderby Land- (b) 840°C/6.7 kbar, 810°C/6.5 kbar and 775°C/5.0 kbar. The estimatedP-T andP-T-t are mostly consistent with those inferred from the granulites of these areas.  相似文献   

8.
《International Geology Review》2012,54(11):1363-1381
ABSTRACT

The mechanism of deformation associated with the Cenozoic collision of India with Asia along the eastern boundary remains a poorly understood aspect of the tectonic evolution of the southwestern South China Block (SCB). Consequently, we carried out a palaeomagnetic investigation of Palaeogene red beds of the Dayao area of Yunnan Province in order to contribute to understanding the Palaeogene evolution of the SCB. A characteristic higher temperature magnetic component (HTC), with an unblocking temperature from 660°C to 680°C, was determined by principal component analysis (PCA), and positive fold tests indicated that the remanence was a primary magnetization. The mean direction of the HTC from the Dayao area is Ds = 27.8° Is = 33.1° κ = 64.8, α95 = 4.3° after tilt correction. Compared with other palaeomagnetic results from the SCB, our data suggest that the central part of the Chuan–Dian Fragment (CDF) experienced approximately 16.3 ± 4.7° clockwise rotation with respect to East Asia. Rotation of the CDF occurred along the left-lateral Xianshuihe–Xiaojiang Fault Systems (XSF-XJF), which exhibit an arc-shaped curve centred on the Eastern Himalayan Syntaxis. The XSF-XJF was approximated by a circle centred on a Euler pole at Lat. = 26.5° N, Lon. = 97.2° E (α95 = 0.2°), based on 11 reference points selected from the fault system. The clockwise rotation of the CDF resulted in left-lateral shearing along the XSF-XJF system, with a left-lateral displacement of ~200 km. The nature of diverse intense local deformation along the Xianshuihe-Xiaojiang left-lateral strike-slip fault systems is also discussed.  相似文献   

9.
A paleomagnetic study was carried out on late Jurassic sediments in the Nanjing area. Stepwise thermal demagnetization was used to isolate the characteristic higher temperature component (HTC)(D=354.0°,I=48.5°,a95=7.8°),which passes the reversal test.A 24.7±8.7°counter-clockwise rotation relative to the Sichuan area is detected through comparing this new pole(84.4°N,7.0°E, A95=7.7°)with other coeval poles reported from South China.This rotation was conducted by sinistral action of slip faults.These cases...  相似文献   

10.
NighttimeF-region temperatures have been obtained over Mount Abu (24·6°N, 72·7°E geographic, 15·0° geomagnetic latitude) by monitoring OI 6300 Å line widths, using Fabry-Perot spectrometer. Enhancement in neutral temperatures associated with spread-F activity over Thumba (8·5°N, 76·8°E geographic, 0·6°S geomagnetic), which is on the magnetic equator were reported earlier. Additional data over Mt Abu for seven days bring out the following major features. (i) In theF-region over Mt Abu, the neutral temperature enhancements upto 200°K are observed on most of the nights when there is spread-F activity over the magnetic equator. (ii) There are no occasions which show temperature enhancements over Mt Abu without spread-F activity over the equator. On such occasions the observed atmospheric temperatures agree very well with those calculated on the basis of the Jachhia atmospheric model, both for magnetically quiet as well as disturbed days. (iii) There is a good indication that the increase inF-region temperature over Mt Abu is delayed with respect to the onset of spread-F over Thumba by approximately 15–30 min.  相似文献   

11.
The objective of this study was to investigate the effects of diurnal temperature fluctuation amplitude (DTFA) on the geothermal regime of the embankment on the Qinghai–Tibet plateau. The investigation was simulated by respectively denoting the diurnal temperatures at the embankment surface, embankment slope, and natural ground surface with sinusoidal waves. The amplitudes of the waves were denoted by 0°C, 5°C, 8°C, and 12°C, respectively. The numerical result shows that the DTFA cannot vary the frequency of the seasonal temperature fluctuation of the underlying soil, but can significantly change the magnitude of the soil’s temperature. The changes include: (1) The high DTFA, such as 12°C, can significantly lead to the warming of the soil under the embankment. (2) Interestingly, when the DTFA at ground surface is 5°C, the underlying soil is in a cooler stage compared to when such DTFA is 0°C, 8°C, or12°C. This interesting result means that the documented model which ignores the diurnal temperature rhythm overestimates the warming of the underlying soil at the low DTFA region and underestimates such warming at the high DTFA region. This result also suggests that the soil under the embankment can be cooled down if the DTFA on the ground surface was maintained at or approximately at 5°C.  相似文献   

12.
Malangtoli volcanics of the Singhbhum craton of the eastern Indian shield is one of the important Proterozoic lava suites. Experimental studies on 1 atmosphere pressure constrain the parental magma type and temperature range of crystallization of the parent magma (deduced to be in the range of 1500°C to 1200°C). The experimental studies show that at 1500°C, plagioclase is the first phase to crystallize, followed by few opaques which join along with plagioclase at 1450°C. At subsequent lower temperature (1400°C-1300°C), plagioclase and opaque continue to crystallize. At 1250°C plagioclase and opaque still persist while pyroxene appears first and liquid (glass) still remains. Appearance of opaque minerals (magnetite and illmenite) at both ~1400°C and ~1300°C indicate oscillation of oxygen fugacity in the parent magma, petrographically documented by coarser phenocrysts as well as finer or peripheral tiny grains. Use of tectonic discrimination diagrams (based on discrimination factors F1-F2 and FeOt/MgO vs. TiO2) shows an island arc tholeiitic affinity for Malangtoli volcanic, suggests that the role of proto-plate convergence in Singhbhum architecture played an important role to build up Malangtoli volcanics during Proterozoic.  相似文献   

13.
During 23–30 September 1997, a rare cyclonic storm has developed close to the Andhra coast, and it has later travelled parallel to coastline northward and finally crossed the land at Chittagong (22°N, 91°E) on 27 September. While translating along the east coast of India, it has produced heavy to very heavy rainfall on the coastal stations causing devastating floods. In this study, we made an attempt to understand the salient causes of this unique cyclone movement. We have analyzed daily fields of wind and relative humidity for 850, 700, 500 hPa and mean daily OLR data to understand the plausible reasons for its movement. The buoy data deployed by National Institute of Ocean Technology, Chennai, Viz. DS5 (15°N, 81°E), DS4 (19°N, 88°E) and SW7 (20°N, 86°E) were analyzed to understand the ocean–atmosphere interaction processes in the west Bay of Bengal during formation of the system. Analysis of OLR over the cyclonic storm region has revealed that the heavy rainfall areas coincide with low OLR (120–180 W m?2). The persistent southward movement of 500 hPa ridge on the eastern wedge of the system along with the steering current at 200 hPa has helped in maintaining the movement of the system parallel to the east coast of India during its life cycle.  相似文献   

14.
Wyomingite collected from Leucite Hills is composed mainly of leucite, diopside, phlogopite, and small amounts of apatite, calcite, magnetite and rare amphibole, and is characterized by very high content of potash. Thermal experiments at atmospheric pressure indicate that the liquidus phase is always diopside with liquidus temperature of 1320 °C, and solidus temperature is about 1000 °C. Various kinds of melt inclusions are abundant in all constituent minerals. They comprise mono-phase (glass only), two-phase (gas+glass), three-phase (gas+glass+one crystalline phase) and multi-phase (gas+glass+more than two crystalline phases) inclusions. Thermal experiments have been made on these inclusions in phlogopite, diopside, and leucite in order to estimate the temperature of crystallization by homogenizing these inclusions. The results show that the crystallization of wyomingite began with formation of phlogopite accompanied by diopside at 1270 °C. Although diopside ceased crystallization at 1220 °C recurrent crystallization of phlogopite was noticed between 1120 ° and 1040 °C. Leucite crystallized out abundantly between 1250 ° and 1150 °C. Complete solidification of wyomingite occurred at about 1000 °C.  相似文献   

15.
Paleomagnetic investigations have been carried out on poorly determined radiometric age controls of Bhander sandstones within the vicinity of Bhopal Inlier of the Upper Vindhyan Supergroup. Available ages assigned to the Upper Vindhyan sequence range from Cambrian to the Mesoproterozoic and are derived from a variety of sources and methods. Paleomagnetic data generated from the Bhander Group of Bhopal Inlier yielded a mean declination of 357° and mean inclination of 58° (k=17.69, α95 = 16.38) with a Virtual Geomagnetic Pole (VGP) at 74° N, 69.0° E. This pole position is falling close to the Malani Igneous Suite (MIS) mean palaeomagnetic pole of 67.8° N and 72.5° E (A95=8.8°) by Gregory et al. (2009). The results obtained from this study and previous work on the 1073 Ma Majhgawan kimberlite, as well as detrital zircon geochronology of the Upper Bhander sandstone suggest that the Upper Vindhyan sequence may be older than is commonly thought earlier.  相似文献   

16.
A great volume of original information on the formation of the ultrabasic rocks of the Siberian Platform has been accumulated owing to the study of melt inclusions in Cr-spinels. The inclusions show the general tendencies in the behavior of the magmatic systems during the formation of the ultrabasic massifs of the Siberian Platform, tracing the main evolution trend of decreasing Mg number with SiO2 increase in the melts with subsequent transition from picrites through picrobasalts to basalts. The compositions of the melt inclusions indicate that the crystallization conditions of the rocks of the concentrically zoned massifs (Konder, Inagli, Chad) sharply differ from those of the Guli massif. Numerical modeling using the PETROLOG and PLUTON softwares and data on the composition of inclusions in Cr-spinels yielded maximum crystallization temperatures of the olivines from the dunites of the Konder (1545–1430°C), Inagli (1530–1430°C), Chad (1460–1420°C), and Guli (1520–1420°C) massifs, and those of Cr-spinels from the Konder (1420–1380°C), Inagli (up to 1430°C), Chad (1430–1330°C), and Guli (1410–1370°C) massifs. Modeling of the Guli massif with the PLUTON software using the compositions of the melt inclusions revealed the possible formation of the alkaline rocks at the final reverse stage of the evolution of the picritic magmas (with decrease of SiO2 and alkali accumulation) after termination of olivine crystallization with temperature decrease from 1240–1230°C to 1200–1090°C. Modeling with the PLUTON software showed that the dunites of the Guli massif coexisted with Fe-rich (with moderate TiO2 contents) melts, the crystallization of which led (beginning from 1210°C) to the formation of pyroxenes between cumulate olivine. Further temperature decrease (from 1125°C) with decreasing FeO and TiO2 contents provided the formation of clinopyroxenes of pyroxenites. For the Konder massif, modeling with the PLUTON software indicates the possible formation of kosvites from picrobasaltic magmas beginning from 1350°C and the formation of clinopyroxenites and olivine–diopside rocks from olivine basaltic melts from 1250°C.  相似文献   

17.
The Beypazar? granitoid has been studied with respect to multi-radiometric dating and oxygen isotopic geothermometry. Radiometric dating of the granitoid yields zircon U-Pb isochron ages ranging from 72.5 ± 12.6 to 78.6 ± 4.7, and K-Ar ages of 71.4 ± 2.8 to 74.9 ± 2.9 and 59.5 ± 2.2 to 75.4 ± 2.9 Ma for hornblende and biotite, respectively. Oxygen isotope thermometry for the granitoid gives temperatures of 550 ± 25°C to 605 ± 30, 390 ± 15 to 540 ± 25°C, and 481 ± 5 to 675 ± 10°C, for hornblende, biotite, and K-feldspar, respectively, when paired with quartz. The systematic differences among ages according to different techniques used on different minerals are used to reconstruct the cooling history of the granite. The results yield rapid cooling rates of 33.3°C/Ma from 800°C to 550°C, and slow cooling rates of about 15 ± 0.5°C/Ma from 550 to 300°C. Rapid subsolidus cooling between 600°C and 550°C is documented by 40Ar/39Ar ages on amphibole and biotite between 71.4 ± 2.8 and 75.4 ± 2.9 Ma. Younger ages on biotites from two samples (59.5 ± 2.2 and 64.4 ± 2.5) are probably caused by loss of Ar. The reason for this possible Ar loss can be interpreted as slower subsolidus cooling (~375°C) ages. There is an apparent spatial and temporal relationship between the intrusion-cooling of the Beypazar? granitoid and the evolution of the ?zmir–Ankara–Erzincan ocean belonging to the northern Neo-Tethyan ocean domain.  相似文献   

18.
Day of hatch tidewater silversides, Menidia peninsulae, were stocked at 5 fish per liter in 3 1 of seawater at 30‰ and raised for 16 days at 20°, 25° and 30 °C. Food organisms (Brachionus sp. or Artemia nauplii) were maintained at 500, 1,000, 5,000 or 10,000 organisms per 1. The influence of food density on growth of larval M. peninsulae was temperature dependent. At 20 °C, there was no difference in final size of fish based on food densities. But at 25° and 30 °C there was an increase in final body size as food density increased. There were no significant differences in survival among food densities in tests at 20°, 25° or 30 °C. However, for any given temperature and food density, the number of survivors in a replicate affected the final size attained. Optimal culture condition for larval M. peninsulae, considering both survival and growth was determined to be 5,000 food organisms per 1 at 25 °C.  相似文献   

19.
This paper considers results of geodynamic studies using the GPS method in the territory of the Far East. GPS measurements using TRIMBLE-4700 geophones were launched along the Sikhote Alin profile in 2003. The technology of the GPS measurements and the problems of selecting the measurement sites and network configuration with reference to the region’s structure are discussed. The results of GPS measurements in 2003–2006 were used to study the fault system of the Far East continental margin. Different models of the Eurasia rotation (from the known NNR-NUVEL-1A to the recent ones) were analyzed. The solid-body rotation of Eurasia was predicted in the framework of the AR-IR-2006 model with a pole located at 51.045°N latitude, 255.842° longitude and rotating at a rate of 0.2423°/Ma. The parameters of the Amur plate rotation were preliminarily estimated (57.6° ± 0.5°N, 117.1 ± 0.5°E, and 0.083° ± 0.004°/m.y) using results on the Sikhote Alin and Transbaikalian network.  相似文献   

20.
A tomographic travel-time inversion has been applied to trace the subducted slab of the South China Sea (SCS) beneath the Manila Trench. The dataset, taken from the International Seismological Centre (1960–2008), is composed of 13,087 P-wave arrival times from 1401 regional earthquakes and 8834 from 1350 teleseismic events. The results image the different morphology of the subducted SCS slab as a high-velocity zone. The subducting angle of the slab varies along the trench: at 16° N and 16.5° N, the slab dips at a low angle (24° ~ 32°) for 20–250 km depth and at a moderate angle (50°) for ~250–400 km depth. At 17° N, the slab dips at a low angle (32°) to near 400 km depth, and at 17.5° N and 18° N the slabs are near vertical from 70 ~ 700 km depth, while at 20° N the high-velocity anomalies exhibit features from horizontal abruptly to near vertical, extending to 500 km depth. The dramatic steepening of the slab between 17° N and 17.5° N may indicate a slab tear, which is coincident with the axis of a fossil ridge within the SCS slab at around 17° N. In addition, low-velocity zones in the three profiles above 300 km depth may represent the formation of the slab window, induced by ridge subduction and slab tear, initiating upward mantle flow and resulting in the partial melting of the edge of the slab. The slab tear could explain the volcanic gap and geochemical difference between the extinct Miocene and Quaternary volcanoes in the Luzon Arc, the much higher heat flow around the fossil ridge, and the distribution of most of the adakites and the related porphyry Cu-Au deposits in the Luzon area. Based on the geometry and morphology of the subducted slab and certain assumptions, we calculate the initial time of ridge subduction, which implies that ridge subduction and slab tear possibly started at ~8 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号