首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The maximum-entropy approach is used to calculate the Chandrasekhar'sX- andY-function and their moments. Numerical results are obtained and compared.  相似文献   

2.
We have examined forty-two carbon stars which show excess emission at 60 and/or 100µm by applying maximum-entropy image reconstruction techniques to the IRAS 60µm survey data. Thirteen stars are found to be extended in the reconstructed images. Four of them show a detached ring centered on the stellar position. In particular, U Ant may have a double detached dust shell. The implications of our results are discussed concerning the variation of mass loss on the AGB evolution.  相似文献   

3.
We examine the ability of the future Planck mission to provide a catalogue of galaxy clusters observed via their Sunyaev–Zel'dovich (SZ) distortion in the cosmic microwave background (CMB). For this purpose we produce full-sky SZ maps based on N -body simulations and scaling relations between cluster properties for several cosmological models. We extrapolate the N -body simulations by a mass function to high redshifts in order to obtain a realistic SZ background. The simulated Planck observations include, besides the thermal and kinematic SZ effects, contributions from the primordial CMB, extragalactic point sources as well as Galactic dust, free–free and synchrotron emission. A harmonic-space maximum-entropy method is used to separate the SZ signal from contaminating components in combination with a cluster detection algorithm based on thresholding and flux integration to identify clusters and to obtain their fluxes. We estimate a survey sensitivity limit (depending on the quality of the recovered cluster flux) and provide cluster survey completeness and purity estimates. We find that, given our modelling and detection algorithm, Planck will reliably detect at least several thousands of clusters over the full sky. The exact number depends on the particular cosmological model (up to 10 000 cluster detections in a concordance ΛCDM model with  σ8= 0.9  ). We show that the Galaxy does not significantly affect the cluster detection. Furthermore, the dependence of the thermal SZ power spectrum on the matter variance on scales of  8 h −1  Mpc and the quality of its reconstruction by the employed method are investigated. Our simulations suggest that the Planck cluster sample will not only be useful as a basis for follow-up observations, but also will have the ability to provide constraints on cosmological parameters.  相似文献   

4.
We present two images of intermediate and low axial inclination G dwarfs (AP 149 and AP 193) in the young open cluster α Persei, and compare these with previous images of intermediate and high axial inclination objects in this cluster. All stars show starspots at high latitudes, with one star exhibiting a strong polar spot. Although low-latitude features are found on all stars to some degree, the detection of spots on AP 193 is marginal. The apparent difference in starspot morphology from one object to the next is probably the result of a stellar magnetic cycle, although the exact effect on the starspot distribution throughout a cycle is unknown.
Polar spots are found in many Doppler images of rapidly rotating cool stars. In the past, their existence has been called into question, and it has been suggested that they could be the manifestations of NLTE (e.g. chromospheric filling in of line profiles) effects rather than real photospheric features. We assume the polar spots to be real photospheric features, and conclude that the flat-bottomed nature of the profile shape can be attributed to photospheric polar spots. The degree of truncation of the profile depends not only on spot size and strength, but also on the effective foreshortening of the polar region, a function of axial inclination.
H α is in emission on AP 149 which shows a double peak at most phases. The time-series of the profile shows an s-wave pattern as the position of these peaks changes throughout the rotation cycle. We attribute this to coronal clouds located above the stellar surface in synchronous orbit. A maximum-entropy tomogram is derived revealing four distinct emission regions located near and above the corotation radius.  相似文献   

5.
For radiative transfer in plane-parallel emitting, absorbing, and scattering media, the two-stream approximation, and its various modifications or related methods, is probably mathematically the most simple to use. Unfortunately this physical approximation produces errors that are neither analytically known nor controllable. For externally (Sun) driven problems, many error studies exist for reflectivity, transmissivity, and certain defined albedos. A two-stream accuracy study for internally (thermal) driven problems is presented in this paper by comparison with a recently developed “exact” adding/doubling method. The resulting errors in external (or boundary) radiative intensity and flux are usually larger than those for the externally driven problems and vary substantially with the radiative parameters. Error predictions for a specific problem are difficult. An unexpected result was that the exact method is computationally as fast as the two-stream approximation for nonisothermal media. Although the adding/doubling method is mathematically and conceptually more complex, it may be used as a developed code with no essential sacrifice in computing time.  相似文献   

6.
We present fast algorithms used in IKI and IFSI for the analysis of the Martian spectra measured in the Planetary Fourier Spectrometer (PFS) experiment onboard Mars Express orbiter. The first algorithm is based on a new very general and precise approach applicable to planetary atmospheres with quite arbitrary absorption and scattering properties. The method is aimed at the simulation of high-resolution planetary spectrum in a broad spectral region with computational expenses typical to two-stream algorithms and a precision close to that of time consuming exact methods. The basic idea is to compute first a required quantity with an approximate method and then to evaluate a correction to the first approximation with just a few runs of a precise code in representative spectral channels. The correction is built as a function of the first-approximation quantity itself. The necessary input to the radiative transfer—monochromatic gaseous opacity—was evaluated by means of simple interpolation from pre-computed tables. As far as the algorithm deals with monochromatic quantities, its applications are limited to direct and even inverse problems that require the exact treatment of scattering and the absence of small-scale distortions of the spectrum. The second of the presented algorithms, based on the interpolations of the convolved transmission functions, is designed to be used in inverse problems that need a very fast evaluation of the synthetic spectrum over a broad spectral region. Performances of both methods are considered.  相似文献   

7.
A new exact method for line radiative transfer   总被引:1,自引:0,他引:1  
We present a new method, the coupled escape probability (CEP), for exact calculation of line emission from multi-level systems, solving only algebraic equations for the level populations. The CEP formulation of the classical two-level problem is a set of linear equations , and we uncover an exact analytic expression for the emission from two-level optically thick sources that holds as long as they are in the 'effectively thin' regime. In a comparative study of a number of standard problems, the CEP method outperformed the leading line transfer methods by substantial margins.
The algebraic equations employed by our new method are already incorporated in numerous codes based on the escape probability approximation. All that is required for an exact solution with these existing codes is to augment the expression for the escape probability with simple zone-coupling terms. As an application, we find that standard escape probability calculations generally produce the correct cooling emission by the C  ii 158-μm line but not by the 3P lines of O  i .  相似文献   

8.
This paper examines the relaxation of planetary surface features in the size range from one to several hundred kilometers. For this purpose a new type of computational method is used. This involves the assumption of axial symmetry and supposes also that motion takes place in a vertical direction only. Although this later assumption may seem restrictive, comparison with results computed by other techniques show that it produces relatively exact results. Furthermore, the method may be easily applied to a wide variety of situations in which for example the viscosity is a function of position time, shear-gradient, and even previous history, as well as cases in which inertial terms are important.In this paper the results of applying the method to two particular problems are briefly described — relaxation under a highly depth-dependent viscosity condition, and the relaxation of lunar mascons.  相似文献   

9.
Complex-variable analysis is used to develop an exact solution to Kepler's equation, for both elliptic and hyperbolic orbits. The method is based on basic properties of canonical solutions to appropriately posed Riemann problems, and the final results are expressed in terms of elementary quadratures.  相似文献   

10.
We present a set of maximum-entropy reconstructions of the star-spot distributions on two rapidly rotating G dwarfs in the α Persei cluster, from spectra taken at the William Herschel Telescope on three nights in 1996 October and November. Since these stars are too faint for conventional Doppler imaging, which makes use of only one or a few lines, we take the large number of photospheric metal lines available in an echelle spectrum, and deconvolve them into a single, high signal-to-noise ratio profile. We show that this technique results in a typical multiplex gain of 22.5 in signal-to-noise ratio for a given spectrum, the equivalent of using a single line obtained on a 63-m telescope. The image reconstructions demonstrate that both these stars have cool high-latitude regions or polar crowns, and low-latitude features, in contradiction to the suggestion that only high-latitude spots should be present. Cross-correlation between image reconstructions of He 699, 31 days apart, reveals a lack of correlation between detailed small-scale structures. This places an upper limit for the lifetime of the observed features at less than one month. The Hα profiles are also found to exhibit absorption features indicating the presence of prominence clouds, at or below the corotation radius.  相似文献   

11.
We present maximum-entropy reconstructions of the rapidly rotating dwarf single star BD+22°4409 (LO Peg) from observations at the William Herschel Telescope in 1993 August. Since this star is too faint to use the conventional single- or three-line Doppler imaging methods, we make use of the novel method of least-squares deconvolution, which utilizes the large number of photospheric lines in an echelle spectrum to produce a single high signal-to-noise ratio profile.
The star-spot distributions from the image reconstructions show cool features at both high and low latitudes, in contradiction to recent theoretical predictions of the dynamo behaviour in rapidly rotating stars. Cross-correlation of the images from consecutive nights shows a good correlation from the small-scale structures, but no evidence of surface differential rotation. From the cross-correlation of the high-latitude spot we are able to reject the period of 9.22 h of Jeffries et al. in favour of their preferred period of 10.17 h, confirming the result of Robb & Cardinal.  相似文献   

12.
Starting with a simple Taylor-based expansion of the inverse of the distance between two bodies, we are able to obtain a series expansion of the disturbing function of the three-body problem (planar elliptic case) which is valid for all points of the phase space outside the immediate vicinity of the collision points. In particular, the expansion is valid for very high values of the eccentricity of the perturbed body. Furthermore, in the case of an interior mean-motion resonant configuration, the above-mentioned expression is easily averaged with respect to the synodic period, yielding once again a global expansion of (R) valid for very high eccentricities.Comparisons between these results and the numerically computed exact function are presented for various resonances and values of the eccentricity. Maximum errors are determined in each case and their origin is established. Lastly, we discuss the applicability of the present expansion to practical problems.  相似文献   

13.
To synthesise images of stellar photospheres with high spot filling factors, we model an extrapolated solar size distribution of spots on an immaculate SV Cam. These models of starspot coverage show that the primary star is peppered with a large number of subresolution spots. Using these model starspot distributions we generate a photometric lightcurve, which is then used as input to an maximum-entropy eclipse mapping code, that is based on chi-squared minimisation. I solve for the system parameters to show the effect of dense spot coverage on the derived system parameters, and show that surface brightness distributions reconstructed from these lightcurves have distinctive spots on the primary star at its quadrature points. It is concluded that two-spot modelling or chi-squared minimisation techniques are more susceptible to spurious structures being generated by systematic errors, arising from incorrect assumptions about photospheric surface brightness, than simple Fourier analysis of the light-curves.Marie Curie Intra-European Fellow  相似文献   

14.
Unified analytical solutions to two-body problems with drag   总被引:3,自引:0,他引:3  
The two-body problem with a generalized Stokes drag is discussed. The drag force is proportional to the product of the velocity vector and the inverse square of the distance. The generalization consists of allowing two different proportionality constants for the radial and the transverse components of the force. Under the 'generalized Robertson transformation', the equation of the orbit takes the form of the Lommel equation and admits solutions in terms of Bessel and Lommel functions. The exact, analytical solutions for this type of drag reveal a paradoxical effect of increasing eccentricity for all trajectories. The Poynting–Robertson drag and Poynting–Plummer–Danby problems are discussed as particular cases of the general solution.  相似文献   

15.
The radiative transfer problem in a plane medium with a highly forward-scattering phase function has been solved by Siewertet al. (1980) with reflective boundaries, and by Mengüç and Viskanta (1983) without reflective boundaries. In the present paper a moment method is devised to solve the same problem. The results computed are found to be in good agreement with the exact results.  相似文献   

16.
We present a simple and intuitive approximation for solving the perturbation theory (PT) of small cosmic fluctuations. We consider only the spherically symmetric or monopole contribution to the PT integrals, which yields the exact result for tree-graphs (i.e. at leading order). We find that the non-linear evolution in Lagrangian space is then given by a simple local transformation over the initial conditions, although it is not local in Euler space. This transformation is found to be described by the spherical collapse (SC) dynamics, as it is the exact solution in the shearless (and therefore local) approximation in Lagrangian space. Taking advantage of this property, it is straightforward to derive the one-point cumulants, ξJ, for both the unsmoothed and smoothed density fields to arbitrary order in the perturbative regime. To leading-order this reproduces, and provides us with a simple explanation for, the exact results obtained by Bernardeau. We then show that the SC model leads to accurate estimates for the next corrective terms when compared with the results derived in the exact perturbation theory making use of the loop calculations. The agreement is within a few per cent for the hierarchical ratios S J  = ξ J J −12. We compare our analytic results with N -body simulations, which turn out to be in very good agreement up to scales where σ ≈ 1. A similar treatment is presented to estimate higher order corrections in the Zel'dovich approximation. These results represent a powerful and readily usable tool to produce analytical predictions that describe the gravitational clustering of large-scale structure in the weakly non-linear regime.  相似文献   

17.
New exact analytic solutions are introduced for the rotational motion of a rigid body having two equal principal moments of inertia and subjected to an external torque which is constant in magnitude. In particular, the solutions are obtained for the following cases: (1) Torque parallel to the symmetry axis and arbitrary initial angular velocity; (2) Torque perpendicular to the symmetry axis and such that the torque is rotating at a constant rate about the symmetry axis, and arbitrary initial angular velocity; (3) Torque and initial angular velocity perpendicular to the symmetry axis, with the torque being fixed with the body. In addition to the solutions for these three forced cases, an original solution is introduced for the case of torque-free motion, which is simpler than the classical solution as regards its derivation and uses the rotation matrix in order to describe the body orientation. This paper builds upon the recently discovered exact solution for the motion of a rigid body with a spherical ellipsoid of inertia. In particular, by following Hestenes’ theory, the rotational motion of an axially symmetric rigid body is seen at any instant in time as the combination of the motion of a “virtual” spherical body with respect to the inertial frame and the motion of the axially symmetric body with respect to this “virtual” body. The kinematic solutions are presented in terms of the rotation matrix. The newly found exact analytic solutions are valid for any motion time length and rotation amplitude. The present paper adds further elements to the small set of special cases for which an exact solution of the rotational motion of a rigid body exists.  相似文献   

18.
The H N method, employed for studies in neutron transport theory, is used to establish numerical results basic to the vector equation describing the transfer of polarized light in a Rayleigh scattering atmosphere with true absorption. The method has been applied to the classical Milne problem. The exit distribution is defined as a series in powers of the zenith observation angle. The numerical results are computed and compared with exact values obtained using the exit distribution in terms of the H-matrix. The numerical results are in good agreement with previously published findings.  相似文献   

19.
Complex-variable techniques are used to establish exact analytical solutions to a class of two-body problems. In view of Lambert's theorem, two points on the conic, the chord-distance between the two points, and the time interval are considered given, and subsequently the solutions for the semi-major axis required to define the orbit are developed and expressed ultimately in terms of elementary quadratures.  相似文献   

20.
Equations for the angular density of radiation, reflected and transmitted intensities associated with radiation scattered by inhomogeneous dispersive media are obtained. The Padé approximant technique is used to calculate these intensities in inhomogeneous and homogeneous media. The results for the [0/1] Padé approximant lead to numerical results that compared with the exact results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号