首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
万洪秀  覃志豪  徐永明 《湖泊科学》2018,30(5):1429-1437
以博斯腾湖流域为研究区,基于2001-2016年时间序列的MODIS NDVI数据分析了研究区植被的时空变化趋势,并结合流域气象站点的气温、降水、日照时数和相对湿度数据分析了植被生长季累积NDVI和16天NDVI与气候因子之间的响应特征.结果表明:(1)流域植被覆盖变化呈改善趋势,生长季累积NDVI年变化率为0.014 a-1,16天NDVI变化率均为正值,植被改善趋势显著区域主要分布在高山草原湿地和农业灌溉区边缘的新增农田.(2)植被生长季累积NDVI主要受降水和相对湿度影响,植被总体生产力与水分条件关系最密切,生长季逐16天NDVI与同期气温和日照时数在植被生长初期和末期关系显著,而与降水没有显著的相关性,说明植被短期瞬时长势对热量条件更为敏感.(3)在植被生长不同阶段对气候变化具有不同的滞后效应,其中植被生长初期和末期对气温有0.5~1个月的滞后,生长盛期对降水有0.5~3个月的滞后、日照时数有1.5~2.5个月的滞后、相对湿度有0.5~2.5个月的滞后,揭示了植被不同生长阶段水热条件对其生长韵律的控制差异.  相似文献   

2.
Abstract

The flooding and drying mechanisms of the seasonal flood plains of the Sudd swamps in southern Sudan are, while dependent on the river levels, influenced by a complex interaction between soil, vegetation, topography and seasonal trends in rainfall and evapotranspiration. Based on field measurements, these components have been assessed in detail and evaluated regarding their function in the seasonal cycle of flooding and drying. A detailed analysis of soil and evapotranspiration conditions, as well as the interaction with vegetation and meteorological conditions, has been conducted using field and laboratory experiments. Sources, processes, flow directions and the fate of the floodwaters on both the river-fed seasonal flood plains and the rain-fed grasslands have been established. The results show that river spill is responsible for flooding these areas while no return flow occurs, and drying is caused by evapotranspiration. Rainfall can only cause temporary flooding in extreme events.

Citation Petersen, G. & Fohrer, N. (2010) Flooding and drying mechanisms of the seasonal Sudd flood plains along the Bahr el Jebel in southern Sudan. Hydrol. Sci. J. 55(1), 4–16.  相似文献   

3.
Topographic surveys on an inland parabolic sand dune over a six‐year period provide insight into the effects of diminishing local sand supply on dune stabilization. During the interval (2003–2009) sparse vegetation cover (Psoralea lanceolata) increased despite drier than normal moisture conditions and steady wind power during the growing season. Whereas these climatic conditions are typically ascribed to sustaining or increasing dune activity, here they coincide with stabilization. Through the use of geographic information system (GIS) analysis of volumetric changes it is shown that the increase of P. lanceolata can be attributed to the reduction of local sand supply from two blowouts along the arms of the parabolic dune during the six‐year period. These results show that climate is not the only control on dune activity in vegetated inland dunefields. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Water stored in soils, in part, controls vegetation productivity and the duration of growing seasons in wildland ecosystems. Soil water is the dynamic product of precipitation, evapotranspiration and soil properties, all of which vary across complex terrain making it challenging to decipher the specific controls that soil water has on growing season dynamics. We assess how soil water use by plants varies across elevations and aspects in the Dry Creek Experimental Watershed in southwest Idaho, USA, a mountainous, semiarid catchment that spans low elevation rain to high elevation snow regimes. We compare trends in soil water and soil temperature with corresponding trends in insolation, precipitation and vegetation productivity, and we observe trends in the timing, rate and duration of soil water extraction by plants across ranges in elevation and aspect. The initiation of growth-supporting conditions, indicated by soil warming, occurs 58 days earlier at lower, compared with higher, elevations. However, growth-supporting conditions also end earlier at lower elevations due to the onset of soil water depletion 29 days earlier than at higher elevations. A corresponding shift in peak NDVI timing occurs 61 days earlier at lower elevations. Differences in timing also occur with aspect, with most threshold timings varying by 14–30 days for paired north- and south-facing sites at similar elevations. While net primary productivity nearly doubles at higher elevations, the duration of the warm-wet period of active water use does not vary systematically with elevation. Instead, the greater ecosystem productivity is related to increased soil water storage capacity, which supports faster soil water use and growth rates near the summer solstice and peak insolation. Larger soil water storage does not appear to extend the duration of the growing season, but rather supports higher growing season intensity when wet-warm soil conditions align with high insolation. These observations highlight the influence of soil water storage capacity in dictating ecological function in these semiarid steppe climatic regimes.  相似文献   

5.
Semi-arid riparian woodlands face threats from increasing extractive water demand and climate change in dryland landscapes worldwide. Improved landscape-scale understanding of riparian woodland water use (evapotranspiration, ET) and its sensitivity to climate variables is needed to strategically manage water resources, as well as to create successful ecosystem conservation and restoration plans for potential climate futures. In this work, we assess the spatial and temporal variability of Cottonwood (Populus fremontii)-Willow (Salix gooddingii) riparian gallery woodland ET and its relationships to vegetation structure and climate variables for 80 km of the San Pedro River corridor in southeastern Arizona, USA, between 2014 and 2019. We use a novel combination of publicly available remote sensing, climate and hydrological datasets: cloud-based Landsat thermal remote sensing data products for ET (Google Earth Engine EEFlux), Landsat multispectral imagery and field data-based calibrations to vegetation structure (leaf-area index, LAI), and open-source climate and hydrological data. We show that at landscape scales, daily ET rates (6–10 mm day−1) and growing season ET totals (400–1,400 mm) matched rates of published field data, and modelled reach-scale average LAI (0.80–1.70) matched lower ranges of published field data. Over 6 years, the spatial variability of total growing season ET (CV = 0.18) exceeded that of temporal variability (CV = 0.10), indicating the importance of reach-scale vegetation and hydrological conditions for controlling ET dynamics. Responses of ET to climate differed between perennial and intermittent-flow stream reaches. At perennial-flow reaches, ET correlated significantly with temperature, whilst at intermittent-flow sites ET correlated significantly with rainfall and stream discharge. Amongst reaches studied in detail, we found positive but differing logarithmic relationships between LAI and ET. By documenting patterns of high spatial variability of ET at basin scales, these results underscore the importance of accurately accounting for differences in woodland vegetation structure and hydrological conditions for assessing water-use requirements. Results also suggest that the climate sensitivity of ET may be used as a remote indicator of subsurface water resources relative to vegetation demand, and an indicator for informing conservation management priorities.  相似文献   

6.
Riparian vegetation is important for stream functioning and as a major landscape feature. For many riparian plants, shallow groundwater is an important source of water, particularly in areas where rainfall is low, either annually or seasonally, and when extended dry conditions prevail for all or part of the year. The nature of tree water relationships is highly complex. Therefore, we used multiple lines of evidence to determine the water sources used by the dominant tree species Eucalyptus camaldulensis (river red gum), growing in riparian and floodplain areas with varying depth to groundwater and stream perenniality. Dendrometer bands were used to measure diel, seasonal, and annual patterns of tree water use and growth. Water stable isotopes (δ2H and δ18O) in plant xylem, soil water, and groundwater were measured to determine spatial and temporal patterns in plant water source use. Our results indicated riparian trees located on relatively shallow groundwater had greater growth rates, larger diel responses in stem diameter, and were less reactive to extended dry periods, than trees in areas of deep groundwater. These results were supported by isotope analysis that suggested all trees used groundwater when soil water stores were depleted at the end of the dry season, and this was most pronounced for trees with shallow groundwater. Trees may experience more frequent periods of water deficit stress and undergo reduced productivity in scenarios where water table accessibility is reduced, such as drawdown from groundwater pumping activities or periods of reduced rainfall recharge. The ability of trees to adapt to changing groundwater conditions may depend on the speed of change, the local hydrologic and soil conditions as well as the species involved. Our results suggest that Ecamaldulesis growing at our study site is capable of utilizing groundwater even to depths >10 m, and stream perenniality is likely to be a useful indicator of riparian tree use of groundwater.  相似文献   

7.
Landscape experiments of fluvial environments such as rivers and deltas are often conducted with live seedlings to investigate effects of biogeomorphological interactions on morphology and stratigraphy. However, such experiments have been limited to a single species, usually alfalfa (Medicago sativa), whereas important environments in nature have many different vegetation types and eco-engineering effects. Landscape experimentation would therefore benefit from a larger choice of tested plant species. For the purpose of experimental design our objective was to identify fast-germinating and fast-growing species and determine their sensitivity to flow conditions during and after settling, their maximum growth, hydraulic resistance and added bank strength. We tested germination time and seedling growth rate of 18 candidate species with readily available seeds that are fast growing and occur at waterlines, plus Medicago sativa as a control. We selected five species that germinate and develop within days and measured properties and eco-engineering effects depending on plant age and density, targeting typical experimental conditions of 0–0.3 m/s flow velocity and 0–30 mm water depth. Tested eco-engineering effects include bank strength and flow resistance. We found that Rumex hydrolapathum can represent riparian trees. The much smaller Veronica beccabunga and Lotus pedunculatus can represent grass and saltmarsh species as they grow in dense patches with high flow resistance but are readily erodible. Sorghum bicolor grows into tall, straight shoots, which add significantly to bank strength, but adds little flow resistance and may represent sparse hardwood trees. Medicago sativa also grows densely under water, suggesting a use for mangroves and perhaps peat. In stronger and deeper flows the application of all species changes accordingly. These species can now be used in a range of landscape experiments to investigate combined effects on living landscape patterns and possible facilitation between species. The testing and treatment methodology can be applied to new species and other laboratory conditions. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd. © 2019 The Authors Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd © 2019 The Authors Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   

8.
In the semi‐arid western United States, water availability plays a defining role in land use. Soil moisture, vegetation, and microtopography are key variables in the hydrologic function of these ecosystems. Previous research has not addressed the influence of site‐specific aspect, vegetation, or slope gradient on terracette soil moisture patterns in semi‐arid rangelands. Therefore, the objectives of this study were to: (1) assess the influence of terracette site aspect, vegetation cover, and slope on soil moisture; (2) conceptualize conditions at the hillslope scale given terracette morphology; and (3) estimate the extent of terracettes at a regional scale. The Simultaneous Heat and Water (SHAW) model was used to simulate soil water dynamics of terracettes given variations in site conditions. These results were coupled with time‐of‐flight laser scans to quantify terracette bench and riser percent‐area, and statewide assessments of terracette extent using digital orthoimagery and a geographical information system (GIS). Modeling results indicated site aspect had minimal influence (±0.005 m3 m?3) on terracette soil moisture. Vegetation, represented as leaf area index (LAI), had the single‐most influential effect on terracette volumetric water content (θ v) demonstrated by an inverse relationship of LAI to mean terracette hillslope θ v; and slope increases of ≥15% on northern azimuths increased mean θ v which contrasted with southern azimuths for similar slope increases. Laser scanning results indicated bench width and riser length could be estimated from mean site slope (R 2 = 0.82 risers and R 2 = 0.93 benches). Aerial orthoimagery/GIS assessments estimated >159 000 ha of terracettes throughout the State of Idaho, with >41 000 ha (~26%) occurring on lands managed as grazing allotments. These findings provide an increased understanding of rangeland hydrologic processes as influenced by cattle density, vegetation, and terracettes which can aide land managers in their selection and application of best management practices on these lands. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Increased bank stability by riparian vegetation can have profound impacts on channel morphology and dynamics in low‐energy systems, but the effects are less clear in high‐energy environments. Here we investigate the role of vegetation in active, aggrading braided systems at Mount Pinatubo, Philippines, and compare results with numerical modeling results. Gradual reductions in post‐eruption sediment loads have reduced bed reworking rates, allowing vegetation to finally persist year‐round on the Pasig‐Potrero and Sacobia Rivers. From 2009–2011 we collected data detailing vegetation extent, type, density, and root strength. Incorporating these data into the RipRoot model and BSTEM (Bank Stability and Toe Erosion Model) shows cohesion due to roots increases from zero in unvegetated conditions to > 10·2 kPa in densely‐growing grasses. Field‐based parameters were incorporated into a cellular model comparing vegetation strength and sediment mobility effects on braided channel dynamics. The model shows both low sediment mobility and high vegetation strength lead to less active systems, reflecting trends observed in the field. The competing influence of vegetation strength versus channel dynamics is a concept encapsulated in a dimensionless ratio between timescales for vegetation growth and channel reworking known as T*. An estimated T* between 1·5 and 2·3 for the Pasig‐Potrero River suggests channels are still very mobile and likely to remain braided until aggradation rates decline further. Vegetation does have an important effect on channel dynamics, however, by focusing flow and thus aggradation into the unvegetated fraction of braidplain, leading to an aggradational imbalance and transition to a more avulsive state. The future trajectory of channel–vegetation interactions as sedimentation rates decline is complicated by strong seasonal variability in precipitation and sediment loads, driving incision and armoring in the dry season. By 2011, incision during the dry season was substantial enough to lower the water‐table, weaken existing vegetation, and allow for vegetation removal in future avulsions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
为重建湖泊水生植被,改善太湖局部水域水质,在太湖康山湾示范区两个大型围隔进行了两种类型水生植物重建.通过2010年8月-2011年8月的现场采样及分析测定发现,人工控制条件下,浮叶植物荇菜和菱以及沉水植物马来眼子菜的重建效果较好,在其生长季节具有较高的覆盖度;研究表明,控制风浪及提高透明度是恢复水生植被的前提;植被重建区沉水植物氮、磷含量与浮叶植物差别不大,但浮叶植物重建区水体氮、磷浓度的控制比沉水植物重建区好;从经济及水环境效益角度来看,太湖敞水区的沿岸带由于风浪的控制比较困难,恢复水生植被时,应选择浮叶植物荇菜、菱、沉水植物马来眼子菜等抗风浪能力强的物种.本研究为太湖敞水区沿岸带的生态恢复方案制定提供了理论依据.  相似文献   

11.
基于多植物生长模式的SWAT模型的修正与有效性初探   总被引:1,自引:1,他引:0  
以农林系统的非点源污染模拟为目标,通过研究建立变化密度及多种类混杂的森林生长模型,修正了SWAT模型采用平均森林植被密度和单一植物生长模式估算生物累积量的问题,并建立了与之相适应的森林优势组份丰度遥感反演模型、叶面积指数和消光系数遥感反演模型以获取森林生长模型的相关参数.同时,根据间作套种下的辐射能利用Keating方程,引入间作套种指数变量,修正SWAT原有的单一生物量日积累模型,探讨了作物复种指数、间作套种指数遥感反演方法和以此为基础的作物间作套种生长模型.以亚热带季风湿润区红壤背景下的鄱阳湖流域子流域梅江流域为试验区,以野外实测数据为基础,探讨修正SWAT模型的有效性.结果表明:修正后的SWAT模型与原始SWAT模型相比,在模拟流量和营养盐负荷方面,得到了较好的改善.在模拟流量方面,有效性提高了7.8%,流量峰值的模拟也得到了改善,能更好地反映地表蓄流方面的实际情况;在模拟营养盐负荷方面,有效性提高了6.4%(总磷)和6.1%(总氮).  相似文献   

12.
Vegetation can have an important role in controlling channel planform, through its effects on channel roughness, and root‐reinforcement of bank and bar materials. Along the Platte River in central Nebraska, USA, The Platte River Recovery Implementation Program (PRRIP) has been tasked with managing the planform of the river to benefit endangered species. To investigate the potential use of planned short duration high flow (SDHF) events to manage bar vegetation, this study combined several approaches to determine whether flows of up to 227 m3s?1 through the central Platte River, could remove cottonwood, Phragmites and reed canarygrass stands of various ages and densities from in‐channel bars. First, fieldwork was carried out to measure the uprooting resistance, and resistance to bending for each species. Second, a set of flume experiments was carried out to measure the forces exerted on the three species of interest under different flow conditions. Finally, a numerical study comparing drag forces (driving) measured in the flume study, with uprooting forces (resisting) measured in the field, was carried out for each species to determine the likelihood of plant removal by SDHF events. Results showed that plants with more than a year of root growth, likely cannot be removed through drag and local scour alone, even at the 100‐year recurrence interval discharge. At most, a few cottonwood seedlings could be removed from bars through drag, scour and undercutting, where rooting depths are still small. The results presented here help us further understand the positive feedbacks that lead to the creation of permanent, vegetated bars rather than mobile braided channels. As such, the findings could help inform management decisions for other braided rivers, and the combined field, flume and modeling techniques used in this study could be applied to other fluvial systems where vegetation and planform dynamics are of interest. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Summary

The urgent need for planning information on the effect of changes in land use on water resources in East Africa has necessitated the use of intensive methods of experimental catchment area research in order to produce data on the water balance of different vegetation covers in a matter of years rather than decades.

Quantitative water balance studies require an intensive network of raingauges to estimate the volumetric water input with an accuracy comparable with the measurement of outflow. Observations of the soil moisture status and energy balance, in addition to those of rainfall and streamflow are necessary to provide independent checks for “leaks” from the catchments. The successful application of these methods is illustrated from the results of three catchment area experiments in Kenya and Tanzania. The water use of each vegetational complex is characterized by the ratio of the transpiration, E t, to the evaporative demand from an open water surface, E o. This ratio is shown to vary little from year to year despite considerable variation in E t and E o.

An intensive method of analysis of stormflow response, based on the construction of a prediction equation relating stormflow to rainfall quantity and intensity and to antecedent surface soil moistrue condition, is described. Results from the application of the method in one of the catchments are presented in detail.  相似文献   

14.
Based on measured stream nitrogen concentrations at outlets of 12 small sub‐areas (1·3–54·7 km2) in a largely forested catchment during the base flow period, we investigated the influences of discharges and different catchment characteristics on stream nitrogen concentration. Our field surveys were carried out during the 11‐month's period from April 2001 to February 2002 and the correlations between nitrogen concentrations and catchment characteristics were studied. The results showed that the vegetation cover was strongly correlated to total nitrogen (TN) and nitrate + nitrite ? nitrogen (NOx‐N) concentrations. That is, the TN and NOx‐N concentrations had positive correlations with mean normalized difference vegetation cover index (NDVI) of each sub‐area during dormant seasons (mean NDVI < 0 · 70) and had negative correlations during the growing season (mean NDVI ≥ 0 . 70). The significance of catchment characteristics to TN and NOx‐N concentrations was ranked as vegetation cover > soil > topography > land use, and the best models can account for 55–64% of the variance of TN and NOx‐N concentrations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
The resiliency of coastal communities is imperative because these areas experience risk of damage from coastal storms as well as increasing population pressures and development. The severity of this hazard is compounded by sea level rise and a potential increase in storm intensities due to climate change. The ability of coastal communities to plan for, resist, and quickly and completely recover from severe coastal storm events and flooding is of critical importance. There is a growing interest in applying complementary and redundant approaches to reduce the flood risk of these vulnerable communities, such as incorporating natural and nature‐based features into the project planning process. However, accounting for the benefits of these nature‐based features in coastal design is still challenging. One of the natural features generally acknowledged to offer coastal protection benefits is wetlands. Using laboratory experiments of artificial vegetation as a foundation, the bounds of wave dissipation by vegetation are explored analytically and the effectiveness of wave dissipation by vegetation over large scales is investigated using the spectral wave model STWAVE. Wave heights modeled using a vegetation dissipation formulation are compared to those modeled with the current practice of representing vegetation using bottom friction, particularly the Manning formulation. The vegetation dissipation formulation reduced more wave energy than the Manning bottom friction formulation for submerged wetlands. Because the Manning formulation does not integrate vegetation properties, to achieve consistent results would require varying the Manning n coefficient to account for the spatial and temporal variation in form drag induced by the plants due to changes in plant density, diameter, and degree of plant submergence. Thus, a re‐evaluation of existing methods for assessing wave dissipation by vegetation is recommended for wider application of vegetation dissipation formulations in numerical models. Such models are critical for evaluating coastal resiliency of communities protected by wetland features. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

16.
In the northern Loess Plateau that has been severely affected by wind–water erosion, shifts from arable land to forest or grasslands have been promoted since 1998, using both native and introduced vegetation. However, there is little knowledge of the ecological consequences and effectiveness of the vegetation restoration in the region. Therefore, relationships between watershed‐scale soil physical properties and plant recovery processes were analyzed. The results show that soil physical properties such as bulk density, hydraulic conductivity, mean weight diameter, and the stability of >1 mm macro‐aggregates have been significantly ameliorated in the 0–20 cm soil layer under secondary natural grasslands. In contrast, re‐vegetation with introduced species such as Caragana korshinskii or Medicago sativa had adversely affected the soil physical properties, probably due to the deterioration of soil water conditions and lower organic matter inputs resulting from severe erosion. Reductions in bulk density and increases in saturated hydraulic conductivity could be used as indicators of soil structure amelioration since they are closely related to most other measured properties. Practical considerations for future re‐vegetation projects are suggested, particularly that native species with lower water consumption rates than the introduced species should be used to avoid further soil degradation.  相似文献   

17.
Lemnaceae or duckweed is an aquatic plant that can be used to recover nutrients from wastewaters. The grown duckweed can be a good resource of proteins and starch, and utilized for the production of value‐added products such as animal feed and fuel ethanol. In the last eleven years we have been working on growing duckweed on anaerobically treated swine wastewater and utilizing the duckweed for fuel ethanol production. Duckweed strains that grew well on the swine wastewater were screened in laboratory and greenhouse experiments. The selected duckweed strains were then tested for nutrient recovery under laboratory and field conditions. The rates of nitrogen and phosphorus uptake by the duckweed growing in the laboratory and field systems were determined in the study. The mechanisms of nutrient uptake by the duckweed and the growth of duckweed in a nutrient‐limited environment have been studied. When there are nutrients (N and P) available in the wastewater, duckweed takes the nutrients from the wastewater to support its growth and to store the nutrients in its tissue. When the N and P are completely removed from the wastewater, duckweed can use its internally stored nutrients to keep its growth for a significant period of time. A modified Monod model has been developed to describe nitrogen transport in a duckweed‐covered pond for nutrient recovery from anaerobically treated swine wastewater. Nutrient reserve in the duckweed biomass has been found the key to the kinetics of duckweed growth. Utilization of duckweed for value‐added products has a good potential. Using duckweed to feed animals, poultry, and fish has been extensively studied with promising results. Duckweed is also an alternative starch source for fuel ethanol production. Spirodela polyrrhiza grown on anaerobically treated swine wastewater was found to have a starch content of 45.8% (dry weight). Enzymatic hydrolysis of the duckweed biomass with amylases yielded a hydrolysate with a reducing sugar content corresponding to 50.9% of the original dry duckweed biomass. Fermentation of the hydrolysate using yeast gave an ethanol yield of 25.8% of the original dry duckweed biomass. These results indicate that the duckweed biomass can produce significant quantities of starch that can be readily converted into ethanol.  相似文献   

18.
19.
Measurements of water vapour flux from semi‐arid perennial woodland (mallee) were made for 3 years using eddy covariance instrumentation. There have been no previous long‐term, detailed measures of water use in this ecosystem. Latent energy flux (LE) on a half hourly basis was the measure of the combined soil and plant evaporation, ‘evapotranspiration’ (ELE) of the site. Aggregation over 3 years of the site measured rain (1136 mm) and the estimated evaporation (794 mm) suggests that 342 mm or 30% of rain had moved into or past the root zone of the vegetation. Above average rainfall during 2011 and the first quarter of 2012 (633 mm, 15 months) would likely have been the period during which significant groundwater recharge occurred. At times immediately after rainfall, ELE rates were the same or exceeded estimates of potential E calculated from a suitably parameterized Penman–Monteith (EPMo) equation. Apparent free water E from plant interception and soil evaporation was about 2.3 mm and lasted for 1.3 days following rainfall in summer, while in autumn, E was 5.1 mm that lasted over 5.4 days. The leaf area index (LAI) needed to adjust a wind function calibrated Penman equation (EPMe) to match the ELE values could be back calculated to generate seasonal change in LAI from 0.12 to 0.46 and compared well with normalized difference vegetation index; r = 0.38 and p = 0.0213* and LAI calculated from digital cover photography. The apparently conservative response of perennial vegetation evaporation to available water in these semi‐arid environments reinforces the conclusion that these ecosystems use this mechanism to survive the reasonably common dry periods. Plant response to soil water availability is primarily through gradual changes in leaf area. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Understanding the water use characteristics and water relationship of coexisting vegetation in a mixed-species plantation of trees and shrubs is crucial for the sustainable restoration of degraded arid areas. This study investigated the water use characteristic of coexisting sand-binding vegetation combinations in the sierozem habitat (Populus przewalskii Maxim namely Populus-S and Caragana liouana) and aeolian sandy soil habitats (Populus przewalskii Maxim namely Populus-A and Salix psammophila) of the desert steppe. By analysing the δ2H and δ18O isotopes in xylem, soil water, groundwater and precipitation, a Bayesian MixSIAR model was employed to quantitatively assess the water utilization characteristics of plants. Throughout the growing season, in the sierozem habitat, C. liouana exhibits the highest efficiency in utilizing soil moisture above 60 cm (53.45%) and displays adaptable water use strategies. In contrast, Populus-A predominantly relies on deep soil moisture below 60 cm plus groundwater (63.89%). In the aeolian sandy soil habitat, both Populus-A and S. psammophila similarly favour deep soil moisture below the 60 cm soil plus groundwater (66.77% and 67.60%, respectively). During the transition period from the dry to the wet seasons, although both Populus-A and S. psammophila in the aeolian sandy soil habitat shifted their water sources from deeper to shallower ones, there was considerable overlap in the water sources used by Populus-A and S. psammophila. This overlap led to competition for water resources and exacerbated the depletion of deep soil moisture in both seasons. Conversely, in the sierozem habitat, the partitioning of water sources between Populus-S and C. liouana facilitated the allocation and utilization of water resources between the two species. The findings highlight the need for species-specific consideration in water resource allocation within mixed-species plantations of trees and shrubs, which is crucial for sustainable vegetation restoration in sand-binding ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号