首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
How rock resistance or erodibility affects fluvial landforms and processes is an outstanding question in geomorphology that has recently garnered attention owing to the recognition that the erosion rates of bedrock channels largely set the pace of landscape evolution. In this work, we evaluate valley width, terrace distribution, and bedload provenance in terms of reach scale variation in lithology in the study reach and discuss the implications for landscape evolution in a catchment with relatively flat‐lying stratigraphy and very little uplift. A reach of the Buffalo National River in Arkansas was partitioned into lithologic reaches and the mechanical and chemical resistance of the main lithologies making up the catchment was measured. Valley width and the spatial distribution of terraces were compared among the different lithologic reaches. The surface grain size and provenance of coarse (2–90 mm) sediment of both modern gravel bars and older terrace deposits that make up the former bedload were measured and defined. The results demonstrate a strong impact of lithology upon valley width, terrace distribution, and bedload provenance and therefore, upon landscape evolution processes. Channel down‐cutting through different lithologies creates variable patterns of resistance across catchments and continents. Particularly in post‐tectonic and non‐tectonic landscapes, the variation in resistance that arises from the exhumation of different rocks in channel longitudinal profiles can impact local base levels, initiating responses that can be propagated through channel networks. The rate at which that response is transmitted through channels is potentially amplified and/or mitigated by differences between the resistance of channel beds and bedload sediment loads. In the study reach, variation in lithologic resistance influences the prevalence of lateral and vertical processes, thus producing a spatial pattern of terraces that reflects rock type rather than climate, regional base level change, or hydrologic variability. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
The Earth's topography is shaped by surface processes that operate on various scales. In particular, river processes control landscape dynamics over large length scales, whereas hillslope processes control the dynamics over smaller length scales. This scale separation challenges numerical treatments of landscape evolution that use space discretization. Large grid spacing cannot account for the dynamics of water divides that control drainage area competition, and erosion rate and slope distribution. Small grid spacing that properly accounts for divide dynamics is computationally inefficient when studying large domains. Here we propose a new approach for landscape evolution modeling that couples irregular grid‐based numerical solutions for the large‐scale fluvial dynamics and continuum‐based analytical solutions for the small‐scale fluvial and hillslope dynamics. The new approach is implemented in the landscape evolution model DAC (divide and capture). The geometrical and topological characteristics of DAC's landscapes show compatibility with those of natural landscapes. A comparative study shows that, even with large grid spacing, DAC predictions fit well an analytical solution for divide migration in the presence of horizontal advection of topography. In addition, DAC is used to study some outstanding problems in landscape evolution. (i) The time to steady‐state is investigated and simulations show that steady‐state requires much more time to achieve than predicted by fixed area calculations, due to divides migration and persistent reorganization of low‐order streams. (ii) Large‐scale stream captures in a strike‐slip environment are studied and show a distinct pattern of erosion rates that can be used to identify recent capture events. (iii) Three tectono‐climatic mechanisms that can lead to asymmetric mountains are studied. Each of the mechanisms produces a distinct morphology and erosion rate distribution. Application to the Southern Alps of New Zealand suggests that tectonic advection, precipitation gradients and non‐uniform tectonic uplift act together to shape the first‐order topography of this mountain range. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Epigenetic gorges form when channels that have been laterally displaced during episodes of river blockage or aggradation incise down into bedrock spurs or side‐walls of the former valley rather than excavating unconsolidated fills and reinhabiting the buried paleovalley. Valley‐filling events that promote epigenetic gorges can be localized, such as a landslide dam or an alluvial/debris flow fan deposit at a tributary junction, or widespread, such as fluvial aggradation in response to climate change or fluctuating base‐level. The formation of epigenetic gorges depends upon the competition between the resistance to transport, strength and roughness of valley‐filling sediments and a river's ability to sculpt and incise bedrock. The former affects the location and lateral mobility of a channel incising into valley‐filling deposits; the latter determines rates of bedrock incision should the path of the incising channel intersect with bedrock that is not the paleovalley bottom. Epigenetic gorge incision, by definition, post‐dates the incision that originally cut the valley. Strath terraces and sculpted bedrock walls that form in relation to epigenetic gorges should not be used to directly infer river incision induced by tectonic activity or climate variability. Rather, they are indicative of the variability of short‐term bedrock river incision and autogenic dynamics of actively incising fluvial landscapes. The rate of bedrock incision associated with an epigenetic gorge can be very high (>1 cm/yr), typically orders of magnitude higher than both short‐ and long‐term landscape denudation rates. In the context of bedrock river incision and landscape evolution, epigenetic gorges force rivers to incise more bedrock, slowing long‐term incision and delaying the adjustment of rivers to regional tectonic and climatic forcing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
We explore the imprint of spatial rainfall patterns on steady‐state landscapes with uniform rock uplift rate. A two‐dimensional (2D) orographic precipitation module is incorporated into the CHILD numerical landscape evolution model to provide a quantitative tool for exploring the co‐evolution of rainfall patterns and fluvial topography. Our results suggest that network organization and planform morphology are strongly impacted by rainfall patterns. Rainfall gradients that are perpendicular to a mountain range front produce narrower watersheds because channels show a tendency to flow along the rainfall gradient, rather than across it. The change in watershed shape is evidenced by smaller values of the exponent on distance in Hack's law and a less peaked width function. Narrower watersheds also lead to an increase in the valley spacing ratio and constrain trunk channels to follow a more direct path to the mountain front. Rainfall gradients also influence the distribution of topography across a watershed. Channel profiles record rainfall patterns in both the channel concavity and the channel steepness index (ksn). Across short tributaries along which rainfall rate changes little, ksn decreases systematically with tributary‐averaged rainfall rate. The hypsometric integral (HI), which increases with the amount of topography that is at relatively high elevations within a watershed, is negatively correlated with the profile concavity of the trunk channel. High rainfall rates at the ridge top lead to mainstem channels that have relatively low concavity, and watersheds with relatively higher HI in comparison with landscapes that have uniform rainfall. Finally, we contrast the impacts of rainfall patterns on landscape morphology with those resulting from a linear rock uplift gradient and uniform rainfall. Uplift patterns may have a similar impact on landscape morphology as rainfall gradients, making it challenging to decipher the relative roles of climate and tectonics on landscape evolution without a quantitative assessment of morphologic parameters. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A combination of numerical analysis and 10Be concentrations measured in sediment samples from the high‐relief Torrente catchment, southern Spain, allows us to investigate the sampling requirements for determining erosion rates using cosmogenic nuclides in high‐relief, landslide‐dominated terrain. We use simple modelling to quantify the effect of particle spalling and/or landsliding on erosion rates determined using a cosmogenic in‐situ produced isotope. Analytical results show that the cosmogenic nuclide concentration of a surface experiencing regular detachment of a grain or block may be considered to be in steady state, and ‘in‐situ’ erosion rates estimated, when an appropriate number of spatially independent samples are amalgamated. We present equations that enable calculation of the number of bedrock samples that must be amalgamated for the estimation of mean erosion rates on an outcrop experiencing regular detachment of a grain or chip of thickness L every T years. Our findings confirm that mean catchment erosion rates may be reliably estimated from 10Be concentrations in fluvial sediment in high‐relief rapidly eroding terrain. These catchment‐wide integrated erosion rates can be calculated where erosion is primarily accomplished through shallow (<3 m) spalling processes; where deep‐seated (>3 m) landslides are the dominant mode of erosion only minimum erosion rates can be determined. Lastly, we present erosion rate measurements from the Torrente catchment that reveal variation of two orders of magnitude (0·03–1·6 m ka?1) quantifying the high degree of spatial variation in erosion rates expected within rapidly uplifting catchments. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Knickpoint behaviour is a key to understanding both the landscape responses to a base‐level fall and the corresponding sediment fluxes from rejuvenated catchments, and must be accommodated in numerical models of large‐scale landscape evolution. Knickpoint recession in streams draining to glacio‐isostatically uplifted shorelines in eastern Scotland is used to assess whether knickpoint recession is a function of discharge (here represented by its surrogate, catchment area). Knickpoints are identified using DS plots (log slope versus log downstream distance). A statistically significant power relationship is found between distance of headward recession and catchment area. Such knickpoint recession data may be used to determine the values of m and n in the stream power law, E = KAmSn. The data have too many uncertainties, however, to judge definitively whether they are consistent with m = n = 1 (bedrock erosion is proportional to stream power and KPs should be maintained and propagate headwards) or m = 0·3, n = 0·7 (bedrock incision is proportional to shear stress and KPs do not propagate but degrade in place by rotation or replacement). Nonetheless, the E Scotland m and n values point to the dominance of catchment area (discharge) in determining knickpoint retreat rates and are therefore more consistent with the stream power law formulation in which bedrock erosion is proportional to stream power. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
We investigated the role of different hillslope units with different topographic characteristics on runoff generation processes based on field observations at two types of hillslopes (0·1 ha): a valley‐head (a convergent hillslope) and a side slope (a planar hillslope), as well as at three small catchments having two types of slopes with different drainage areas ranging from 1·9 to 49·7 ha in the Tanakami Mountains, central Japan. We found that the contribution of the hillslope unit type to small catchment runoff varied with the magnitude of rainfall. When the total amount of rainfall for a single storm event was < 35 mm, runoff in the small catchment was predominantly generated from the side slope. As the amount of rainfall increased (>35 mm), the valley‐head also began to contribute to the catchment runoff, adding to runoff from the side slope. Although the direct runoff from the valley‐head was greater than that from the side slope, the contribution from the side slope was quantitatively greater than that from the valley‐head due to the proportionally larger area occupied by the side slope in the small catchment. The storm runoff responses of the small catchments reflected the change in the runoff components of each hillslope unit as the amount of rainfall increased and rainfall patterns changed. However, similar runoff responses were found for the small catchments with different areas. The similarity of the runoff responses is attributable to overlay effects of different hillslope units and the similar composition ratios of the valley‐head and side slope in the catchments. This study suggests that the relative roles of the valley‐head and side slope are important in runoff generation and solute transport as the catchment size increases from a hillslope/headwater to a small catchment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The relationship between climate, landscape connectivity and sediment export from mountain ranges is key to understanding the propagation of erosion signals downstream into sedimentary basins. We explore the role of connectivity in modulating the composition of sediment exported from the Frontal Cordillera of the south-central Argentine Andes by comparing three adjacent and apparently similar semi-glaciated catchment-fan systems within the context of an along-strike precipitation gradient. We first identify that the bedrock exposed in the upper, previously glaciated reaches of the cordillera is under-represented in the lithological composition of gravels on each of three alluvial fans. There is little evidence for abrasion or preferential weathering of sediment sourced from the upper cordillera, suggesting that the observed bias can only be explained by sediment storage in these glacially widened and flattened valleys of the upper cordillera (as revealed by channel steepness mapping). A detailed analysis of the morphology of sedimentary deposits within the catchments reveals catchment-wide trends in either main valley incision or aggradation, linked to differences in hillslope–channel connectivity and precipitation. We observe that drier catchments have poor hillslope–channel connectivity and that gravels exported from dry catchments have a lithological composition depleted in clasts sourced from the upper cordillera. Conversely, the catchment with the highest maximum precipitation rate exhibits a high degree of connectivity between its sediment sources and the main river network, leading to the export of a greater proportion of upper cordillera gravel as well as a greater volume of sand. Finally, given a clear spatial correlation between the resistance of bedrock to erosion, mountain range elevation and its covariant, precipitation, we highlight how connectivity in these semi-glaciated landscapes can be preconditioned by the spatial distribution of bedrock lithology. These findings give insight into the extent to which sedimentary archives record source erosion patterns through time.  相似文献   

9.
In August 2009, the typhoon Morakot, characterized by a cumulative rainfall up to 2884 mm in about three days, triggered thousands of landslides in Taiwan. The availability of LiDAR surveys before (2005) and after (2010) this event offers a unique opportunity to investigate the topographic signatures of a major typhoon. The analysis considers the comparison of slope–area relationships derived by LiDAR digital terrain models (DTMs). This approach has been successfully used to distinguish hillslope from channelized processes, as a basis to develop landscape evolution models and theories, and understand the linkages between landscape morphology and tectonics, climate, and geology. We considered six catchments affected by a different degree of erosion: three affected by shallow and deep‐seated landslides, and three not affected by erosion. For each of these catchments, 2 m DTMs were derived from LiDAR data. The scaling regimes of local slope versus drainage area suggested that for the catchments affected by landslides: (i) the hillslope‐to‐valley transitions morphology, for a given value of drainage area, is shifted towards higher value of slopes, thus indicating a likely migration of the channelized processes and erosion toward the catchment boundary (the catchment head becomes steeper because of erosion); (ii) the topographic gradient along valley profiles tends to decrease progressively (the valley profile becomes gentler because of sediment deposition after the typhoon). The catchments without any landslides present a statistically indistinguishable slope–area scaling regime. These results are interesting since for the first time, using multi‐temporal high‐resolution topography derived by LiDAR, we demonstrated that a single climate event is able to cause significant major geomorphic changes on the landscape, detectable using slope–area scaling analysis. This provides new insights about landscape evolution under major climate forcing. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Landscape evolution models (LEMs) simulate the three‐dimensional development of landscapes over time. Different LEMs have different foci, e.g. erosional behaviour, river dynamics, the fluvial domain, hillslopes or a combination. LEM LAPSUS is a relatively simple cellular model operating on timescales of centuries to millennia and using annual timesteps that has had a hillslope focus. Our objective was to incorporate fluvial behaviour in LAPSUS without changing the existing model equations. The model should be able to reproduce alternating aggradation and incision in the floodplains of catchments, depending on simulated conditions. Testing was done using an artificial digital elevation model (DEM) and a demonstration of the ability for fluvial simulation was performed for a real landscape (Torrealvilla catchment, southeast Spain). Model equations to calculate sediment dynamics and water routing were similar for both hillslope and fluvial conditions, but different parameter values were used for these domains, defined based on annual discharge. Parameters changing between the domains are convergence factor p, which is used in the multiple flow algorithm to route water, and discharge and gradient exponents m and n, used in transport capacity calculations. Erodibility and ‘sedimentability’ factors K and P were changed between cold (little vegetation, high erodibility) and warm conditions (more vegetation, lower erodibility). Results show that the adapted parameters reproduced alternating aggradation – due to divergent flow in the floodplain and sediment supply under cold conditions – and incision due to reduced sediment supply and resulting clean water erosion during simulated warm conditions. The simulated results are due to interactions between hillslopes and floodplains, as the former provide the sediments that are deposited in the latter. Similar behaviour was demonstrated when using the real DEM. Sensitivity and resolution analysis showed that the model is sensitive to changes in m, n and p and that model behaviour is influenced by DEM resolution. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
We examined the contributions of bedrock groundwater to the upscaling of storm‐runoff generation processes in weathered granitic headwater catchments by conducting detailed hydrochemical observations in five catchments that ranged from zero to second order. End‐member mixing analysis (EMMA) was performed to identify the geographical sources of stream water. Throughfall, hillslope groundwater, shallow bedrock groundwater, and deep bedrock groundwater were identified as end members. The contribution of each end member to storm runoff differed among the catchments because of the differing quantities of riparian groundwater, which was recharged by the bedrock groundwater prior to rainfall events. Among the five catchments, the contribution of throughfall was highest during both baseflow and storm flow in a zero‐order catchment with little contribution from the bedrock groundwater to the riparian reservoir. In zero‐order catchments with some contribution from bedrock groundwater, stream water was dominated by shallow bedrock groundwater during baseflow, but it was significantly influenced by hillslope groundwater during storms. In the first‐order catchment, stream water was dominated by shallow bedrock groundwater during storms as well as baseflow periods. In the second‐order catchment, deeper bedrock groundwater than that found in the zero‐order and first‐order catchments contributed to stream water in all periods, except during large storm events. These results suggest that bedrock groundwater influences the upscaling of storm‐runoff generation processes by affecting the linkages of geomorphic units such as hillslopes, riparian zones, and stream channels. Our results highlight the need for a three‐dimensional approach that considers bedrock groundwater flow when studying the upscaling of storm‐runoff generation processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The Pleistocene glaciations left a distinct topographic footprint in mountain ranges worldwide. The geometric signature of glacial topography has been quantified in various ways, but the temporal development of landscape metrics has not been traced in a landscape evolution model so far. However, such information is needed to interpret the degree of glacial imprint in terms of the integrated signal of temporal and spatial variations in erosion as a function of glacial occupation time. We apply a surface process model for cold-climate conditions to an initially fluvial mountain range. By exploring evolving topographic patterns in model time series, we determine locations where topographic changes reach a maximum and where the initial landscape persists. The signal of glacial erosion, expressed by the overdeepening of valleys and the steepening of valley flanks, develops first at the glacier front and migrates upstream with ongoing glacial erosion. This leads to an increase of mean channel slope and its variance. Above steep flanks and head-walls, however, the observed mean channel slope remains similar to the mean channel slope of the initial fluvial topography. This leads to a characteristic turning point in the channel slope–elevation distribution above the equilibrium line altitude, where a transition from increasing to decreasing channel slope with elevation occurs. We identify this turning point and a high channel slope variance as diagnostic features to quantify glacial imprint. Such features are abundant in glacially imprinted mid-latitude mountain ranges such as the Eastern Alps. By analysing differently glaciated parts of the mountain range, we observe a decreasing clarity of this diagnostic morphometric property with decreasing glacial occupation. However, catchments of the unglaciated eastern fringe of the Alps also feature turning points in their channel slope–elevation distributions, but in contrast to the glaciated domain, the variance of channel slope is small at all elevation levels.  相似文献   

13.
14.
The relationship between streamwater mean residence time (MRT) and landscape characteristics is poorly understood. We used tritium (3H) to define our MRT. We tested the hypothesis that baseflow water MRT increases with increasing absolute catchment size at the Maimai catchments. These catchments are simple hydrologic systems relative to many catchments around the world, with uniformly wet climatic conditions, little seasonality, uniform and nearly impermeable bedrock, steep short hillslopes, shallow soils, and well‐characterized hillslope and catchment hydrology. As a result, this is a relatively simple system and an ideal location for new MRT‐related hypothesis testing. Whilst hydrologists have used 3H to estimate water age since the 1960s nuclear testing spike, atmospheric 3H levels have now approached near background levels and are often complicated by contamination from the nuclear industry. We present results for 3H sampled from our set of nested catchments in nuclear‐industry‐free New Zealand. Because of high precision analysis, near‐natural atmospheric 3H levels, and well‐characterized rainfall 3H inputs, we were able to estimate the age of young (i.e. less than 3 years old) waters. Our results showed no correlation between MRT and catchment size. However, MRT was correlated to the median sub‐catchment size of the sampled watersheds, as shown by landscape analysis of catchment area accumulation patterns. These preliminary findings suggest that landscape organization, rather than total area, is a first‐order control on MRT and points the way forward for more detailed analysis of how landscape organization affects catchment runoff characteristics. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Natural damming of upland river systems, such as landslide or lava damming, occurs worldwide. Many dams fail shortly after their creation, while other dams are long‐lived and therefore have a long‐term impact on fluvial and landscape evolution. This long‐term impact is still poorly understood and landscape evolution modelling (LEM) can increase our understanding of different aspects of this response. Our objective was to simulate fluvial response to damming, by monitoring sediment redistribution and river profile evolution for a range of geomorphic settings. We used LEM LAPSUS, which calculates runoff erosion and deposition and can deal with non‐spurious sinks, such as dam‐impounded areas. Because fluvial dynamics under detachment‐limited and transport‐limited conditions are different, we mimicked these conditions using low and high erodibility settings, respectively. To compare the relative impact of different dam types, we evaluated five scenarios for each landscape condition: one scenario without a dam and four scenarios with dams of increasing erodibility. Results showed that dam‐related sediment storage persisted at least until 15 000 years for all dam scenarios. Incision and knickpoint retreat occurred faster in the detachment‐limited landscape than in the transport‐limited landscape. Furthermore, in the transport‐limited landscape, knickpoint persistence decreased with increasing dam erodibility. Stream capture occurred only in the transport‐limited landscape due to a persisting floodplain behind the dam and headward erosion of adjacent channels. Changes in sediment yield variation due to stream captures did occur but cannot be distinguished from other changes in variation of sediment yield. Comparison of the model results with field examples indicates that the model reproduces several key phenomena of damming response in both transport‐limited and detachment‐limited landscapes. We conclude that a damming event which occurred 15 000 years ago can influence present‐day sediment yield, profile evolution and stream patterns. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Landscape evolution models(LEMs) are essential tools for analyzing tectonic-climate interactions and reproducing landform-shaping processes. In this study we used a LEM to simulate the evolution of the mountains from the central Hexi Corridor in the northeastern Tibetan Plateau, where the climate is arid and the surface processes are relatively uniform. However,there are pronounced differences in the topography between the mountains around the central Hexi Corridor. The East Jintanan Shan, West Jintanan Shan and Heli Shan are located in the northern part of the corridor; and the Yumu Shan in the southern part.Firstly, several representative areas were selected from these mountains to analyze the topographic characteristics, including the uniform valley spacing, local relief, and the outlet number. Secondly, a LEM for these areas was constructed using the Landlab platform, and the landscape evolution was simulated. With uniform valley spacing and other topographic characteristics as the criteria, we compared the realistic and simulated terrain for different model ages. Finally, based on the similarity of the simulated and realistic terrain, we estimated the timing of the initial uplift and the uplift rate of the four mountain ranges. The results are consistent with previous geological and geomorphological records from these youthful stage mountains that have not yet reached a steady state. Our findings demonstrate that LEMs combined with topographic characteristics are a reliable means of constraining the timing of the initial uplift and the uplift rate of the youthful stage mountain. Our approach can potentially be applied to other youthful stage mountains and it may become a valuable tool in tectonic geomorphology research.  相似文献   

17.
The Holocene volumetric sediment budget is estimated for coarse textured sediments (sand and gravel) in a large, formerly glaciated valley in southwest British Columbia. Erosion is estimated by compiling volumetric loss estimated in digital elevation models (DEMs) of gullied topography and by applying a non‐linear diffusion model on planar, undissected hillslopes. Estimates of steepland yield are based on estimates of post‐glacial deposition volumes in fans, cones and deltas at the outlets of low‐order tributary catchments. Erosion of post‐glacial fans and tributary valley fills is estimated by reconstructing formerly continuous surfaces. Results are classed by catchment order and compared across scales of contributing area, revealing declining specific sediment yield (in m3 km?2 a?1) with catchment area for the smaller tributaries (<10 km2) and increasing specific sediment yield for larger tributaries and Chilliwack Valley itself. Approximately 60% of mobilized sediment is redeposited in first‐ to third‐order catchments, with lesser proportions stored at the outlets of higher order catchments. A simple network routing model emphasizes the significant sediment flux contributions from colluvium, drift blankets and gullies in steeper terrain. As this material is deposited at junctions within the lower drainage network, an increasing proportion of material is derived from remnant valley fills and para‐glacial fans in the major valleys. Yield from lower‐order, steepland catchments tends to remain in storage, indefinitely sequestered on footslopes. These observations have implications for modelling the post‐glacial sediment balance amongst catchments of varying size. After 104 years, the system remains in disequilibrium. The critical linkage lies between low‐order, hillslope catchments (相似文献   

18.
In this paper, we examined the role of bedrock groundwater discharge and recharge on the water balance and runoff characteristics in forested headwater catchments. Using rigorous observations of catchment precipitation, discharge and streamwater chemistry, we quantified net bedrock flow rates and contributions to streamwater runoff and the water balance in three forested catchments (second‐order to third‐order catchments) underlain by uniform bedrock in Japan. We found that annual rainfall in 2010 was 3130 mm. In the same period, annual discharge in the three catchments varied from 1800 to 3900 mm/year. Annual net bedrock flow rates estimated by the chloride mass balance method at each catchment ranged from ?1600 to 700 mm/year. The net bedrock flow rates were substantially different in the second‐order and third‐order catchments. During baseflow, discharge from the three catchments was significantly different; conversely, peak flows during large storm events and direct runoff ratios were not significantly different. These results suggest that differences in baseflow discharge rates, which are affected by bedrock flow and intercatchment groundwater transfer, result in the differences in water balance among the catchments. This study also suggests that in these second‐order to third‐order catchments, the drainage area during baseflow varies because of differences between the bedrock drainage area and surface drainage area, but that the effective drainage area during storm flow approaches the surface drainage area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The relative importance of tectonics, climate, base level and source lithology as primary factors on alluvial‐fan evolution, fan morphology and sedimentary style remain in question. This study examines the role of catchment lithology on development and evolution of alluvial megafans (>30 km in length), along the flanks of the Kohrud Mountain range, NE Esfahan, central Iran. These fans toe out at axial basin river and playa‐fringe sediments towards the centre of basin and tectonics, climatic change and base‐level fluctuations, were consistent for their development. They formed in a tectonically active basin, under arid to semiarid climate and a long term (Plio‐Pleistocene to Recent) change from wetter to drier conditions. The key differences between two of these fans, Soh and Zefreh fans, along the west and south flanks of this mountain range, is that their catchments are underlain by dissimilar bedrock types. The source‐area lithologies of the Soh and Zefreh fans are in sedimentary and igneous terrains, respectively, and these fans developed their geometry mainly in response to different weathering intensities of their catchment bedrock lithologies. Fan surface mapping (based on 1/50000 topographic maps, satellite images, and fieldwork), reveals that the geomorphic evolution of these fans differs in that the relatively large‐scale incision and through trenching of the Soh fan is absent in the Zefreh fan. Whereas the limited sediment supply of the Soh fan has resulted in a deep incised channel, the Zefreh fan has remained aggradational with little or no trenching into proximal to medial fan surface due to its catchment bedrock geology, composed mainly by physically weathered volcaniclastic lithology and characterized by high sediment supply for delivery during episodic flash floods. Sediment supply, which is mainly a function of climate and source lithology, is a dominant driver behind the development of fan sequences in alluvial megafans. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, we present direct field measurements of modern lateral and vertical bedrock erosion during a 2-year study period, and optically stimulated luminescence (OSL) ages of fluvial material capping a flat bedrock surface at Kings Creek located in northeast Kansas, USA. These data provide insight into rates and mechanisms of bedrock erosion and valley-widening in a heterogeneously layered limestone-shale landscape. Lateral bedrock erosion outpaced vertical incision during our 2-year study period. Modern erosion rates, measured at erosion pins in limestone and shale bedrock reveal that shale erosion rate is a function of wetting and drying cycles, while limestone erosion rate is controlled by discharge and fracture spacing. Variability in fracture spacing amongst field sites controls the size of limestone block collapse into the stream, which either allowed continued lateral erosion following rapid detachment and transport of limestone blocks, or inhibited lateral erosion due to limestone blocks that protected the valley wall from further erosion. The OSL ages of fluvial material sourced from the strath terrace were older than any material previously dated at our study site and indicate that Kings Creek was actively aggrading and incising throughout the late Pleistocene. Coupling field measurements and observations with ages of fluvial terraces can be useful to investigate the timing and processes linked to how bedrock rivers erode laterally over time to form wide bedrock valleys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号