首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
2.
Compared to downstream fining of a gravel‐bedded river, little field evidence exists to support the process of downstream fining in large, fine sand‐bedded rivers. In fact, the typically unimodal bed sediments of these rivers are thought to produce equal mobility of coarse and fine grains that may discourage downstream fining. To investigate this topic, we drilled 200 sediment cores in the channel beds of two fine‐grained sand‐bedded reaches of the Yellow River (a desert reach and a lower reach) and identified a fine surface layer (FSL) developed over a coarse subsurface layer (CSL) in the 3‐m‐thick bed deposits. In both reaches downstream, the thickness of the FSL increased, while that of the CSL decreased. Comparison of the depth‐averaged median grain sizes of the CSL and the FSL separately in both reaches shows a distinct downstream fining dependence to the median grain size, which indicates that at a large scale of 600‐800 km, the CSL shows a significant downstream fining, but the FSL shows no significant trends in downstream variations in grain size. This result shows that fine sediment supply (<0·08 mm median grain size) from upstream, combined with lateral fine sediment inputs from tributaries and bank erosion, can cause a rapid fining of the downstream channel bed surface and can develop the FSL layer. However, in the desert reach, lateral coarse sediment supply (>0·08 mm median grain size) from wind‐borne sediments and cross‐desert tributaries can interrupt the FSL and coarsen the channel bed surface locally. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Recent field and modeling investigations have examined the fluvial dynamics of confluent meander bends where a straight tributary channel enters a meandering river at the apex of a bend with a 90° junction angle. Past work on confluences with asymmetrical and symmetrical planforms has shown that the angle of tributary entry has a strong influence on mutual deflection of confluent flows and the spatial extent of confluence hydrodynamic and morphodynamic features. This paper examines three‐dimensional flow structure and bed morphology for incoming flows with high and low momentum‐flux ratios at two large, natural confluent meander bends that have different tributary entry angles. At the high‐angle (90°) confluent meander bend, mutual deflection of converging flows abruptly turns fluid from the lateral tributary into the downstream channel and flow in the main river is deflected away from the outer bank of the bend by a bar that extends downstream of the junction corner along the inner bank of the tributary. Two counter‐rotating helical cells inherited from upstream flow curvature flank the mixing interface, which overlies a central pool. A large influx of sediment to the confluence from a meander cutoff immediately upstream has produced substantial morphologic change during large, tributary‐dominant discharge events, resulting in displacement of the pool inward and substantial erosion of the point bar in the main channel. In contrast, flow deflection is less pronounced at the low‐angle (36°) confluent meander bend, where the converging flows are nearly parallel to one another upon entering the confluence. A large helical cell imparted from upstream flow curvature in the main river occupies most of the downstream channel for prevailing low momentum‐flux ratio conditions and a weak counter‐rotating cell forms during infrequent tributary‐dominant flow events. Bed morphology remains relatively stable and does not exhibit extensive scour that often occurs at confluences with concordant beds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Confluences with low discharge and momentum ratios, where narrow steep tributaries with high sediment load join a wide low‐gradient main channel that provides the main discharge, are often observed in high mountain regions such as in the upper‐Rhone river catchment in Switzerland. Few existing studies have examined the hydro‐morphodynamics of this type of river confluence while considering sediment discharge in both confluent channels. This paper presents the evolution of the bed morphology and hydrodynamics as observed in an experimental facility with a movable bed. For that purpose, one experiment was carried out in a laboratory confluence with low discharge and momentum ratios, where constant sediment rates were supplied to both flumes. During the experiment, bed topography and water surface elevations were systematically recorded. When the bed topography reached a steady state (so‐called equilibrium) and the outgoing sediment rate approximated the incoming rate, flow velocity was measured at 12 different points distributed throughout the confluence, and the grain size distribution of the bed surface was analyzed. Typical morphodynamic features of discordant confluences such as a bank‐attached bar and a flow deflection zone are identified in this study. Nevertheless, the presence of a marked scour hole in the discordant confluence and distinct flow regimes for the tributary and main channel, differ from results obtained in previous studies. Strong acceleration of the flow along the outer bank of the main channel is responsible for the scour hole. This erosion is facilitated by the sediment discharge into the confluence from the main channel which inhibits bed armoring in this region. The supercritical flow regime observed in the tributary is the hydrodynamic response to the imposed sediment rate in the tributary. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Confluences are important locations for river mixing within drainage networks, yet few studies have examined in detail the dynamics of mixing within confluences. This study examines the influence of momentum flux ratio, the scale of the flow (cross‐sectional area) and the density differences between incoming flows on thermal mixing at a small stream confluence. Results reveal that rates and patterns of thermal mixing depend on event‐specific combinations of the three factors. The mixing interface at this confluence is generally distorted towards the mouth of the lateral tributary by strong helical motion associated with curvature of flow from the lateral tributary as it aligns with the downstream channel. As the momentum flux from the lateral tributary increases, mixing is enhanced because helical motion from the curving tributary flow expands over the width of the downstream channel. The cross‐sectional area of the flow is negatively correlated with mixing rates, suggesting that the amount of mixing over a fixed distance downstream of the confluence is inversely related to the scale of the flow. Density differences are not strongly related to rates of mixing. Results confirm that mixing rates within the region of confluent flow interaction can be highly variable among flow events with different incoming flow conditions, but that, in general, length scales of mixing are short, and rates of mixing are high at this small confluence compared with those typically documented at large‐river confluences. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Tributaries may either ameliorate or exacerbate the geomorphic and ecologic impacts of flow regulation by altering the flux of water and sediment into the flow‐regulated mainstem. To capture the effects of tributary influences on a flow regulated river, long‐term discharge and cross‐sectional data are used to assess the geomorphic and hydrologic impacts of impoundment. In addition, the use of the short‐lived cosmogenic radioisotope 7Be (half‐life 53·4 days) to link sediment transport dynamics to benthic macroinvertebrate community structure is evaluated. It is found that the 7Be activity of transitional bed load sediment is highly seasonal and reflects both variations in activity of sediment sources and limited sediment residence time within the junction. Benthic communities also exhibit a strong seasonal variability. In the spring, neither the 7Be activity of the sediment, nor benthic communities exhibit clear relationships with sample site location. In contrast, during the late summer the ratio of Ephemeroptera (mayflies)/Trichoptera (caddisflies) decreased significantly below tributary junctions. This decrease in benthic community ratio was driven by increases in caddisfly abundance and was strongly correlated with the presence of recently 7Be tagged transitional bedload sediment. These observations are probably associated with the presence of coarse, stable, and unembedded substrate downstream of tributaries and the rapid turnover of sediment that may also be associated with a rapid flux in nutrients or seston. The results show that tributaries are impacting the flow‐regulated mainstem and that these impacts are reflected in the benthic community structure and in the 7Be activity of transitional bed load sediment. Moreover, the observed reduction in competence and capacity of the mainstem following flood control suggests that these spatial discontinuities may be a consequence of impoundment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
In alluvial river systems, lateral inputs of water and/or sediment at junctions or undercut hillsides can disrupt what would otherwise be smooth downstream trends in mainstream bed elevation, channel gradient, and bed grain size. Generic styles of mainstream response to lateral inputs are investigated using a one‐dimensional sediment routing model with multiple grain size fractions. Numerical experiments isolate the effects of three para‐meters: ratio of tributary to mainstream water flux (QR), ratio of tributary to mainstream bedload flux (FR), and ratio of tributary to mainstream bedload diameter (DR). The findings are not unduly sensitive to the choice of initial conditions or to approximations made in the model. The primary distinction is between junctions that aggrade, causing local profile convexity with interrupted downstream fining, and junctions that degrade. The immediate effects of aggradation extend further upstream than downstream, whereas degradation is much more subdued and has no upstream impact. Aggradation is typical of coarse inputs (DR > 2), and degradation of fine inputs (DR < 1), but very high ratios of QR to FR also promote degradation. Both aggrading and degrading junctions can lead to a change in mainstream bed grain size well below the junction, with higher ratios of QR to FR producing a coarser distal bed. The effect of a tributary reflects the interplay between additional bed load and additional discharge to transport it. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Suspended sediment dynamics during the period 1964–1985 are examined along the mainstem of Changjiang (Yangtze River). The period represents a basin condition prior to major changes in land management policy and dam building on the river's mainstem. The downstream sediment dynamics reflect basin geology and topography and channel morphology. Sediment exchange within the mainstem was calculated by the development of reach sediment balances that reveal complex temporal and spatial patterns. There is relatively little sediment exchange in the upper, bedrock‐controlled reaches, with systematic increases in the downstream alluvial reaches. Degrading, transfer, and aggrading reaches were identified. Relations between input and output in all reaches were significant but no relation was found between sediment exchange and input/output. Comparison between ‘short‐term’ (22 years) and ‘long‐term’ (52 years) records demonstrates the importance of the record length in studying the suspended sediment dynamics in a large fluvial system. The longer record yielded better correlation and different trends than the shorter record. Sediment transfer (output/input ratio) changes downstream: the dominance of the upstream contributing area in sustaining the appearance of net degradation through most of the river system highlights the importance of reach length on characterisation of suspended sediment dynamics in large fluvial systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The downstream diminution in sediment size in a braided reach of the proglacial Sunwapta River, Alberta, Canada, was examined statistically to identify the sources of the observed variation about an expected exponential relationship between clast size and distance. Major deviations from this hypothetical relationship, such as a relative increase in grainsize, may be attributed to the effects of tributary sediment inputs and downstream changes in channel behaviour, whilst local variation is associated with complex patterns of sediment deposition observed at a bar scale. A comparison of diminution coefficients, calculated for separate lithologies and for subreaches along the river, with those obtained from previous studies, is used as an indicator of river behaviour and sediment transport processes. It is shown that rates of diminution vary within the reach in response to differing rates of aggradation and to the backwater effects created by tributary alluvial fans. The relatively high values for the calculated diminution coefficients indicate that processes of differential transport are the main cause of the grain size decrease.  相似文献   

10.
The nature of catchment‐scale sediment (dis)connectivity is the primary influence on sediment delivery to trunk streams and controls the particle size distribution of channel bed sediments. Here, we examine the distribution of major sediment buffers (floodplains, terraces, alluvial fans, trapped tributary fills), barriers (weirs), and effective catchment area (i.e. sediment contributing area) to characterize the potential for coarse sediment (dis)connectivity in 20 tributaries of Lockyer Creek, in the Lockyer Valley, SEQ. We then analyse the distribution of trunk stream sedimentary links to determine how certain tributaries or disconnecting features (buffers and barriers) influence downstream patterns of bed sediment fining along Lockyer Creek. We find that buffering increases downstream in the Lockyer Valley, and that tributary position and shape influence the space available for sediment buffering. Correspondingly, the spatial extent of sediment buffers impacts the distribution of effective catchment area, which influences the sedimentological significance of individual tributaries. Tributary sediment connectivity, the extent of overbank flows (floodwater zones), and weir locations all exert an additional influence on the distribution of sediment links along the trunk stream. These controls are related to the physiographic and climatic setting of the Lockyer Valley, and anthropogenic influences in this system. We conclude that controls on sediment connectivity and bed load sediment characteristics are highly variable between catchments, and that sediment (dis)connectivity merits equal consideration with tributary basin/channel size when determining controls on tributary–trunk stream relationships and channel sediment regime. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
This paper illustrates how the acoustic Doppler current profiler (ADCP) and single-beam echo-sounder (SBES) recordings can be used for the calibration of existing software to assist in generalizing the morphodynamic processes in large rivers at key sites such as bifi.trcations and confluences. Calibration of the MIKE21C numerical model by the Danish Hydraulic Institute at the 25-km-long reach of Lower Paran~ near Rosario (Argentina) is presented. This reach includes two downstream confluences and two bifurcations. The model simulates a 2-D depth-averaged flow velocity and the related sediment fluxes to predict the bifurcation morphodynamics that affects the Paranh waterway. To investigate the river channel bathymetry, roughness, flow discharge allocation at bifurcations, suspended sediment concentration and grain size distributions, several instruments were used. These instruments included two ADCPs by Teledyne RDI working at frequencies of 600 and 1,200 kHz, a Sontek ADCP working at a frequency of 1,000 kHz and a SBES. The method to assess suspended sediment concentration and grain size distributions has been previously described. This paper focuses primarily on investigating dune morphology (by means of SBES depth measurements) and friction velocity (by means of ADCP profiling) to determine the river channel bed-roughness. The 2-D model results agree with observed values of bed-roughness, flow velocity and suspended sediment concentration distributions at the investigated sections, known data of water slope and total load of bed sediment are in good agreement with model results.  相似文献   

12.
In this paper,the evolutions of flow pattern and sediment transportation at a 90° open-channel confluence with different discharge ratios (q*) of the tributary flow to the total flow were studied.The e...  相似文献   

13.
Bo Wang  Yi-Jun Xu 《水文研究》2020,34(13):2864-2877
Bed material transport at river bifurcations is crucial for channel stability and downstream geomorphic dynamics. However, measurements of bed material transport at bifurcations of large alluvial rivers are difficult to make, and standard estimates based on the assumption of proportional partitioning of flow and bedload transport at bifurcations may be erroneous. In this study, we employed a combined approach based on observed topographic change (erosion/deposition) and bed material transport predicted from a one-dimensional model to investigate bed material fluxes near the engineering-controlled Mississippi-Atchafalaya River diversion, which is of great importance to sediment distribution and delivery to Louisiana's coast. Yang's (1973) sediment transport equation was utilized to estimate daily bed material loads upstream, downstream, and through the diversion during 2004–2013. Bathymetric changes in these channels were assessed with single beam data collected in 2004 and 2013. Results show that over the study period, 24% of the Mississippi River flow was diverted into the Atchafalaya River, while the rest remained in the mainstem Mississippi. Upstream of the diversion, the bed material yield was predicted to be 201 million metric tons (MT), of which approximately 35 MT (i.e., 17%) passed through the bifurcation channel to the Atchafalaya River. The findings from this study reveal that in the mainstem Mississippi, the percentage of bed material diversion (83%) is larger than the percentage of flow diversion (76%); Conversely, the diversion channel receives a disproportionate amount of flow (24%) relative to bed material supply (17%). Consequently, severe bed scouring occurred in the controlled Outflow Channel to the Atchafalaya River, while riverbed aggradation progressed in the mainstem Mississippi downstream of the diversion structures, implying reduced flow capacity and potential risk of a high backwater during megafloods. The study demonstrates that Yang's sediment transport equation provides plausible results of bed material fluxes for a highly complicated large river diversion, and that integration of the sediment transport equation with observed morphological changes in riverbed is a valuable approach to investigate sediment dynamics at controlled river bifurcations.  相似文献   

14.
A six‐year monitoring programme characterized the migration/dispersion patterns of sediment slugs generated following typhoon‐induced disturbances in 1993 and 1997 along a single‐thread gravel‐bed stream, Oyabu Creek, on Kyushu Island, Japan. This laterally con?ned creek comprises rif?e–pool sequences with intervening bedrock outcrops. The passage of sediment pulses associated with sediment slug processes re?ected, and was controlled by, the rif?e–pool structures which provided channel bed roughness, the volume of sediment stored along valley ?oors, and the distribution of bedrock outcrops. Changes to bed material size following major sediment inputs during the disturbance events also exerted an in?uence on subsequent sediment slug processes. The sequence of rainfall events, together with changes to channel bed structure, induced different phases in the sediment slug processes. The capacity of a reach to store or trap sediment, as recorded by the longitudinal structure of the channel, varied during these differing phases. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Alluvial fans at tributary junctions modulate sediment flux through river networks, by buffering the mainstem channel from disturbance in the tributaries. Buffering occurs through the storage (and release) of sediment in fans. Here, we use an extensive historic dataset to characterise the ways in which fan buffering can change as sediment supply varies. In New Zealand's East Coast region, sediment supply and fluvial transport are prolific by global standards. We reconstruct how tributary-junction fans in this region have responded to sediment generated by deforestation and extreme storms. The dynamics of five fans along the Tapuaeroa River are examined for the period 1939–2015. In response to major sediment loading, fans aggraded by up to 12 m and prograded by up to 170 m. Net sediment accumulation ranged from near zero to 1.5×106 m3. Fan size, gradient, sediment storage and buffering were influenced by both upstream and downstream controls. Key upstream (tributary) influences were sediment supply and stream power; downstream (mainstem) influences included distal confinement and, importantly, the nature of fan interaction with the mainstem, which aggraded by up to 6 m. The fans' ability to buffer the Tapuaeroa River from change in the tributaries was largely governed by this downstream interaction: as the mainstem aggraded, it increasingly curtailed fan progradation, thus limiting buffering. Previous studies of tributary-junction fans have related fan morphometry to basin characteristics. However, we find that fan slope and area can vary considerably at decadal, annual or even monthly timescales. Consequently, we suggest that such studies could benefit by examining regional histories of disturbance. © 2019 John Wiley & Sons, Ltd.  相似文献   

16.
Declining sand inputs to a channel with bimodal bed sediment can lead to degradation, armoring, and reduced bedload transport rates. Where sand loading is episodic, channels may alternate between high‐sand and low‐sand conditions, with ensuing responses in bed texture and bedload transport rates. The effects of episodic sand loading are explored through flow, grain size, and bedload transport measurements on the Pasig‐Potrero River, a sediment‐rich channel draining Mount Pinatubo, Philippines. Sand loading on the Pasig‐Potrero River is highly seasonal, and channel adjustments between seasons are dramatic. In the rainy season, inputs from sand‐rich 1991 eruption deposits lead to active, sand‐bedded, braided channels. In the dry season, many precipitation‐driven sand sources are cut off, leading to incision, armoring, and significantly lower bedload transport rates. This seasonal transition offers an excellent opportunity to examine models of degradation, incision, and armoring as well as the effectiveness of sediment transport models that explicitly encapsulate the importance of sand on transport rates. During the fall 2009 seasonal transition, 7·6 km of channel incised and armored, carving a 2–3 m deep channel on the upper alluvial fan. Bedload transport rates measured in the August 2009 rainy season were over four orders of magnitude greater than gravel‐bedded dry‐season channels surveyed in January 2010, despite having similar shear stress and unit discharge conditions. Within dry‐season incised channels, bed armoring is rapid, leading to an abrupt gravel‐sand transition. Bedload transport rates adjust more slowly, creating a lag between armoring and commensurate reductions in transport. Seasonal channel incision occurred in steps, aided by lateral migration into sand‐rich banks. These lateral sand inputs may increase armor layer mobility, renewing incision, and forming terraces within the incised seasonal channel. The seasonal incised channel is currently being reset by precipitation‐driven sand loading during the next rainy season, and the cycle begins again. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A record spanning almost 20 years of suspended sediment and discharge measurements on two reaches of an agricultural watershed is used to assess the influence of in‐channel sediment supplies and bed composition on suspended sediment concentrations (SSC). We analyse discharge‐SSC relationships from two small streams of similar hydrology, climate and land use but widely different bed compositions (one dominated by sand, the other by gravel). Given that sand‐dominated systems have more fine sediment available for transport, we use bed composition and the relative proportion of surface sand and gravel to be representative of in‐channel sediment supply. Both high flow events and lower flows associated with onset and late recessional storm flow (‘low flows’) are analysed in order to distinguish external from in‐channel sources of sediment and to assess the relationship between low flows and sediment supply. We find that SSC during low flows is affected by changes to sediment supply, not just discharge capacity, indicated by the variation in the discharge‐SSC relationship both within and between low flows. Results also demonstrate that suspended sediment and discharge dynamics differ between reaches; high bed sand fractions provide a steady supply of sediment that is quickly replenished, resulting in more frequent sediment‐mobilizing low flow and relatively constant SSC between floods. In contrast, SSC of a gravel‐dominated reach vary widely between events, with high SSC generally associated with only one or two high‐flow events. Results lend support to the idea that fine sediment is both more available and more easily transported from sand‐dominated streambeds, especially during low flows, providing evidence that bed composition and in‐channel sediment supplies may play important roles in the mobilization and transport of fine sediment. In addition, the analysis of low‐flow conditions, an approach unique to this study, provides insight into alternative and potentially significant factors that control fine sediment dynamics. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Sediment mining in rivers may have a major impact on river geomorphology and research is required to quantify these impacts. In this research, experimental studies were conducted to analyse the morphological changes of channel bed and the turbulent characteristics of flow in the presence of mining. The channel bed profile shows erosion at the bank of the pit and that the erosion expands to the whole width of the channel and propagates downstream with time. The deposition of sediment occurs along the upstream edge of the pit and the depth of the pit decreases with time. Velocity reversal occurs at the central bottom of the pit related to a recirculation zone. Reynolds shear stress and the turbulent intensities become higher in the mining pit region and downstream of it as compared to the upstream section, causing a more rapid movement of bed particles. Analysis of the bursting phenomenon shows that the contribution of sweep and ejection events to the total Reynolds shear stress is more dominant over outward and inward interaction events. The dominance of the sweep event over ejection is observed at the near‐bed region for all the sections, but the depth range of dominance of sweep events in the pit and downstream of the pit is found to be more than the upstream. The increase in thickness is responsible for the increase in bed material transport. The increased sediment transport capacity at the mining pit and downstream of it caused the deformation and lowering of channel bed downstream. An empirical formulation of bedload transport for mining induced channels is derived from two different sized uniform bed materials. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

19.
Understanding flow structures in river confluences has largely been the product of interpretations made from measured flow velocity data. Here, we turn the attention to the investigation of the patterns of both the average and standard deviations of the micro‐topography of the water surface at an asymmetrical natural discordant confluence for different flow conditions. Water surface topography is measured using a total station to survey the position of a reflector mounted on a custom‐built raft. To limit error problems related to changes in the water level, measurements are taken and analysed by cross‐stream transects where five water surface profiles are taken before moving to the next transect. Three‐dimensional numerical simulations of the flow dynamics at the field site are used to examine predicted water surface topography for a steady‐state situation. The patterns are interpreted with respect to flow structure dynamics, visual observations of boils, and bed topography. Results indicate that coherent patterns emerge at the water surface of a discordant bed confluence for different flow conditions. The zone of stagnation and the mixing layer are characterized by super‐elevation, a lateral tilt is present at the edge of the mixing layer, and a zone of super‐elevation is present on the tributary side at the downstream junction corner. The latter seems associated with periodical upwelling and is not present in the numerical simulations that do not take into account instantaneous velocity fluctuations. Planform curvature, topographic steering related to the tributary mouth bar, and turbulent structures associated with the mixing layer all play a key role in the pattern of both the average and standard deviation of the water surface topography at confluences. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
Confluence–diffluence units are key elements within many river networks, having a major impact upon the routing of flow and sediment, and hence upon channel change. Although much progress has been made in understanding river confluences, and increasing attention is being paid to bifurcations and the important role of bifurcation asymmetry, most studies have been conducted in laboratory flumes or within small rivers with width:depth (aspect) ratios less than 50. This paper presents results of a field‐based study that details the bed morphology and 3D flow structure within a very large confluence–diffluence in the Río Paraná, Argentina, with a width:depth ratio of approximately 200. Flow within the confluence–diffluence is dominated largely by the bed roughness, in the form of sand dunes; coherent, channel‐scale, secondary flow cells, that have been identified as important aspects of the flow field within smaller channels, and assumed to be present within large rivers, are generally absent in this reach. This finding has profound implications for flow mixing rates, sediment transport rates and pathways, and thus the interpretation of confluence–diffluence morphology and sedimentology. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号