首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A highly parameterized variable-density groundwater flow and solute transport model was developed to test multiple hypotheses for upward movement of treated wastewater (effluent) injected into a saline coastal aquifer in southeastern Florida, USA. The model was designed to assess risk to a drinking-water aquifer above the zone of injection, where monitoring wells have detected effluent. The model-based analysis accommodated geological and data complexity, including the observed presence of effluent in upper monitoring wells, but not in lower monitoring wells, thereby giving the appearance of the effluent having bypassed geological layers. The modeling approach included the application of multiple methodologies to reduce model run times during parameter estimation while providing detailed calibrated model(s) that can be used to assess the potential capacity for different mechanisms of effluent migration. The methods included use of a semi-analytical equation to quickly calculate initial concentrations, parallelization of model runs over multiple processors when calibrating, and utilization of the concepts of singular value decomposition and Tikhonov regularization to accommodate a high level of parameterization complexity. The results reveal that vertical effluent migration could occur as diffuse flow through heterogeneous confining units; however, flow through a channelized pathway caused by well construction appears to be more likely.  相似文献   

2.
Two deep-well injection sites in south Florida, USA, inject an average of 430 million liters per day (MLD) of treated domestic fresh wastewater into a deep saline aquifer 900 m below land surface. Elevated levels of NH3 (highest concentration 939?µmol) in the overlying aquifer above ambient concentrations (concentration less than 30?µmol) were evidence of the upward migration of injected fluids. Three pathways were distinguished based on ammonium, chloride and bromide ratios, and temperature. At the South District Wastewater Treatment Plant, the tracer ratios showed that the injectate remained chemically distinct as it migrated upwards through rapid vertical pathways via density-driven buoyancy. The warmer injectate (mean 28°C) retained the temperature signal as it vertically migrated upwards; however, the temperature signal did not persist as the injectate moved horizontally into the overlying aquifers. Once introduced, the injectate moved slowly horizontally through the aquifer and mixed with ambient water. At the North District Wastewater Treatment Plant, data provide strong evidence of a one-time pulse of injectate into the overlying aquifers due to improper well construction. No evidence of rapid vertical pathways was observed at the North District Wastewater Treatment Plant.  相似文献   

3.
A heterogeneous anisotropic steady-state groundwater flow model for the multi-aquifer system of a part of southern Bengal Basin shows that human intervention has changed the natural groundwater flow system. At present, the shallow groundwater flow is restricted within the aquifer, with very short travel time of tens of years and vertical path length. The deep aquifer is fed by surface water or rainwater from distant locations with travel time of thousands of years and has no hydraulic connection with the arsenic-rich shallow aquifer. Numerical simulations indicate that the future pumping of deep groundwater is not likely to drive in arsenic from the shallow aquifer. Therefore, new wells may be installed in the deep aquifer. High pumping of shallow unpolluted aquifer consisting of brown sand will drive in groundwater containing organic matter from the post-Last Glacial Maximum aquifer-aquitard system. The organic matter drives reduction of manganese oxides at strip interfaces between palaeo-channel and palaeo-interfluve. After the completion of manganese reduction, FeOOH reduction may take place in the marginal palaeo-interfluvial aquifer and release sorbed arsenic. Arsenic then moves into the interior of palaeo-interfluvial aquifer polluting its fresh groundwater. Arsenic migration rates ranges between 0.21 and 6.3 and 1.3 × 10?2 and 0.4 m/year in horizontal and vertical directions, respectively. Therefore, palaeo-interfluvial aquifer will remain arsenic-free for hundreds to thousands of years to supply safe drinking water.  相似文献   

4.
A spatial relationship between high capacity municipal production wells (>5,000 m3/day), completed in a deep bedrock aquifer, and a buried bedrock valley was recognized in the city of Guelph, southwestern Ontario, Canada. Most production wells are completed in a discrete zone, ~60 m below ground surface, within flat-lying dolostones of the Silurian Amabel Formation. Thick overburden and limited subsurface data make characterization of the karstic aquifer difficult. This study integrates hydrogeologic data with models of karst formation, deriving a conceptual model of porosity development as it relates to valley incision. Bedrock valley incision likely occurred prior to the early Wisconsinan age (>60–75 ka). Incision created steep hydraulic gradients within the flat-lying bedrock, and provided the driving force required to integrate regional groundwater flow into karst conduits that drained at the base of the valley. Dissolution in production zone dolostones was favoured over dissolution in shallower bedrock due to abundant bedding plane partings and fossiliferous facies with high intercrystalline porosity. Burial of the valley during subsequent ice advances reduced the valley’s hydraulic influence and the efficacy of the flow system to cause dissolution. The high capacity municipal wells near the buried bedrock valley tap into the now dormant karst aquifer system.  相似文献   

5.
A 5-year aquifer storage and recovery trial at Andrews Farm in South Australia involving the injection of more than 250 ML (250,000 m3) of fresh but turbid stormwater into a brackish limestone aquifer over 4 years and recovery of 150 ML in the fifth provided the opportunity to evaluate rates of clogging and unclogging and the potential to recover water suitable for irrigation supplies. Results reveal there is some clogging by injected sediment, but only to a relatively small degree considering the high suspended solid concentrations and moderate aquifer transmissivity. This clogging was offset by increased matrix porosity through calcite dissolution and by routine well redevelopments after each 40 ML of injection. No significant microbial clogging occurred. Breakthrough responses at three observation wells and the proportion of injectant in the recovered water were determined from chloride data. Temperature and caliper profiles clearly indicate the heterogeneous nature of the aquifer that is attributed, in part, to sand removal during the initial well development. The recovery efficiency was greater than 60%. The trial demonstrates that urban stormwater containing high and variable particulate levels, which receives only passive pre-treatment and is not disinfected, can be used to freshen a heterogeneous brackish aquifer to create a useful water resource.  相似文献   

6.
Effective evaluation, management and abstraction of groundwater resources of any aquifer require accurate and reliable estimates of its hydraulic parameters. This study, therefore, looks at the determination of hydraulic parameters of an unconfined aquifer using both analytical and numerical approaches. A long-duration pumping test data obtained from an unconfined aquifer system within the Tailan River basin in Xinjiang Autonomous Region in the northwest of China is used, in this study, to investigate the best method for estimating the parameters of the aquifer. The pumping test was conducted by pumping from a radial collector well and measuring the response in nine observation wells; all the wells used in the test were partially penetrating. Using two well-known tools, namely AquiferTest and MODFLOW, as an aid for the analytical and numerical approaches, respectively, the parameters of the aquifer were determined and their outputs compared. The estimated horizontal hydraulic conductivity, vertical hydraulic conductivity, and specific yield for the analytical approach are 38.1–50.30 m/day, 3.02–9.05 m/day and 0.204–0.339, respectively, while the corresponding numerical estimates are 20.50–35.24 m/day, 0.10–3.40 m/day, and 0.27–0.31, respectively. Comparing the two, the numerical estimates were found to be more representative of the aquifer in the study area since it simulated the groundwater flow conditions of the pumping test in the aquifer system better than the analytical solution.  相似文献   

7.
Water table dynamics, dissolved oxygen (DO) content, electrical resistivity (ER) in monitoring wells and air pressure in the vadose zone are monitored in air sparging (AS) accompanied by soil vapor extraction (SVE) at a hydrocarbon-contaminated groundwater site in Oman, where a diesel spillover affected a heterogeneous unconfined aquifer. The formation of a groundwater mound at the early stage of air injection and potential lateral migration of contaminants from the mound apex called for an additional hydrodynamic barrier constructed as a pair of pump-and-treat (P&T) wells whose recirculation zone encompassed the AS and SVE wells. In all monitored piezometers the phreatic surface showed a rapid and distinct peak, which is attributed to the time of air breakthrough from the injection point to the vadose zone and a relatively mild recession limb interpreted as a decay of the mound. Tracer tests showed a layer of a relatively low hydraulic conductivity at an intermediate depth of the screened interval of the wells. Increased levels of DO and borehole air pressure that have been observed (as far as 50 m away) are likely mitigated by SVE and P&T. Radius of influence can be indirectly inferred from ER and DO changes in the AS operation zone. Salt tracer tests have shown that groundwater velocity within the AS zone decreases with the increase of air injection rate.  相似文献   

8.
Water resources in the Algerian South are rare and difficult to reach because they are often too deep. This is the case of Guerrara which is characterized by an annual precipitation average of less than 60 mm. The water supply is warranted from groundwater, frequently too deep and badly known. The main purpose of the present study is to determine the geometry of aquifer from geophysical data. Fourteen vertical electrical soundings covering the total surface area were carried out by using an arrangement of electrodes called “Schlumberger array.” The length of the selected transmission line (AB) was 1,000 m, which allowed a vertical investigation reaching up to 160 m of depth. The analysis of the results shows that the prospected zone is characterized by the succession of layers with different electrical resistivities. A sandstone aquifer characterized by resistivities near 100 Ω m overcoming a limestone aquifer stronger with values that exceed 1,000 Ω m, separated by a conductive layer of clay with average resistivity of 15 Ω m. Distribution map of sandstones thickness shows the structural variations of this horizon allowing an estimation of its hydraulic potential.  相似文献   

9.
 Deep-well injection has been used to dispose of municipal liquid wastes in southwestern Florida since 1988. The liquid wastes are injected into an extremely high-transmissivity zone of fractured dolomite in the Early Eocene Oldsmar Formation of the Floridan aquifer system; this zone is commonly referred to as the Boulder Zone. Data collected during the drilling and operational testing of southwestern Florida injection wells provide insights into the nature of the injection zone and overlying confining beds. The location of high-transmissivity zones that are capable of accepting large quantities of waste water is vertically and horizontally variable and cannot be predicted with certainty. A 40.9-m thick high-permeability interval in one injection well, for example, was absent in a well drilled only 85.4 m away. Some upward migration of low-density injected fluids has occurred, but at no site were the injected liquids detected in deep monitor wells, such as occurred at injection-well sites along the coasts of southeastern, west-central, and east-central Florida. The primary confinement of the injected liquids (i.e., deepest effective confining beds) consists of unfractured beds of low-permeability dolomite within the Oldsmar Formation, whose locations are also laterally and vertically variable. The origin and controls of the distribution of fractures in the Oldsmar Formation are poorly understood. Received, December 1997 Revised, June 1998, August 1998 Accepted, August 1998  相似文献   

10.
In 1967, the US Geological Survey (USGS) published the results of 141 pumping tests carried out throughout the Pakistani Punjab to establish representative hydraulic parameters of its large aquifer. Many authors have since concluded that the USGS had over-estimated the horizontal hydraulic conductivity (k r) by 25–100 %, leaving vertical anisotropy and aquifer depth unresolved. No test wells have ever been drilled below 450 m to reach the base of the aquifer, although petroleum explorations mention depths between 1,500 and 4,500 m. After comparison and re-evaluation of all related papers, this study concludes that the USGS interpretation was correct, that its hydraulic values still stand without change, and that the USGS’s applied distance drawdown interpretation is valid to prevent influence of partial penetration on the results. This study also uniquely resolved vertical anisotropy and aquifer thickness by using early- and late-time drawdowns separately and proper scaling of the coordinates, which has often been omitted. With appropriate scaling, all interpretations match the data. The representative hydraulic aquifer values are: k r?=?65 m/d, vertical anisotropy k r/k z?=?25 and aquifer depth 500–1,500 m. The conclusion is that these values can be used, at least as first estimates, for groundwater studies in the Pakistani Punjab.  相似文献   

11.
The karstic upper Floridan aquifer in north-central Florida (USA) is recharged by both diffuse and allogenic recharge. To understand how recharged water moves within the aquifer, water levels and specific conductivities were monitored and slug tests were conducted in wells installed in the aquifer surrounding the Santa Fe River Sink and Rise. Results indicate that diffuse recharge does not mix rapidly within the aquifer but instead flows horizontally. Stratification may be aided by the high matrix porosity of the eogenetic karst aquifer. Purging wells for sample collection perturbed conductivity for several days, reflecting mixing of the stratified water and rendering collection of representative samples difficult. Interpretive numerical simulations suggest that diffuse recharge impacts the intrusion of allogenic water from the conduit by increasing hydraulic head in the surrounding aquifer and thereby reducing influx to the aquifer from the conduit. In turn, the increase of head within the conduits affects flow paths of diffuse recharge by moving newly recharged water vertically as the water table rises and falls. This movement may result in a broad vertical zone of dissolution at the water table above the conduit system, with thinner and more focused water-table dissolution at greater distance from the conduit.  相似文献   

12.
A significant component of domestic demand for water of urban areas located in the Gangetic plains is met by heavy pumping of groundwater. The present study is focused on the Patna municipal area, inhabited by 17 million people and spanning over 134 km2, where entire urban water demand is catered from pumping by wells of various capacities and designs. The present study examines the nature of the aquifer system within the urban area, the temporal changes in the water/piezometric level and the recharge mechanism of the deeper aquifers. The aquifer system is made up of medium-to-coarse unconsolidated sand, lying under a ~40-m-thick predominantly argillaceous unit holding 8- to 13-m-thick localised sand layers and continues up to 220 m below ground. Groundwater occurs under semi-confined condition, with transmissivity of aquifers in 5,500–9,200 m2 day?1 range. Hydraulic head of the deeper aquifer remains in 9–19 m range below ground, in contrast to 1–9 m range of that of the upper aquitard zone. The estimated annual groundwater extraction from the deeper aquifer is ~212.0 million m3, which has created a decline of 3.9 m in the piezometric level of the deeper aquifer during the past 30 years. Unregulated construction of deep tube wells with mushrooming of apartment culture may further exacerbate the problem. The sand layers within the aquitard zone are experiencing an annual extraction of 14.5 million m3 and have exhibited stable water level trend for past one and half decades. This unit is recharged from monsoon rainfall, besides contribution from water supply pipe line leakage and seepage from unlined storm water drains.  相似文献   

13.
Vertical electrical soundings technique was used to evaluate the aquifer characteristics and distribution in the northern part of Paiko in Nigeria. A total of thirty vertical electrical soundings were carried out using ABEM SAS4000 Terrameter, and the data was analyzed both manually and with software (Resist software). The result revealed the aquifer resistivity and thickness to vary from 10.9 to 80,368 Ωm, and 1.06 to 72 m, respectively. Also, hydraulic conductivity ranges from 0.010267 to 41.61928 m/day while transmissivity values range from 0.035215 to 70.09302 m2. The hydrogeological maps (hydraulic conductivity and transmissivity image maps) showed the variations of these parameters in the study area and that the southwestern part of the area has prolific aquifer.  相似文献   

14.
A tritium (3H) profile was constructed in a long-screened well (LSW) of the Fontainebleau Sands Aquifer (France), and the data were combined with temperature logs to gain insight into the potential effects of the ambient vertical flow (AVF) of water through the well on the natural aquifer stratification. AVF is commonly taken into account in wells located in fracture aquifers or intercepting two different aquifers with distinct hydraulic heads. However, due to the vertical hydraulic gradient of the flow lines intercepted by wells, AVF of groundwater is a common process within any type of aquifer. The detection of 3H in the deeper parts of the studied well (approximate depth 50 m), where 3H-free groundwater is expected, indicates that shallow young water is being transported downwards through the well itself. The temperature logs show a nearly zero gradient with depth, far below the mean geothermal gradient in sedimentary basins. The results show that the age distribution of groundwater samples might be biased in relation to the age distribution in the surroundings of the well. The use of environmental tracers to investigate aquifer properties, particularly in LSWs, is then limited by the effects of the AVF of water that naturally occurs through the well.  相似文献   

15.
An active and short-duration thermal tracer test (TTT) was conducted in a shallow sedimentary aquifer at the Lauswiesen test site, near Tübingen, Germany. By injecting 16  m3 of warm water at 22°C, a thermal anomaly was created, which propagated along the local groundwater flow direction. This was comprehensively monitored in five observation wells at a few meters distance. The purpose of this well-controlled experiment was to determine the practicability of such a TTT and its suitability to examine hydraulic characteristics of heterogeneous aquifers. The results showed that the thermal peak arrival times in the observation wells were consistent with previous observations from alternative field testing such as direct-push injection logging (DPIL). Combined analysis of depth-dependent temperatures and peak arrival times, and comparison with a numerical heat transport model, offers valuable insights into the natural flow field and spatial distribution of hydraulic conductivities. The study was able to identify vertical flow focusing and bypassing, which are attributed to preferential flow paths common in such sedimentary sand and gravel aquifers. These findings are fundamental for further development of experimental designs of active and short-duration TTTs and provide a basis for a more quantitative analysis of advective and conductive transport processes.  相似文献   

16.
The aquifer system in the Thon Buri sedimentary basin below the deltaic flood plain of the Chao Phraya River, central Thailand, has been exploited for public water supply for the capital Bangkok since the early 1920s. Groundwater withdrawal, currently 1.4 million m3/d, has resulted in a maximum decline in hydraulic head of up to 40 m. This has induced land subsidence of as much as 1.7 m (1940–1992) in the eastern suburbs of the metropolis. Artificial injection of purified water within an area-wide network of recharge wells could constitute a remedy to slow the water level depression within the sedimentary basin, and thus the subsidence. This requires a prior shutdown of water withdrawal. The flow paths of the injected water can be traced by changes in the 87Sr/86Sr ratio of the groundwater and injected water mixture within the three main aquifers in the basin that are used for public supply. The ratios, monitored at five monitoring stations within the cone of depression, have been constant over 3 years. Injection of the calculated cone volume of 5.2?×?109 m3 would take at least 10 years, depending on the injection pressure and the number and position of wells.  相似文献   

17.
Korba aquifer is one of the most typical examples of overexploited coastal aquifer in the Mediterranean countries. In fact, from 1985, a considerable piezometric level drop, water salinization, and seawater intrusion were registered in the aquifer. In December 2008, Tunisian authorities initiated a general plan to groundwater management in order to augment groundwater resources, restore the piezometric levels, and improve water quality. The plan consists of artificial recharge of groundwater used treated wastewater through three infiltration basins. During the first 4 years (from December 2008 to December 2012), 1.41 Mm3 of treated wastewater was injected to the Korba aquifer. This study presents a hydrogeological assessment of groundwater evolution during the recharge processes. In this study, 32 piezometric and chemical surveys of 70 piezometers and observed wells are used to present hydrogeological investigation and water quality evolution of wastewater reuse through artificial recharge in Korba coastal aquifer. The piezometric evolution maps are used to specify the positive effect in groundwater level that exceeding 1.5 m in some regions. The interpretation of salinity evolution maps are used to indicate the improving of groundwater quality.  相似文献   

18.
Solutes in saline groundwater (total dissolved solids up to 37 000 mg/L) in the Lake Cooper region in the southern margin of the Riverine Province of the Murray Basin are derived by evapotranspiration of rainfall with minor silicate, carbonate and halite dissolution. The distribution of hydraulic heads, salinity, percentage modern carbon (pmc) contents, and Cl/Br ratios imply that the groundwater system is complex with vertical flow superimposed on lateral flow away from the basin margins. Similarities in major ion composition, stable (O, H, and C) isotope, and 87Sr/86Sr ratios between groundwater from the shallower Shepparton Formation and the deeper Calivil – Renmark aquifer also imply that these aquifers are hydraulically interconnected. Groundwater in the deeper Calivil – Renmark aquifer in the Lake Cooper region has residence times of up to 25 000 years, implying that pre-land-clearing recharge rates were <1 mm/y. As in other regions of the Murray Basin, the low recharge rates account for the occurrence of high-salinity groundwater. Shallow (<20 m) groundwater yields exclusively modern 14C ages and shows a greater influence of evaporation over transpiration. Both these observations reflect the rise of the regional water-table following land clearing over the last 200 years and a subsequent increase in recharge to 10 – 20 mm/y. The rise of the regional water-table also has increased vertical and horizontal hydraulic gradients that may ultimately lead to the export of salt from the Lake Cooper embayment into the adjacent fresher groundwater resources.  相似文献   

19.
The current study aimed to evaluate hydrogeologically the Nubian sandstone aquifer in El-Bahariya Oasis. It represents the main water-bearing horizon in the study area and consists of continental elastic sediments, mainly sandstone alternating with shale and clays. The general flow lines are directed from SW to NE direction, as detected from the constructed potentiometric head contour map. The piezometric surface reaches 149 m in El-Heiz area at the southern part, while it reaches 90 m at the northern, reflecting higher pressure head of the aquifer in the southern part. The map also illustrates that the southern part is considered as the most promising location for development. The structural elements play an important role in the deposition and distribution of the sedimentary succession of the Nubian sandstone sediments. Consequently, this sedimentary pattern affects the occurrences and movements of the groundwater within the aquifer system. Along the structurally high areas, in the study area, the piezometric head increases, while the reverse is recorded along the structurally low areas. The step-drawdown tests data were carried out by calculating the aquifer loss coefficient (B) and the well loss constant (C). The B values are smaller compared with C values, indicating that the aquifer under pressure has a behavior of leaky aquifer; therefore, it shows hydraulic connection with surrounding formation. The values of well efficiency range from 78.50% to 87.76%. Analysis of 12 pumping test data (constant discharge tests) was carried out in order to calculate the Nubian aquifer hydraulic parameters (transmissivity, hydraulic conductivity, and storage coefficient). The transmissivity values decrease from 3,045 m2/day in the southern part (El-Heiz area) to 236 m2/day in the northeastern part (El-Harra area). Accordingly, the aquifer classified as a high to moderate potentiality. Transmissivity contour map observes gradual increase of transmissivity values from the southern to northeastern direction. This may be due to the increase of shale or clay content in the concerned aquifer in that direction. The storage coefficient values range between 1.04 × 10?4 and 5.22 × 10?3, as obtained from the results of pumping test analysis, which ensure that the Nubian sandstone aquifer is classified as semi-confined to confined aquifer type. The S values show a decrease from southwest to northeast direction as detected from S-map. The hydraulic conductivity values vary from to 0.46 m/day in the northern part to 10.88 m/day in the southern part with an average of 5.67 m/day. According to the classification based on K values, the aquifer is mainly composed of coarse sand.  相似文献   

20.
An aquifer vulnerability of the Benin Formation aquifer (Calabar, southern Nigeria) has been assessed using a combination of DRASTIC index and GIS technology. The assessment was necessitated by the fact that uncontrolled disposal of domestic, industrial and agricultural wastes have caused groundwater contamination. Therefore, prevention of contamination, monitoring and management of the aquifer was urgently required to increase the efficient use of the current water supplies. The DRASTIC method uses seven parameters (depth to groundwater table, net recharge, aquifer media, soil media, topography, influence of vadose zone and hydraulic conductivity), which were used to produce vulnerability maps. The drastic vulnerability index ranged between 124 and 170. The vulnerability map shows that the aquifer is highly vulnerable in southeastern parts of the area covering about 22 %. The medium vulnerability area covers about 56.8 % of Calabar extending from the southwest to northern parts. 21.2 % of the area covering the central and northern parts the area lies within the low vulnerability zone. The present industrial and activities are located in the eastern and western parts, which falls within the low-medium vulnerability areas. Documented nitrate concentration in hand-dug wells and boreholes are in agreement with vulnerability zones. Sensitivity analysis was performed to evaluate the sensitivity of each parameter between map layers such that subjectivity can be reduced to an extent and new weights computed for each DRASTIC parameter. As management options sensitive areas, especially in the southern parts of Calabar area, should be protected from future development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号